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Abstract: In the present study, nanocomposites having hierarchical nanoflowers (HNFs) -like mor-
phology were synthesized by ultra-sonication approach. HNFs were ternary composite of MgFe2O4

and bentonite with boron-, phosphorous- co-doped graphene oxide (BPGO). The HNFs were fully
characterized using different analytical tools viz. X-ray photoelectron spectroscopy, scanning electron
microscopy, energy dispersion spectroscopy, transmission electron microscopy, X-ray diffraction,
vibrating sample magnetometry and Mössbauer analysis. Transmission electron micrographs showed
that chiffon-like BPGO nanosheets were wrapped on the MgFe2O4-bentonite surface, resulting in
a porous flower-like morphology. The red-shift in XPS binding energies of HNFs as compared to
MgFe2O4-bentoniteand BPGO revealed the presence of strong interactions between the two materials.
Box–Behnken statistical methodology was employed to optimize adsorptive and photocatalytic
parameters using Pb(II) and malathion as model pollutants, respectively. HNFs exhibited excellent
adsorption ability for Pb(II) ions, with the Langmuir adsorption capacity of 654 mg g−1 at optimized
pH 6.0 and 96% photocatalytic degradation of malathion at pH 9.0 as compared to MgFe2O4-bentonite
and BPGO. Results obtained in this study clearly indicate that HNFs are promising nanocomposite
for the removal of inorganic and organic contaminants from the aqueous solutions.

Keywords: hierarchical nanoflower; nanocomposite; boron and phosphorus doped GO; magnesium
ferrite-bentonite; adsorbent; photocatalyst; Box–Behnken design

1. Introduction

There is a surging research interest in the fabrication of nanocomposites of ferrites with
promising adsorptive and photocatalytic properties. Different morphologies of nanocom-
posites viz. flower-like [1,2], hollow-yolk shell [3], core-shell [4] and nanorods [5] are
reported. These nanostructures have some unique features such as fast charge transfer,
the reduced recombination rate of charge carriers and high surface area which allows
their utilization in adsorption and photocatalysis [6]. For enhancing the activity of these
nanocomposites, the right choice of the components is an important aspect.

In recent years, graphene-based materials have been extensively studied for the envi-
ronmental applications because of their large surface area and tunable optical properties [7].
Graphene oxide (GO), a functionalized form of graphene, has adsorptive and catalytic
inertness because of its low chemical potential and restricted surface functionalities [8]. GO
is reported to have a wide bandgap (3.5 eV) and can act as a photocatalyst only under UV
light illumination [8]. This feature limits its practical applications for visible light assisted
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photocatalysis. Visible radiation constitutes 45% of solar light and its use in photocatal-
ysis makes it a green technology for the remediation of wastewater [9,10]. Co-doping of
GO with heteroatoms can improve its properties for application as adsorbent and pho-
tocatalyst. Co-doping of GO with boron, nitrogen, sulphur and phosphorous has been
reported [11–13]. These co-doped materials have been extensively used in electrocatalysis
due to asymmetric charge density induced by the difference between the electronegativity
of heteroatoms and carbon [14–16].

The boron and nitrogen co-doped reduced GO has been reported as an effective
catalyst towards the electrochemical degradation of paracetamol, due to the improvement
of conductivity and creation of new surface defects [17]. Nitrogen and sulfur co-doped
industrial graphene showed high peroxymonosulfate activation for catalyzing the methyl
paraben oxidation [15]. Similarly, the nitrogen-sulfur co-doped reduced GO nanohybrids
displayed high adsorption capacity for cationic, anionic and neutral dyes [18]. Improved
catalytic and adsorptive features of co-doped GO can be due to large specific surface area,
pore size and pore volume as compared to mono-doped and pristine GO. Although boron,
nitrogen, and sulfur co-doped GO/graphene have been studied [15,17], B- and P- co-doped
GO and its composites have not yet been explored as adsorbents and photocatalysts for the
removal of pollutants from the aqueous media.

In this work, boron and phosphorous heteroatoms were chosen for co-doping of GO
lattice because they can induce a synergistic coupling effect due to the co-existence of
electron-deficient boron atoms and electron-rich phosphorous atoms. They also exhibit ex-
cellent optical properties along with mesoporosity and large surface area. Different bonding
configurations of boron and phosphorous atoms offer huge adsorptive sites for the uptake of
pollutants. The recovery of co-doped GO after adsorption and photocatalysis is difficult due
to its non-magnetic nature. This problem can be overcome by making its nanocomposite
with ferrites. They are mixed metal oxides of iron with promising adsorptive, photocatalytic
and magnetic properties. Magnesium ferrite (MgFe2O4)-bentonite nanocomposite has been
reported as an effective adsorbent and photocatalyst in our previous studies [19–21]. In the
present work, nanoflowers of MgFe2O4-bentonite nanocomposite with boron and phos-
phorous co-doped GO (BPGO) were synthesized, which led to enhancement in the overall
adsorptive and photocatalytic activity as compared to both the components. The structural,
magnetic, and optical features of the synthesized nanoflowers were analyzed using differ-
ent analytical techniques. BPGO nanosheets wrapped on the MgFe2O4-bentonite surface
produced a hierarchical nanohybrid with flower-like morphology. The adsorptive and
photocatalytic potential of the synthesized nanoflowers was eValuated using Pb(II) and
malathion as model pollutants. The concentration of Pb(II) and malathion should be less
than 0.015 ppm and 100 ppm in the wastewater, as per WHO guidelines [22]. Presence of
Pb(II) in water above permissible limit can cause anaemia, hypertension, renal impairment,
immunotoxicity and neurological disorders. Malathion (Diethyl 2-[(dimethoxy phospho-
rothioyl) sulfanyl] butanedioate) has been broadly used in agriculture to control weeds
and can cause renal failure, myocardial depression, central nervous system disorders, lung
edema, and eye irritation [23–26].

Box–Behnken Design (BBD) was utilized as a statistics tool for optimizing the ad-
sorption and photocatalytic parameters and for exploring the simultaneous effects of the
independent variables on the dependent variables such as Pb(II) removal and malathion
degradation. Further, kinetics of the adsorption and degradation process was studied in de-
tail. The adsorption mechanism was predicted on the basis of XPS studies, thermodynamic
parameters, adsorption isotherm and kinetic modelling. A plausible photodegradation
mechanism was also proposed on the basis of GC-MS analysis and the free radical quench-
ing studies. Our work presents an efficient method to synthesize hierarchical recyclable
adsorbent and photocatalyst with promising potential application in water decontamination.
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2. Results and Discussion
2.1. Characterization

Table 1 lists all the information about the synthesized samples, including sample codes
and their description.

Table 1. Information regarding the sample codes.

Sample Code Sample Description

MGF-B Magnesium ferrite-bentonite nanocomposite

BPGO Boron and phosphorous co-doped graphene oxide

HNFs Hierarchical nanoflowers like morphology of nanocomposite containing magnesium
ferrite-bentonite and boron and phosphorous co-doped graphene oxide

2.1.1. Structural Characterization

XPS spectrum of MGF-B (Figure 1a) confirmed the existence of both MgFe2O4 and
bentonite as revealed by the existence of Mg, O, Si, Na, Fe and Al. The binding energy
levels at 48 eV and 1304 eV attributes to Mg

1 
 

ՙ 2p’ and Mg

1 
 

ՙ 1s’, respectively indicated the
divalent oxidation state of Mg (Figure 1b,c). The XPS spectrum of Fe

1 
 

ՙ 3p’ can be split into
two sub-peaks at binding energies of 55 eV and 53 eV showing the presence of Fe(III) form
in MGF-B (Figure 1b). Two major peaks associated with the Fe1/2 and Fe3/2 electronic
levels, as well as satellite peaks associated with shake-up, were observed in the Fe

1 
 

ՙ 2p’ XPS
spectra (Figure 1d) [27]. The deconvolution of Fe

1 
 

ՙ 2p’ spectrum exhibited six sub-peaks
of Fe in 3/2 and 1/2 state in Oh, Td and satellite peaks. High resolution O

1 
 

ՙ 1s’ spectrum
(Figure 1e) depicted the existence of OH attached to metal ion (530 eV) and O−Fe(Mg)
(528 eV). High-resolution XPS spectrum for the Al

1 
 

ՙ 2p’ (Figure 1f), Na

1 
 

ՙ 1s’ (Figure 2a) and
Si

1 
 

ՙ 2p’ (Figure 2b) core level at 72 eV, 1071 eV and 103 eV binding energy, respectively depicts
the presence of all minerals of bentonite in the magnesium ferrite-bentonite nanocomposite.
The full XPS survey scan of BPGO depicted the presence of C

1 
 

ՙ 1s’, O

1 
 

ՙ 1s’, B

1 
 

ՙ 1s’ and P

1 
 

ՙ 2p’
elements. High resolution spectrum of O

1 
 

ՙ 1s’ energy levels showed peaks at 529 eV and
531 eV which were assigned to C=O and C-O/P-O energy positions (Figure 1e). The fitted
peaks for C

1 
 

ՙ 1s’ located at 283 eV to 286 eV were ascribed to C-C, C-P and C-O moieties
(Figure 2c). The B

1 
 

ՙ 1s’ spectrum can be spilt into two peaks for in-plane BC3 type bonding
(189 eV) and borinic ester (C2BO)/boronic acid (CBO2) moieties (191 eV), indicating that the
B heteroatoms exist in three distinct chemical environments (Figure 2d). The deconvoluted
spectra of P

1 
 

ՙ 2p’ showed two peaks at binding energies of 133 and 134 eV corresponding to
the P-C and P-O species, respectively (Figure 2e). These findings showed presence of both
B and P containing moieties in GO lattice.
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Figure 1. XPS spectra (a) Full scan spectrum and XPS high resolution spectra of (b) Mg’2p’/Fe’3p’, 
(c) Mg’1s’, (d) Fe’2p’, (e) O’1s’ and (f) Al’2p’ of MGF-B, BPGO and HNFs. 

Figure 1. XPS spectra (a) Full scan spectrum and XPS high resolution spectra of (b) Mg
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ՙ 3p’,
(c) Mg

1 
 

ՙ 1s’, (d) Fe

1 
 

ՙ 2p’, (e) O

1 
 

ՙ 1s’ and (f) Al

1 
 

ՙ 2p’ of MGF-B, BPGO and HNFs.
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Figure 2. XPS high resolution spectra of (a) Na’1s’, (b) Si’2p’, (c) C’1s’, (d) B’1s’, (e) P’2p’ and (f) 
Mӧssbauer spectra of MGF−B and HNFs. 

The HNFs’ XPS full scan spectrum confirmed the existence of all elements of BPGO 
and MGF-B, indicating its fabrication. However, all the characteristic peak positions 
were slightly changed due to different coordination environments, which in turn caused 
a change in the observed binding energy. Strong interactions between MGF−B and 
BPGO were indicated by the red shift in binding energies across all elements when com-
pared totwopristine materials. During the catalytic processes, these interactions favour 
fast migration and charge carrier separation caused by light. Table 2 lists the atomic con-
centration of each element. 

  

Figure 2. XPS high resolution spectra of (a) Na

1 
 

ՙ 1s’, (b) Si

1 
 

ՙ 2p’, (c) C

1 
 

ՙ 1s’, (d) B

1 
 

ՙ 1s’, (e) P

1 
 

ՙ 2p’ and
(f) Mössbauer spectra of MGF–B and HNFs.

The HNFs’ XPS full scan spectrum confirmed the existence of all elements of BPGO
and MGF-B, indicating its fabrication. However, all the characteristic peak positions were
slightly changed due to different coordination environments, which in turn caused a change
in the observed binding energy. Strong interactions between MGF−B and BPGO were
indicated by the red shift in binding energies across all elements when compared totwopris-
tine materials. During the catalytic processes, these interactions favour fast migration
and charge carrier separation caused by light. Table 2 lists the atomic concentration of
each element.
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Table 2. Surface, magnetic, XRD parameters, and elemental composition by XPS and EDS analysis.

Properties MGF-B BPGO HNFs

Elemental composition
by XPS

C (at%) - 84.48 59.22

O (at%) 59.19 14.41 20.68

B (at%) - 0.27 0.19

P (at%) - 0.84 0.74

Mg (at%) 24.26 - 12.70

Fe (at%) 15.36 - 4.94

Na (at%) 0.32 - 0.46

Al (at%) 0.74 - 0.88

Si (at%) 0.13 - 0.19

Surface

Pore Volume
(cm3g−1) 0.07 0.24 0.20

Surface Area
(m2g−1) 87.1 162.81 157.56

Pore Diameter
(nm) 3.11 3.89 3.81

XRD

Lattice constant (Å) 0.83 0.70 0.81

d-spacing (nm) 0.25 0.34 0.24

Crystallite size (nm) 4.0 - 8.6

Elemental composition
by EDS

O 48.54 (18.25) 16.29 (28.42) 21.93 (25.68)

Mg 3.58 (2.70) - 0.91 (1.40)

Na 1.18 (0.15) - 0.36 (0.12)

Al 2.33 (0.15) - 0.03 (0.07)

Si 0.26 (0.28) - 0.03 (0.16)

Fe 44.11 (78.47) - 1.25 (4.54)

C - 83.43 (71.41) 75.45 (67.83)

P - 0.28 (0.17) 0.04 (0.20)

Magnetic

Magnetization
(emu g−1) 11.4 - 6.26

Retentivity
(emu g−1) 0.4 - 0.43

Coercivity
(Gauss) 138.0 - 70.65

Values in parentheses are weight percentages.

Mössbauer spectrum of MGF-B (Figure 2f) displayed two sextets and one quadruple
doublet. One outer sextet is assigned to Fe3+ ion in octahedral (Oh) sites and other in
tetrahedral (Td) sites [28]. The quadrupole splitting value of both the sextets is very small,
indicating the symmetrical environment around Fe3+ ions. Additionally, a quadruple
doublet was foundwhich was ascribed to the super paramagnetic relaxation of small
particles with a particle diameter less than 15 nm. These small particles are magnetically
isolated and do not participate in the long-range magnetic ordering [29,30].

There are more Fe3+ ions in the Td sites, according to the relative area of the sex-
tets (Table 3). On insertion of BPGO into MGF-B, the area of absorption attributing to
the superparamagnetic part (doublet) decreased which may be due to the formation of
nanoflowers, as they have large size (8.6 nm) as compared to MGF-B (4.0 nm). Size of NPs
has a significant impact on the Mössbauer spectrum. The presence of broad sextets and
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doublet occurs when the relaxation rate and Larmor precession frequency are of the same
order of magnitude in the case of larger NPs [31]. HNFs displayed a similar Mössbauer
spectrum, confirming the presence of MgFe2O4.

Table 3. Mössbauer parameters of magnesium ferrite-bentonite (MGF-B) and Hierarchical
nanoflowers (HNFs).

Sub Spectrum
and Site

Isomer Shift
(in mm s−1)

Quadruple Splitting
(in mm s−1)

Hyperfine Field
(in T)

Relative Area
(in %)

MGF-B

Sextet (Td) 0.3 ± 0.02 −0.0 ± 0.04 45.3 ± 0.47 34.8

Sextet [Oh] 0.3 ± 0.01 0.1 ± 0.02 48.5 ± 0.18 12.2

Doublet 0.3 ± 0.00 0.6 ± 0.00 - 52.9

HNFs

Sextet (Td) 0.3 ± 0.02 0.1 ± 0.05 44.9 ± 0.29 62.5

Sextet [Oh] 0.4 ± 0.00 −0.2 ± 0.01 51.4 ± 0.05 13.4

Doublet 0.4 ± 0.02 0.7 ± 0.02 - 24.2

FT-IR spectrum of HNFs (Figure 3) confirmed the existence of different B- and P-
containing functional groups, M-O bond and Si-O framework vibrations due to BPGO,
MgFe2O4 and bentonite, respectively. The details are given in the Supplementary Text S1.
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The XRD pattern of MGF-B (Figure 3b) displayed all the peaks of MgFe2O4 (2theta = 30.1◦,
35.4◦, 43.1◦, 53.5◦, 57.0◦ and 62.6◦ indexed to hkl planes of (220), (311), (400), (422), (511)
and (440), respectively). XRD peak of bentonite at 2theta = 26.6◦ (003) did not appear in the
XRD pattern of MGF-B due to a very low amount of bentonite clay in it or exfoliation of
clay. Our previous work showed that with increasing bentonite clay in MGF-B sample, the
bentonite peak was clearly observed [20,32].

In GO, the XRD diffraction peaks at 2theta values of 10.9◦ and 42.7◦ can be indexed
to (001) and (101) hkl planes of graphitic carbon, respectively (Figure S1) [33]. After
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co-doping (Figure S1), the fingerprint diffraction peak of GO at 2θ = 10.9◦disappeared.
Low intensity and broad diffraction peaks at 2theta = 25.0◦ and 43.6◦ referring to (002)
and (101) crystallographic planes, respectively, were observed. The diffraction peak at
2theta = 25.0◦ was due to highly disordered graphitic carbon structure [34]. The peak
observed at 2theta = 43.6◦ was most probably due to the defects in the GO lattice.

In the HNFs (Figure 3b), the XRD peaks correspond to MGF-B and BPGO are retained,
while their peak intensities are changed due to interactions between them. According to
Bragg’s equation, the d-spacing of most intense peak of MGF-B, BPGO and HNFs at 2theta
≈ 35.4◦, 25.0◦ and 35.5◦ was 0.25, 0.34 and 0.24 nm, respectively. The decrease in d-spacing
of HNFs can be ascribed to the creation of more defective sites, which results in an increased
number of smaller graphitic domains. Based on the Debye Scherrer’s formula [35] and the
peak at full width half-maximum of MGF-B (311) and HNFs (311) crystal plane, the average
crystallite size was about 4.0 and 8.6 nm, respectively (Table 2).

2.1.2. Morphological Studies

A TEM micrograph of MGF-B (Figure 4a) revealed the existence of spherical and
agglomerated MgFe2O4 NPs over the bentonite matrix. The agglomeration was due to the
nanosized crystallites and magnetic character of the ferrite NPs. The average grain size was
30–35 nm. TEM image of BPGO showed folded/scrolled chiffon like nanosheets and twisted
edges (Figure 4b). After integrating MGF-B with BPGO nanosheets, the as-synthesized
nanocomposite depicted nanoflower like microspheres with a 3D structure, produced from
the interlayer Van der Waals forces and high surface energy of MGF-B (Figure 4c). In the
presence of MGF-B, the nanostructures of BPGO gradually transform from the chiffon
like nanosheet to nanoflower-like shapes. Chiffon-like BPGO nanosheets with wrinkled
surface were wrapped on the MGF-B surface, producing a hierarchical nanohybrid with
porous structure. Along with nanoflowers morphology, the nanocomposite having MGF-B
particles on the BPGO surface was also observed (inset of Figure 4i).
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A SEM micrograph of MGF-B (Figure 4d) confirmed that MgFe2O4 NPs were incorpo-
rated into the bentonite layers. Similar micrographs have been observed upon the insertion
of polypropylene into the layers of bentonite clay [19]. The SEM micrographs of BPGO
depict a translucent and rippled silk waves with numerous crinkles possibly due to dopants
and oxygeneous groups. These wrinkled nanosheets adjust themselves physically to adapt
to MGF-B (Figure 4e). SEM micrographs of HNFs displayed sponge-like morphology with
structure like nanoflowers (Figure 4f).

The atomic and weight percentage of all the elements present in the synthesized
materials was depicted via energy-dispersive spectroscopy (EDS) (Figure 4g–i). They
confirmed the presence of different elements in MGF-B, BPGO and HNFs. The peak for B
was not observed in the EDS spectra as lighter elements does not possess Bremsstrahlung
scattering [36]. The elemental composition of each element found in the synthesized
materials is listed in Table 2.

The Brunauer-Emmett-Teller (BET) surface area of HNFs calculated using the nitrogen
adsorption-desorption technique was 187.56 m2g−1 which was higher than magnesium
ferrite-bentonite (87.10 m2g−1) and BPGO (162.8 m2g−1). This may be ascribed to the
inhibited agglomeration of pristine MGF-B in the presence of BPGO. The BPGO and HNFs
followed type IV isotherm with H3 hysteresis loops indicating the existence of mesoporous
particles (diameters 2–50 nm) according to IUPAC classification, whereas MGF-B indicates
type IV isotherm with a H4 typical hysteresis curve, confirming the existence of mesoporous
particles with internal slit-like pores [37] (Figure 5a). The pore size distribution curves of
MGF-B, BPGO and HNFs (Figure 5a inset) exhibited sharp narrow peaks in the range of
3.11 nm to 3.89 nm (Table 2). The pore volume of MGF-B, BPGO and HNFs was in the
range of 0.07–0.29 cm3g−1, respectively. Thus, the enlarged surface area and pore diameter
of HNFs as compared to MGF-B can be ascribed to the presence of BPGO. It is a favourable
feature for the adsorptive and photocatalytic process.
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2.1.3. Thermal, Magnetic and Optical Studies

TGA-DTG-DTA analysis of HNFs, BPGO and MGF-B displayed stability of these
materials up to 500 ◦C which signifies their practical applications (Figure 5b). Details are
discussed in Supplementary Text S2.

Magnetic field dependent hysteresis curves of the MGF-B and HNFs are shown in
Figure 6a. The values of saturation magnetization (Ms), coercivity (Hc) and remanence (Mr)
are given in Table 2. This clearly indicated that a significant decline in Ms value of HNFs
(6.26 emu g−1) was observed after its fabrication with BPGO. Thus, fabrication of BPGO
nanosheets on the surface of MGF-B altered the magnetic features as it decreased the Ms
value. Due to their ferrimagnetic nature, these materials showed a remarkable affinity for
the external magnet. The decrease in Hc value for the HNFs (70.65 Gauss) from MGF-B
(138.00 Gauss) confirmed that less magnetic field was required to demagnetize it. This
decrease showed enhancement in its soft magnetic feature.
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UV-VIS diffuse reflectance (UV-Vis DRS) spectroscopy was used to determine the band
gap of synthesized materials (Figure 6b). MGF-B, BPGO, and HNFs’ optical band edges (Eg)
were calculated to be 2.26, 2.40, and 2.10 eV, respectively. The chemical interactions between
MGF-B and BPGO, which were supported by a decline in binding energy in XPS analysis,
may be the reason of the HNFs’ band edges narrowing. The absorbance of all the materials in
the visible light region is of great significance in the area of visible light photocatalysis.

The photoluminescence emission spectra in the wavelength range of 200–900 nm
was studied for MGF-B, BPGO and HNFs (Figure 6c). Emission peaks were observed at
430 nm for MGF-B and 720 nm for BPGO and 410, 720 nm for HNFs. Emission peaks at
410 and 430 nm were attributed to 3d5→3d4 transitions in Fe3+ and may be caused by
radiative defects or surface imperfections [38]. After its fabrication with BPGO, five-fold
decrease in luminous intensity was observed, confirming higher quenching efficiency of
HNFs over pristine materials. The findings also suggested that the transfer of electrons
from the conduction band of the photo-excited MGF-B to BPGO sheets might slow down
the photoinduced charge carrier recombination over pristine materials, resulting in the
enhanced photo-catalytic degradation of organic pollutants.

2.2. Adsorption Experiments

HNFs were observed to be better adsorbent for Pb(II) ions than BPGO and MGF-B.
Detailed explanation is given in Supplementary Text S3 and Figure S2a. HNFs combined
the features of both MGF-B and BPGO, which enhanced their adsorption potential. The
major factor for the enhancement in adsorption potential could be the increase in the surface
area and porosity as depicted by BET analysis. It was further supported by DLS studies,
which showed that the particle size of HNFs (130 nm) in solution was smaller than MGF-B
(171 nm). The HNFs possessed appreciable Ms value, which led to their easy separation
and reusability. Box–Behnken statistical analysis was applied to optimize the adsorption
parameters for Pb(II) ions on HNFs.

2.2.1. Statistical Analysis of Adsorption Studies

The randomised design matrix of the Box–Behnken statistical model with 4 factors,
3 central points, and 27 runs as well as the removal efficiency of the Pb(II) ions, are listed
in Table 4 and their ANOVA results shown in Table 5. The present study’s independent
variable p-values were less than 0.05, proving that the experimental data may sufficiently
characterize the proposed model derived using the Box–Behnken response surface method-
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ology. The predicted and experimental statistical results were found to agree, and the
correlation coefficient (R2, 0.99) and adjusted R2 (0.98) values were also quite high. The
model’s validity is further supported by the 0.86 p-value of lack-of-fit, which was found to
be non-significant. This value was higher than the lowest limit of fit as recommended to be
(0.05). The model’s calculated value for adequate precision was 37.50, which supported a
greater S/N ratio. Any process design that has a signal (response) to noise (deviation) ratio
of >four is preferable, and the model can be moved around in the design space. According
to Table 5, A, B, C, D, AB, AC, AD and BD are significant terms for removing Pb(II) ions.
Thus, the reduced expression of the quadratic regression model is presented as below:

Pb(II) removal (%) = +90.0 + 16.0 A + 4.79 B + 0.04 C + 5.0 D + 0.12 AB − 1.0 AC + 0.23 AD −1.29 BD + 1.56 A2 + 1.01 C2

Table 4. The randomized design matrix for Box–Behnken methodology and observed responses for
Pb(II) adsorption using HNFs.

Run pH Adsorbent Dose (g L−1) Contact Time (min) Temperature (◦C) Adsorption Efficiency

1 −1 0 1 0 60.4

2 0 −1 −1 0 80.3

3 −1 1 0 0 60.1

4 0 1 1 0 90.5

5 1 0 0 1 96.4

6 0 0 1 1 94.9

7 1 0 −1 0 92.4

8 0 0 0 0 90.2

9 1 0 1 0 92.4

10 1 1 0 0 92.7

11 −1 0 0 1 64.6

12 0 0 1 −1 82.7

13 0 0 0 0 90.2

14 0 −1 0 1 84.4

15 0 0 −1 1 94.1

16 0 −1 1 0 80.6

17 0 1 −1 0 90.7

18 −1 −1 0 0 54.6

19 −1 0 0 -1 56.4

20 0 0 −1 −1 82.1

21 0 0 0 0 90.2

22 −1 0 −1 0 60.3

23 0 −1 0 −1 72.5

24 0 1 0 1 94.5

25 1 −1 0 0 86.4

26 0 1 0 −1 86.5

27 1 0 0 −1 88.1
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Table 5. Analyses of variance analysis of Pb(II) removal.

Source Sum of
Squares

Degree of
Freedom Mean Square F-Value p-Value Status

Model 4650.23 14 332.16 129.71 <0.0001 Significant

A:pH 3072.00 1 3072.00 1199.64 <0.0001

B: Adsorbent dose 275.52 1 275.52 107.59 <0.0001

C: Contact time 0.0208 1 0.0208 112.36 <0.0001

D: Temperature 300.00 1 300.00 117.15 <0.0001

A.B 243.23 1 243.23 20.12 0.0021

A.C 123.12 1 123.12 30.45 0.0034

A.D 110.23 1 110.23 42.56 0.0043

B.C 0.0625 1 0.0625 0.0244 0.8785

B.D 4.00 1 4.00 10.56 0.0232

C.D 0.0024 1 0.0024 0.0120 1.0000

A2 886.95 1 886.95 346.36 0.0523

B2 94.45 1 94.45 36.88 0.8412

C2 3.70 1 3.70 1.45 0.02523

D2 8.61 1 8.61 3.36 0.0916

Residual 30.73 12 2.56 - -

Lack of Fit 30.73 10 3.07 4.52 0.86 Not significant

Pure Error 0.0024 2 0.0049 - -

Cor Total 4680.96 26 - - -

R2 = 0.99, R2
adjusted = 0.98. Adequate Precision = 37.50.

This expression demonstrates the empirical relationship between significant variables
and Pb(II) removal (response). The plot (Figure S2b) between normal probability and
externally studentized residuals follows a normal distribution where the points lie on a
straight line. The reliability of the assumptions and the independence of the residuals are
indicated by this plot. The relationship between the actual and predicted values (Figure S2c)
shows that the experimental findings for this study arewell-accepted. All of these findings
point to the proposed model’s strong correlation and suitability for predicting the Pb(II)
adsorption process utilizing the HNFs as an adsorbent.

2.2.2. Effect of pH, Adsorbent Dosage and Contact Time

The solution pH, adsorbent dosage and contact time played an vital role in adsorption
of Pb(II) ions. In addition to affecting the charge on the adsorbent surface, the pH of the
solution also affects the equilibrium between adsorption and desorption and the surface
charge of Pb(II) ions. The results plotted in Figure 6d–f demonstrate that the percentage
removal of Pb(II) ions increased progressively from 61% to 95% with rise in the solution
pH from 2.0 to 6.0. At a lower solution pH, the surface adsorptive sites got protonated and
became positively charged thus inducing an electrostatic repulsion for Pb(II) ions, whereas
under alkaline conditions, the surface became more negative, providing the electrostatic
attraction for Pb(II) ions. The pHZPC studies (Figure S2d) revealed surface charge on HNFs
surface became zero at pH 4.3. Above pH 4.3, Pb(II) ions were strongly attracted towards
the negatively charged surface resulting in maximum uptake of Pb(II) ions. Speciation of
Pb(II) in aqueous solution using visual miniteq software showed that free ionic Pb(II) is the
most predominated form (80–90%) up to pH 6.0, whereas Pb(OH)2 (90–100%) dominates
after this pH (Figure S2e). Under alkaline conditions, Pb(II) started to form insoluble
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Pb(OH)2 and the solubility of the metal hydroxides decreased at higher pH. These results
were further supported by ξ-potential studies. The ξ-potential of HNFs at pH 6.0 was
negative (Figure S2f). The negative ξ-potential of HNFs was responsible for the electrostatic
attraction between positively charged Pb(II) ions and negatively charge HNFs surface.

The adsorption of Pb(II) ions enhanced on increasing the nanoadsorbent dose up to
0.4 g L−1 due to more available surface area and binding sites for the removal of Pb(II)
ions. After that, no increase was observed (Figures 6d and 7a) because of attainment of
adsorption-desorption equilibrium. Adsorption was monitored as a function of contact
time also. It followed three stages i.e., fast, slow and equilibrium stage (Figure 6e). The fast
stage lasted for first 5 min, as the solute molecules freely attached to the available active
sites. The slow stage persisted for up to 10 min. The equilibrium stage was attained after
30 min where insignificant difference in the percentage removal was observed.
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as a function of (d) pH and adsorbent dose, (e) pH and contact time and (f) temporal plots of malathion
degradation. In b & c, straight lines represents fitting of model, where Ce stands for equilibrium
concentration, qe and qt represents uptake capacity at equilibrium time “t” and at time “t”, respectively.

2.2.3. Kinetic and Adsorption Isotherm Modelling

Comparative eValuation of linear and non-linear form of kinetic modelling was em-
ployed for determining the best fitting model. Linear pseudo second-order kinetic model
(Figure 7b) provided higher ‘R2’ value of 0.99 and lower statistical errors than its non-linear
form (R2 = 0.64) (Figure S3d) suggested that the adsorption data followed the linear form of
modelling. The better fitting of pseudo second-order kinetic model than pseudo-first order
(Figure S3a),intra-particle diffusion (Figure S3b) and Elovich (Figure S3c) specified the in-
teraction of Pb(II) ions with two binding sites of the HNFs. Detailed explanation of kinetics
results and parameters are given in Supplementary Text S4 and Table S1, respectively.

Adsorption isotherms, both linear and non-linear, were used to analyse the data from
the adsorption equilibrium. The statistical functions shown in Table S2 were used to compare
the two regressions. The linear Langmuir equation’s goodness-of-fit over non-linear form
was defined by its maximum “R2” (0.99) and lowest error values (Figure 7c). The separation
factor ‘RL’ was in the range of ‘0.0–1.0’ depicting the adsorption of Pb(II) ions was favourable
in nature. The qmax value for Pb(II) ions was 745.4 mg g−1 and it was compared with
other reported adsorbents (Table S3). Other adsorption isotherms are explained in detail
in Supplementary Text S5, Figure S4 and Table S2. The decreasing order of goodness-of-
fit of employed isotherms was as follows: Langmuir > Freundlich > Temkin > Dubinin-
Radushkevich. Thus, Pb(II) ions interacted uniformly with the active sites of HNFs in the
monolayered physical adsorption shown by the adsorption isotherm modelling.

Similar outcomes for the Pb(II) ions adsorption employing CaFe2O4-NGO nanocom-
posite were observed by Kaur et al. [22]. According to Buergisser et al. [39], natural
adsorbents usually follownon-linear models. However, batch tests for the Cr (VI) adsorp-
tion over Rhizopus sp. conducted by Espinoza-Sánchez et al. [40] showed that linear
regression provided a better fit. Yazdani et al. [41] showed the goodness-of-fit of the
non-linear method for batch As (V) adsorption utilizing nano-TiO2/feldspar-embedded
chitosan. However, in the current investigations, nanocomposite used linear regression
and contained both natural and synthetic components. Thus, model fitting is dependent
upon the nature of the adsorbent. Therefore, using both linear and non-linear modelling is
essential for any adsorbent.

2.2.4. Thermodynamic and Regeneration Studies

The adsorption capacity of Pb(II) on HNFs increased with an increase in reaction
temperature (Figures 6f and 7a) and could reach 94% at 50 ◦C. However, the adsorption
capacity decreased above 50 ◦C. This may be due to the increase in average kinetic energy of
ions with temperature leading to increase in adsorption as more number of ions interacted
with the mesoporous surface of the nanostructure. After that, desorption dominates,
leading to decline in their adsorption potential. The values of ∆G◦ was negative, indicating
that the adsorption of Pb(II) on the HNFs was spontaneous (Figure S5a). The absolute
values of ∆G◦ increased as the temperature rose, indicating an increase in spontaneity. The
endothermic nature of Pb(II) was illustrated by a positive ∆H◦ value, with an optimal
temperature of 50 ◦C. The entropy change values (∆S◦) were positive, indicating that as
the reaction temperature increased, the degree of freedom of the adsorption system also
increased (Table S4).

The excellent recycling performance of adsorbent determines its application in prac-
tical environment. As seen in Figure S5b, after five adsorption-desorption cycles, the
89% removal efficiency was retained which confirmed reusability of HNFs. Moreover,
the magnetic character facilitated their separation from the solution using an external
magnetic field.
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2.2.5. Effect of Co-Existing Cations and Anions

The adsorption capacity of the HNFs was tested in the presence of Pb(II), Cd(II), Zn(II) and
Ni(II) ions (Figure S5c). The observed trend for the removal was Pb(II) > Cd(II) > Zn(II) > Ni(II)
and can be described by distribution and selectivity studies. The distribution coefficient
and selectivity factor listed in Table S5 indicated that the adsorption of Pb(II) ions was
preferred in the existence of other metal ions. The adsorption behaviour was also explained
by ionic radii of the metal ions (Table S5). The larger the ionic size of ions, the lower is
their hydrated radii hence have a greater affinity to get adsorbed. The adsorption capacity
of HNFs for Pb(II), Cd(II), Zn(II) and Ni(II) ions decreased in the quaternary system than
single system due to competition between metal ions for the adsorption sites available on
HNFs surface.

The effect of presence of anions viz. Cl−, NO3
−, SO4

2−, CO3
2− and PO4

2− was also
tested on the Pb(II) adsorption. The increase in anion concentration from 0.01 to 10.0 mM
showed a negative effect on metal ions adsorption (Figure S5d). However, this negative
impact is maximum in the presence of PO4

2− ions followed by CO3
2−, SO4

2−, NO3
− and

Cl− ions. This may be explained by the interaction of ligands with heavy metals to create
ion pairs (Kaur et al., 2019). The availability of Pb(II) ions for adsorption decreases with
increasing ion-pair stability. Here, PO4

2− and Pb(II) ions form the most stable ion pair,
which reduces the amount of Pb(II) that is adsorbed from the Pb3(PO4)2 solution.

2.3. Photocatalytic Degradation Studies

The photocatalytic potential of MGF-B, BPGO and HNFs using malathion as the model
pollutant was eValuated. An insignificant increase in malathion degradation was observed
from pH 1.0 to 3.0 (Figure S6a), which indicated its excellent stability in an acidic medium
as reported previously [42]. At basic pH, Organophosphate pesticides are more prone to
oxidation and hydrolysis due to the presence of hydroxide ion (OH−). Bavcon et al. [43],
Zhao and Hwang [44] reported decomposition of malathion in the similar pattern. Thus,
the optimum pH for degradation of malathion is 9.0.

The photocatalytic ability of HNFs was higher than BPGO and MGF-B. This improve-
ment has been supposed to be due to (a) huge specific surface area, lowering in aggregation,
easy charge transfer and layered structure of BPGO. The co-doped GO nanosheets act as a
supporting substrate for the deposition of MGF-B, which enhanced the uptake capacity of
the GO based photocatalyst.

The reduced aggregation resulted in higher specific surface area of HNFs (187.56 m2g−1)
as compared to BPGO (162.81 m2g−1) and MGF-B (87.1 m2g−1) which provides more
uptake sites for the pollutant molecules. (b) small size of HNFs (47 nm) as observed by
DLS size distributions as compared to BPGO (60 nm) and MGF-B (77 nm) favoured higher
adsorption, (c) Another factor was reduced recombination rate of electron-hole pair.

A control test was performed under visible light exposure in the pH range of 1.0 to
9.0. Figure S6a indicated poor self-degradation ability of malathion due to their stability in
the absence of photocatalyst. The degradation was 38% under visible light illuminations
which was significantly enhanced up to 99% in the presence of HNFs. Control experiment
in the absence of light demonstrated less than 25% removal of malathion when treated
with HNFs. The findings imply that photocatalytic degradation employing synthesized
materials as a photocatalyst was mainly responsible for the malathion removal.

On increasing the photocatalyst dose from 0.04 to 0.2 g L−1, the percentage of pho-
todegradation was enhanced. Further increase in photocatalyst dosage displayed a decrease
in degradation of pollutants. This may be ascribed to (1) the presence of huge specific sur-
face area and active sites. The aggregation of HNFs, which results in the low penetration
of visible light, may be the reason of the decline in photodegradation effectiveness at
higher dosages.
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2.3.1. Effect of Contact Time and Kinetic Studies

The photocatalytic decomposition of malathion with time was deduced by using
UV-VIS absorption spectra (Figure 7f). The absorbance of base peak at 234 nm for malathion
attenuated with the time, confirming its degradation. The photocatalytic degradation of
malathion followed the Langmuir Hinshelwood first-order model. The value of apparent
rate constant (k) calculated from ln(Ct/Co) vs. time was found to be 2.36 × 10−2 min−1

(Figure 8a,b). Similar results were reported by Fakhri and Bagheri (2020) during the
degradation of malathion and tetracycline using UiO@metal oxide/GO as a photocatalyst.
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2.3.2. Statistical Analysis of Photodegradation Studies

A randomized design matrix and ANOVA for Box–Behnken regression model of
malathion degradation is given in Tables 6 and 7, respectively. The terms F-value (79.73)
and p-value (0.0001) are displayed in the ANOVA. Values less than 0.05 confirm that the
given factors are significant at the 5% level of confidence. F test = 5.36 (p = 0.75) for “Lack
of Fit” revealed that the model was adequately fitted and there was no lack of fit. The
model’s calculated value for adequate precision was 25.55, which supported a greater S/N
ratio. The predicted quadratic regression model’s R2 (coefficient of determination) value
was 99.7. As a result, this model may be used to more accurately predict the response at
any level of the selected factors. The reduced expression of the quadratic regression model
is presented below:

Malathion degradation (%) = +77.0 + 33.5 A − 4.13 B + 4.63 C − 3.25 AB + 0.25 AC − 21.25 A2

Table 6. A randomized design matrix for Box–Behnken methodology and observed responses for
malathion degradation using HNFs.

Run pH Photocatalyst Dose (g L−1) Contact Time (min) Degradation Efficiency

1 0 −1 −1 70.23

2 −1 1 0 20.24

3 −1 0 1 21.36

4 0 0 0 77.26

5 1 1 0 81.556

6 0 1 1 79.24

7 0 −1 1 84.29

8 −1 −1 0 24.21

9 1 −1 0 98.45

10 0 1 −1 63.56
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Table 6. Cont.

Run pH Photocatalyst Dose (g L−1) Contact Time (min) Degradation Efficiency

11 1 0 −1 84.24

12 0 0 0 77.26

13 −1 0 −1 18.21

14 0 0 0 77.26

15 1 0 1 88.88

Table 7. An analyses of variance analysis of malathion degradation.

Source Sum of Squares df Mean Square F-Value p-Value Status

Model 11014.18 9 1223.80 79.73 <0.0001 Significant

A: pH 8978.00 1 8978.00 54.89 <0.0001

B: Photocatalyst dose 136.12 1 136.12 8.87 0.0309

C: Contact time 171.12 1 171.12 11.15 0.0206

A.B 42.25 1 42.25 2.75 0.0158

A.C 0.2500 1 0.2500 0.0163 0.0403

B.C 1.0000 1 1.0000 0.0651 0.8087

A2 1667.31 1 1667.31 108.62 0.0101

B2 0.0030 1 0.0030 0.0010 1.0000

C2 33.23 1 33.23 2.16 0.2012

Residual 76.75 5 15.35 - -

Lack of Fit 76.75 3 25.58 5.36 0.75 Not significant

Pure Error 0.0030 2 0.0030 - -

Cor Total 11090.93 14 - - -

R2 = 0.99, R2
adjusted = 0.98, Adequate Precision = 25.55.

Figure S6b displays the uniform distribution of data along a straight line and their
strong correlation. The residuals of removal percentage are often plotted on a straight line
in the normal probability plot (Figure S6c). This demonstrates the validity of the normal
distribution and proves to the model’s applicability for accurate data fitting. Highest
malathion degradation (%) was achieved at the maximum level (+1) of pH (9.0), minimum
level (−1) of photocatalyst dose and median level (0) of contact time (Figure 7d,e).

Photocatalytic activity using malathion as model pollutant at pH ranging from 3.0
to 9.0, with variation in contact time = 30 to 120 min and variation in photocatalyst dose
from 0.2 to 0.8 g L−1. Figure 7d shows that as the photocatalytic activity increased with
increasing pH and contact time, thestrong photocatalytic activity occurs at basic pH values
and at a certain photocatalyst dose (Figure 7e). This could be a result of the catalyst particles
aggregating at larger doses, which results in the low visible light penetration.

2.3.3. Quenching Studies

In order to eValuate the reactive species involved in the decomposition of organic
pollutants, four quenchers viz. ascorbic acid, sodium azide, ethylene triamine tetraacetic
acid and methanol were used as superoxide (O2

−), singlet oxygen (O2*), holes (h+) and
hydroxide (OH) quenchers, respectively (Figure 8c). The kinetic studies in the presence of
quenchers indicated the photocatalytic degradation was significantly inhibited in presence
of sodium azide and ascorbic acid. The addition of ascorbic acid produced the greatest
inhibition, indicating that O2

•− radicals are essential to the photodegradation process [45].
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Here, it can be observedthat the reaction between holes and superoxide radicals produces
singlet oxygen species. Contrary to these findings, the addition of EDTA and methanol
slightly inhibited the degradation activity, confirming that h+ and •OH radicals also played
a minor role in the photocatalytic degradation of malathion.

2.3.4. Analysis of Degraded Products

Degradation products formed at the end of the irradiation process were identified by
GC-MS analysis (Figure S6d). Oxidative desulfuration of malathion (m/z = 330) resulted
in the formation of malaoxon (m/z = 314), which was further hydrolyzed into malaoxon
monoacid (m/z = 287) and diethyl 2-mercaptosuccinate (m/z = 207) via. a carboxyl es-
ter hydrolysis and a competing elimination reaction, respectively. When malathion was
hydrolyzed, charged intermediates were created by the nucleophilic addition of −OH to
the phosphorus atom. Malaoxon, which has a P=O moiety, is more likely to hydrolyze
than malathion, which has a P=S moiety [20]. This enhances nucleophilic substitution
by the −OH, which in turn encourages hydrolysis [46]. Diethyl 2-mercaptosuccinate was
easily breakdown into two fragments viz. ethyl acetate (m/z = 88) and ethylmercaptoac-
etate (m/z = 120). The fragments with m/z = 94, PO4

3−; m/z = 44, CO2; m/z = 18, H2O;
m/z = 32, CH3OH and m/z = 60, CH3COOH resulted from oxidative degradation of diethyl
2-mercaptosuccinate, ethylmercaptoacetate and ethyl acetate. Thus, degradation product
analysis reveals degradation into smaller fragment molecules along with CO2, and H2O.
A similar degradation pathway was reported for MgFe2O4-bentonite nanocomposite [46].
However, HNFs have the advantage of higher photocatalytic potential.

2.3.5. Reusability Studies

One of the key factors determining a synthesizedphotocatalyst’s effectiveness and
practical usability is its stability. The reusability test of HNFs was run for seven consecutive
cycles in order to assess the photocatalyst stability. After each cycle, the used photocatalyst
was centrifuged from reaction vessel through centrifugation and washed with distilled
water and used again forthe next cycle. A minimal loss in the percentage degradation was
observed. The photocatalytic efficacy of HNFs decreases by ~5%, after five consecutive
cycles (Figure S6e) indicating excellent stability of the HNFs photocatalyst.

2.4. Adsorption and Photodegradation Mechanism

HNFs as nanoadsorbent (Figure 9a) has the combined features of magnesium ferrite-
bentonite (Path-A) and BPGO (Path-B) as:

(1) The adsorption of Pb(II) ions on magnesium ferrite-bentonite part is mainly driven by Van
der Waals forces, ion-exchange andelectrostatic interactions due to its negative charge.

(2) BPGO having intrinsically negatively charged surface due to phosphoanhydride,
boronic, borinic acid, hydroxyl and carbonyl moieties which provides electrostatic
interactions to Pb(II) ions.

(3) The agglomeration of magnesium ferrite-bentonite and restacking of BPGO layers
was diminished on interactions of BPGO layers with magnesium ferrite-bentonite,
which reduced the required effective dosage of nanoadsorbent for adsorptive removal
of Pb(II) ions than pristine materials.

(4) HNFs possessed appreciable Ms value which led to its easy separation and reusability,
which affected the cost of the adsorption process.
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Figure 9. (a) Adsorption mechanism of Pb(II) ions by MGF-B (Path-A) and BPGO (Path-B) and
(b) Photodegradation mechanism of malathion.

XPS and FT-IR spectra of HNFs were assessed after adsorption of Pb(II) ions. Full scan
XPS spectrum of Pb(II) adsorbed HNFs (Figure 8d) depicted the presence of all elements of
magnesium ferrite-bentonite and BPGO, along with Pb(II) peaks. After the adsorption of
Pb(II) ions, the binding energy values of all the elements showed a minor positive shift,
indicating a change in the local bonding environment. The XPS peaks at binding energies
of 136 eV and 141 eV correspond to Pb4f7/2 and Pb4f5/2, respectively (Figure 8e). The
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interaction of Pb(II) ions with the HNFs consumed the complex boronic, P-O and oxy
functional moieties by the release of water molecules from its coordinated sphere.

In the FT-IR spectrum of Pb(II) adsorbed HNFs (Figure 8f), the bands affirmed to B-
bonding, P- bonding and M-O vibrations were observed with reduced intensity and at
lower wavenumbers which might be attributed to the electrostatic interactions of Pb(II)
ions with these moieties present on the HNFs. All the bands except C=C and C-P shifted
towards lower wavenumber due to complex formation of Pb(II) ions with the lone pair
present on the oxygen atom of the adsorbed hydroxyl groups from the aqueous phase via
electron sharing. XPS and FT-IR studies provided the strong eVidence for the adsorption of
metal ions on the surface of HNFs.

A probable photocatalytic mechanism for the degradation of malathion has been
proposed (Figure 9b). Upon irradiation of light on the photocatalyst surface, the electrons
present in the valance band are excited to the conduction band of magnesium ferrite-
bentonite (Equation (1)). These photoinduced electrons can be readily accepted by BPGO
nanosheets (as a matrix) to suppress the charge carrier recombination, which in turn im-
proves the photodegradation ability (Equation (2)). Here, co-doped nanosheets played two
vital roles for the improvement of the photocatalytic ability of the synthesized nanostruc-
ture. Briefly, the planar π-π framework of co-doped nanosheets makes it a good electron
accepting material. The electrons present in the conduction band of magnesium ferrite-
bentonite can readily move to co-doped nanosheets through percolation mechanism. This
helps in decreasing recombination rate of charge carriers and thus more electrons are acces-
sible for the generation of reactive species, boosting photocatalytic degradation. A good
conducting nature of co-doped nanosheets allowed fast charge carrier transport, which
helped in their effective carriers separation during the photocatalytic reaction. During this
transfer of electrons, molecular oxygen reduces to form superoxide radical anion (O2

•−)
(Equation (3)). Singlet oxygen species were generated by the reaction of holes with O2

•−

radicals (Equation (4)). The holes situated in the valence band oxidize hydroxyl ions (OH−)
or water molecules (H2O) to produce hydroxyl radicals (HO•) (Equation (5)).The resulting
reactive oxygen species degraded organic pollutants into the degradation products i.e.,
CO2 and H2O (Equation (6)). The degradation mechanism can be expressed as:

Magnesium ferrite− bentonite + hv→ Magnesium ferrite− bentonite
(
e− + h+) (1)

BPGO + Magnesium ferrite− bentonite
(
e−

)
→ BPGO

(
e−

)
(2)

BPGO
(
e−

)
+ O2 → O2

− + BPGO (3)

O2
− + Magnesium ferrite− bentonite

(
h+)→ O2

∗ (4)

HO− + Magnesium ferrite− bentonite
(
h+)→ OH. (5)

ROS + Organic pollutants→ Degraded products (6)

Hence, BPGO because of its better transporting and electron accepting nature com-
bined with a united effect of magnesium ferrite-bentonite make the nanocomposite photo-
catalysts visibly active.

The magnesium ferrite-bentonite bound by the hexagonal BPGO hexagonal arrays,
offered strong conductive network and electrical channels for magnesium ferrite-bentonite,
thereby ensuring the structural integrity and enabling the effective transfer of electrons and
holes during photocatalysis. The fabrication of BPGO with magnesium ferrite-bentonite
offered more specific surface area (187.56 m2g−1) for the hierarchical nanohybrid ensuring
the effective interaction space between organic contaminants and active sites.

3. Methods and Materials
3.1. Reagents

All the chemicals (analytical reagent grade), such as graphite powder, orthoboric
acid, orthophosphoric acid, sulphuric acid, hydrogen chloride, malathion, sodium ni-
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trate, potassium permanganate, hydrogen peroxide, metal nitrates, bentonite, ethylene
diammine tetraacetic acid, sodium azide, ascorbic acid, methanol and sodium hydroxide
were procured from SD fine Pvt. Ltd. Deionized water was used to prepare all the solutions.

3.2. Synthesis and Characterization
3.2.1. Synthesis of Boron and Phosphorous Co-Doped Graphene Oxide (BPGO)

BPGO was synthesized using orthoboric acid and orthophosphoric acid as the source
for B and P, respectively. 50 mL of aqueous dispersion of GO (20 mg mL−1) was vigorously
stirred with orthoboric acid (5.7 g) and orthophosphoric acid (1.60 mL) for 2 h at 25 ◦C. The
solution was eVaporated to dryness. Remnant solid was annealed in the muffle furnace
at 300 ◦C for 3 h to obtain BPGO. The aqueous suspension of BPGO was ultra-sonicated
for 6 h, centrifuged and then washed with hydrogen chloride solution (5%) to eliminate
unreacted reactants. Finally, it was washed with distilled water several times to get neutral
pH followed by ethanol and dried at 80 ◦C overnight.

3.2.2. Synthesis of Hierarchical Nanoflowers (HNFs)

HNFs were synthesized in two steps. In the first step, binary composite of MgFe2O4
and bentonite (MGF-B) was synthesized by sol-gel method, reported in our previous
publication [20,21] which was further transformed into ternary hierarchical nanoflowers
in the second step by adding BPGO to this binary composite. MGF-B and BPGO aqueous
solutions were separately prepared by ultrasonication at room temperature. Finally, the
ternary HNFs were collected by centrifugation and dried. The HNFs were synthesized
in different w:w ratios (MGF-B:BPGO; 0.5:1, 1:1 and 2:1). The prepared samples were
characterized by various physicochemical techniques discussed in Supplementary Text S6.

3.3. Pollutants Removal eValuation
3.3.1. Adsorption Experiments

To perform batch mode adsorption experiments, stock solution of Pb(II) ions of
100 mg L−1 was prepared using Pb(NO3)2·4H2O. The first experiment was performed
to determine the best adsorbent from MGF-B, BPGO and HNFs using 5 mg L−1 concen-
tration of Pb(II) ions (100 mL) and 0.4 g L−1 of adsorbents at 25 ◦C. Then, using the best
nanoadsorbent, next adsorption experiments were performed. To obtain the maximum
adsorption efficiency, the batch mode adsorption experimental conditions, which included
pH (2.0–10.0), contact time (2–120 min), adsorbent dosage (0.2–0.8 g L−1), and temper-
ature (10–55 ◦C), were tuned. For pH adjustment, HCl or NaOH solutions were used.
The adsorbate-adsorbent solutions were centrifuged and the concentration of Pb(II) in the
centrifugates was eValuated using the ICAP-OES technique after shaking (240 rpm) on an
orbital shaker for a fixedperiod of time (2 h). Limits of quantification (LOQ) and limit of
detection (LOD) were also assessed for Pb(II) ions as explained in Supplementary Data S6.
The adsorption efficiency (AE) and adsorption capacity (qt) of HNFs was calculated as:

Adsorption effciency (AE) =
Ci −Ct

Ci
× 100

Adsorption capacity (qt) =
Ci −Ct

W
×V

where Ci, Ct, V and W are the initial metal concentration (mg L−1), concentration at time
‘t’, volume of solution (L) and adsorbent dosage (g), respectively. The zero point charge
(pHZPC) of samples was determined by plotting a graph between initial pH and ∆pH
(pHfinal − pHinitial). The details of reusability studies and effect of coexisting cations and
anions are discussed in Supplementary Text S7. All the experiments were run in three
replicates, and average values are reported. Three error functions (Chi-square, sum of
square of errors and residual root mean square error) were used to eValuate the validity of
kinetic and isotherm models.
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3.3.2. Photocatalytic Experiments

The first experiment performed to determine the photocatalyst showing the highest
activity. For this, 0.2 g L−1 of pristine MGF-B, BPGO, and HNFs were combined with
50 mL of malathion (2 mg L−1) at pH 3.0–9.0. In order to reach equilibrium between
adsorption and desorption, the mixture was agitated for 30 min. A 16 W visible light
emitting diode was then turned on, and the photocatalytic reaction began. The suspension
parts from the reaction vessel were removed after two hours and centrifuged. The residual
malathion concentration was studied by a UV-VIS spectrophotometer at the wavelengths of
250 nm. Then, using best photocatalyst, next photocatalytic experiments were performed.
An aliquot of 5 mL was taken for kinetic analysis at regular intervals ranging from 2 min
to 12 h. Using the Langmuir Hinshelwood model, the apparent rate constant, k, was
calculated [47]:

ln(Co/Ct) = kt

where Co and Ct depicts organic pollutant concentration at initial time and after a definite
period of light illumination, t stands for illumination time. The effect of the HNFs dose
was investigated by changing the photocatalyst dose from 0.2 to 0.8 g L−1. The details of
quenching and reusability experiments are discussed in the Supplementary Text S8. The
photodegradation studies were carried out in triplicate, and an average of three results is
reported to test the validity and repeatability of the analytical data.

3.4. Statistical Analysis Using Box–Behnken Methodology

Using Stat-Ease Design-Expert (Version 13) software, a Box–Behnken experimental
design was used to determine the effect of independent variables (pH, dose, contact time,
and temperature) and their simultaneous interactions on the response function (removal
efficiency of Pb(II) ions and degradation efficiency of malathion) with three central points.
The various experimental levels of independent factors are displayed together with their
codes in Table 8. The following quadratic polynomial equation was employed for analysing
and predicting the response:

Y = βo + Σ βiXi + Σ βiiXi
2 + ΣΣ βijXiXj

where Y and Xm (m = i, j) stand for response and coded independent factors, respectively.
β0 is zero-order constant, whereas, βi, βii, and βij represents the linear, quadratic, and
interaction coefficients of input independent variables, respectively. Selected design using
independent variables “M” and central points “C0” proposed the N = 2M(M − 1) + C0
experiments to performed trial runs, where N represents the frequency of samples. Based
on this, a total of 27 runs for the adsorption experiment and 15 runs for the photocatalytic
experiment were planned for three coded levels (1, 0, +1) of chosen components.

Table 8. Experimental levels of independent factors and their codes in a Box–Behnken design.

Codes Variables Low Level (−1) Central Point (0) High Level (+1)

For adsorption experiments

A pH 2 6 10

B Adsorbent dose (g L−1) 0.2 0.4 0.8

C Contact time (min) 30 60 120

D Temperature (◦C) 10 25 50

For photocatalytic experiments

A pH 3 5 9

B Photocatalyst dose (g L−1) 0.2 0.4 0.8

C Contact time (min) 30 60 120
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Using the coefficient of determination (R2), adjusted coefficient of determination
(Adj. R2), normal distribution of the residuals, and by plotting the actual values with pre-
dicted values, the suggested model’s quality and goodness were assessed. The probability
critical level (p-value) of 0.05 was used in the analysis of variance (ANOVA), which was used
to determine whether the parameters of the proposed model were statistically significant.

4. Conclusions

Hierarchical nanoflowers (HNFs) was successfully fabricated via ultra-sonication
approach. It combined features of MgFe2O4-bentonitenanocomposite with boronand phos-
phorus doped GO. The synthesized HNFs displayed excellent adsorptive and photodegra-
dation performance as compared to pristine components towards Pb(II) and malathion
removal. This enhancement in adsorption and photodegradation was mainly attributed
to reduced aggregation, specific surface area and remarkable charge transfer ability. Para-
metric optimization by Box–Behnken design was successfully achieved for adsorption and
photocatalytic performance of HNFs for the removal of Pb(II) ions and degradation of
malathion. The 96% removal of Pb(II) and 98% degradation of malathion was achieved
using HNFs as adsorbent and photocatalyst, respectively. Hence, synthesized HNFs can
serve as a promising candidate for wastewater remediation.
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com/article/10.3390/ijms23179678/s1. References [48–60] are cited in the supplementary materials.
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