
Kidney
Diseases

Review Article

Kidney Dis 2024;10:545–557
DOI: 10.1159/000541280

Received: July 23, 2024
Accepted: August 31, 2024
Published online: September 6, 2024

The Bone-Vascular Axis: A Key Player in
Chronic Kidney Disease Associated
Vascular Calcification

Yingjing Shena Chen Yub

aDepartment of Nephrology, Shanghai Tianyou Hospital, School of Medicine, Tongji University, Shanghai,
China; bDepartment of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China

Keywords
Bone-vascular axis · Bone metabolism marker · Chronic
kidney disease · Vascular calcification · Osteoporosis

Abstract
Background: The bone-vascular axis plays a key role in the
pathogenesis of vascular calcification (VC) in patients with
chronic kidney disease (CKD). Understanding and managing
the role of the bone-vascular axis in CKD-mineral and bone
disorder (CKD-MBD) is critical for preventing and treating
associated complications, including osteoporosis, arterial
calcification, and cardiovascular diseases. This study aimed
to comprehensively summarize the role of bone metabolism
markers in uremic VC. Summary: The skeleton, as an en-
docrine organ, can regulate systemicmetabolic processes by
secreting various bioactive substances. These molecules can
induce the transdifferentiation of vascular smooth muscle
cells, promoting their transition to other functional states,
thereby affecting vascular growth and remodeling. Key
Messages: The prevalence of VC in individuals with CKD
is notably high. CKD-associated VC is characterized by the
widespread accumulation of hydroxyapatite within the ar-
terial media, which occurs as a result of the transformation of
smooth muscle cells into osteoblastic smooth muscle cells
under the influence of uremic toxins. Osteoblasts and os-
teoclasts in bone tissue secrete mineral metabolic proteins,

which can influence neighboring cells, primarily vascular
smooth muscle cells, through paracrine signaling. Both
circulating and osteocytic sclerostin can exert a protective
effect by inhibiting wingless/integrated (WNT)-induced
calcification. The therapeutic goal for CKD-MBD is to reduce
production of sclerostin by decreasing the osteogenic
transdifferentiation of vascular smooth muscle cells. Calci-
protein particles act as a physiological agent for delivering
calcium-phosphate the bone and inducing fibroblast growth
factor-23 expression in osteoblasts.

© 2024 The Author(s).

Published by S. Karger AG, Basel

Plain Language Summary
The bone-vascular axis is crucial in the pathogenesis of VC in
CKD, impacting mineral and bone disorders and leading to
complications like osteoporosis and cardiovascular diseases.
This study focuses on the role of bone metabolism markers
in uremic VC. The skeleton functions as an endocrine organ,
releasing bioactive substances that facilitate the trans-
differentiation of vascular smooth muscle cells (VSMCs) into
osteoblastic cells, which contributes to vascular remodeling
and calcification. Notably, circulating and osteocytic scle-
rostin can protect against calcification by inhibiting WNT
signaling pathways. Therefore, a therapeutic goal for CKD-
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related mineral and bone disorder (CKD-MBD) is to lower
sclerostin levels to reduce VSMC transdifferentiation. Ad-
ditionally, calciprotein particles play a role in regulating
calcium-phosphate transport to bones and stimulating fi-
broblast growth factor-23 expression in osteoblasts. Un-
derstanding these mechanisms is essential for developing
effective strategies to manage VC in CKD patients.

© 2024 The Author(s).

Published by S. Karger AG, Basel

Introduction

Chronic kidney disease (CKD) associated vascular cal-
cification (VC) focusing on uremic toxin induced calcifi-
cation of vascular or other soft tissues, is one vital part of
CKD-mineral and bone disorder (CKD-MBD), besides
hyperphosphatemia, hyperparathyroidism and abnormal-
ities in bone turnover, mineralization, volume [1].The 2006
Kidney Disease: Improving Global Outcomes (KDIGO)
guidelines suggest that lateral abdominal radiography can
be used to assess the extent of aortic valve calcification,
serving as a semi-quantitative approach. This is a simple
and cost-effective screening method for adult VC [1]. In
2009, KDIGO updated its guidelines (available from: http://
www.kidney-international.org) and dedicated a separate
chapter to VC. The diagnostic criteria for CKD-MBD
include the identification of ectopic calcifications, such as
arterial, valvular, and myocardial calcifications. The most
sensitive methods for detecting and quantifying cardio-
vascular calcification (CVC) are electron beam computed
tomography and multi-slice spiral computed tomography.
While the CT-based coronary artery calcification score is
widely regarded as the gold standard for assessing CVC in
patients with CKD and the general population, other
simpler and more convenient methods, such as lateral
abdominal X-rays, pulse wave velocity measurement, and
echocardiography, are available. Echocardiography can be
used to detect valvular calcification in patients with CKD
stages 3–5. The 2017 KDIGO guidelines (available from:
http://www.kidney-international.org) include almost no
updates or revisions to the VC section [2, 3].

Clinical Understanding of CKD-Associated VC

Epidemiology
In patients with CKD, VC refers to the abnormal

deposition of calcium-phosphate salts in the blood
vessel walls and heart valves. This phenomenon can
occur in the coronary, abdominal aorta, iliac, and

femoral arteries. CVC is a recognized component of
CKD-MBD. Epidemiological studies suggest that is-
chemic heart disease, sudden cardiac death, arrhyth-
mias, heart failure, stroke, and peripheral arterial
disease together account for >50% of late-stage CKD-
related deaths [4]. Patients with CKD and CVC have a
higher risk of mortality due to cardiovascular causes
[5]. For patients on dialysis, the annual incidence of
aortic valve calcification is approximately 3.3%, while
the prevalence of calcification in the aortic and mitral
valves is 25–59% [6]. Furthermore, the prevalence of
VC in patients undergoing hemodialysis (HD) is eight
times higher than that in the general population [6].
Given these heightened risks, it is imperative to
comprehensively understand the pathophysiology of
CKD-MBD and its effects on the cardiovascular system
to prevent cardiovascular diseases and improve the
prognosis of patients with CKD.

CAC is a strong biomarker of high cardiovascular
risk in patients with CKD, particularly those under-
going regular dialysis [7]. In recent years, growing
evidence has shown that mineral and bone metabolism
disorders are associated with an increased risk of CVC,
morbidity, and mortality. Although the exact under-
lying mechanisms remain unclear, the involvement of
changes in VC that impact cardiovascular structure
and function has been suggested. Therefore, the
evaluation of ectopic calcification has become an in-
dispensable component in the diagnosis and classifi-
cation of mineral and bone disorders in patients with
CKD-MBD.

Characteristics of VC in CKD-MBD

The blood vessels were comprised of three layers.
The inner layer, known as the tunica intima, pre-
dominantly consists of endothelial cells (ECs) that
respond to circulating factors. These cells regulate
vascular permeability and govern various processes,
including blood coagulation, fibrinolysis, and platelet
adhesion. The middle layer, termed the tunica media,
primarily comprises smooth muscle cells that are re-
sponsible for vessel contraction and dilation. The outer
layer, called tunica adventitia, is composed of con-
nective tissue and fibroblasts [8]. Arterial calcification
can be classified into three main types, each with
distinct characteristics. The first type, intimal calcifi-
cation, tends to be localized and is typically associated
with atherosclerosis, where lipid deposits and inflam-
matory infiltrates damage ECs [9, 10]. This type of
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calcification resembles endochondral ossification, in-
volving characteristic clusters of osteoblasts and
chondrocytes that gradually mineralize cartilage matrix
precursors or anlagen [11]. Its occurrence and pro-
gression are driven by genetic and lifestyle factors, such
as hypertension, diabetes, hypercholesterolemia, and
smoking [12]. Atherosclerotic intimal calcification is
associated with arterial lumen narrowing and can lead
to plaque rupture. Intimal calcification reflects the
overall burden of atherosclerotic plaques and serves as a
strong predictor of cardiovascular events and mortality
[13, 14].

Alternatively, medial calcification can occur inde-
pendently or concurrently with atherosclerosis. Ini-
tially referred to as “Monckeberg’s sclerosis,” this type
of calcification resembles intramembranous ossifica-
tion, originating from the mineralizing activity of os-
teoblasts without chondrocyte involvement [11]. Me-
dial calcification can cause arterial stiffness, increased
pulse pressure, and elevated pulse wave velocity,
thereby leading to left ventricular hypertrophy, dys-
function, and failure [9]. Furthermore, extensive cal-
cification in the heart valves can contribute to heart
failure and increase the risk of endocarditis. In dialysis
patients, medial calcification is closely related to the
duration of HD and imbalances in calcium-phosphate
metabolism [13]. In addition, it is associated with in-
creased cardiac afterload and tends to have a more
diffuse distribution, often occurring without lipid de-
position or immune cell infiltration [9, 14]. This type of
calcification predominantly affects arteries that are less
susceptible to atherosclerosis, including visceral ab-
dominal, thyroid, pulmonary, limb, and femoral ar-
teries, a pattern more typical in patients with CKD-
MBD [15]. A recent study focusing on patients with

CKD stage 5D found that VC is common in large
arteries such as the aorta (approximately 80%),
medium-sized arteries such as the coronary arteries
(60%–70%), and smaller arteries (20−30%) [12]. Pre-
vious research suggests that VC is a passive process
caused by the combined effects of cell death and in-
filtration of hydroxyapatite minerals into the blood
vessels [16]. However, recent studies have shown that
VC is an active process that resembles bone formation,
primarily driven by the phenotypic transformation of
vascular smooth muscle cells (VSMCs). During this
process, smooth muscle cells convert from their typical
spindle shape to a spherical osteoblast-like form, which
induces biomineralization of the extracellular matrix
(ECM). Calcium-phosphate nanocrystals are composed
of calciprotein particles (CPPs), mineralized extracel-
lular vesicles (EVs), and mineral deposits in the vas-
cular ECM [6, 13]. CPPs are nanoparticles composed of
calcium, phosphate, and serum proteins, including
fetuin-A, albumin, and other acidic proteins [6].
Table 1 shows the differences between the two types
of VC.

Calciphylaxis, also referred to as calcific uremic ar-
teriolopathy, is a rare but extremely severe type of cal-
cification in the intima and media layers of small arteries.
This condition can be life-threatening and typically
presents as thrombotic occlusion, tissue ischemia, and
necrosis [17].

Bone-Vascular Axis and Related Factors in CKD-MBD

The coexistence of bone loss with progressive VC
should be considered a paradoxical phenomenon since
calcium is reduced in the bones but accumulates in the

Table 1. Comparison between intimal and medial VC

Intimal calcification Medial calcification

Distribution Focal Diffusive

Mechanism Associated with lipid deposition and inflammatory
infiltration

Can occur without lipid deposition or immune cell
infiltration

Deposits Cholesterol Hydroxyapatite crystals

Type of ossification Endochondral Intramembranous

Pathogenic
mechanism

Atherosclerosis, plaque rupture Arteriosclerosis, increased cardiac afterload

Risk factors Hypertension, diabetes, hypercholesterolemia,
smoking

More prevalent in patients with CKD
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blood vessels in the opposite direction. This is commonly
referred to as “calcification paradox” [18]. Another im-
portant concept that connects osteoporosis and VC is the
bone-vascular axis. Previously, the understanding of the
bone-vascular axis was limited to a superficial perspec-
tive, merely referring to the interconnection and mutual
influence between the skeletal system and the cardio-
vascular system. Nowadays, it is assumed that common
pathophysiological processes are located in both patho-
logical VC and osteoporosis, as if an invisible hand is
transferring calcium from the bones to the walls of blood
vessels [19]. The nature of these links is not well
understood.

Embryologically, VSMCs and osteoblasts originate
from the same mesenchymal stem cell lineage, and the
interaction between osteogenic and vascular factors
contributes to the coordinated development of bones and
blood vessels [20]. A clinical study conducted in 2022
found that aortic calcification and high pulse wave ankle-
brachial index were negatively correlated with bone
mineral density (BMD) in patients with CKD [21].
Additionally, reduced BMD in the femur and femoral
neck, along with total BMD, were identified as risk factors
for valvular heart disease [21]. In patients with CKD,
bone damage primarily presents as chronic trabecular
bone loss, withmore severe VC positively correlating with
greater cancellous bone loss [22]. Concurrently, VC and
osteoporosis frequently coexist in these patients, and both
are considered mutually equivalent in terms of risk.
Additionally, any treatment affects bone metabolism can
directly or indirectly affect vascular health. Therefore,
clinicians should closely monitor the relationship be-
tween osteoporosis and VC when managing CKD
patients [23].

Various markers related to bonemetabolism have been
identified in the blood of CKD patients, including os-
teoprotegerin (OPG) [24], osteopontin (OPN), osteo-
calcin [25], bone morphogenetic protein (BMP)-2 [11,
26], bone-specific alkaline phosphatase (B-ALP) [27], and
runt-related transcription factor 2 (RUNX2) [28]. The
intricate interplay between these markers forms a regu-
latory network that governs the function of VSMCs.
These factors play crucial roles in preserving vascular
health and in regulating VC.

Fibroblast Growth Factor-23 and Klotho

Fibroblast growth factor-23 (FGF23) is a recently
discovered endocrine product, with implications not only
in bone diseases but also in kidney and parathyroid

metabolism. It serves as a biomarker and plays a key role
in kidney diseases [29]. Klotho is a transmembrane
protein that acts as a co-receptor to enhance the affinity
and specificity of FGF binding to fibroblast growth factor
receptors, facilitating FGF23-mediated receptor activa-
tion. FGF23 exerts its effects on target organs by binding
to a heterodimeric complex of fibroblast growth factor
receptors and α-Klotho (Klotho/αK1) co-receptors,
forming a 1:1:1 ternary complex [29].

FGF23 and Klotho are hormones that play a crucial
role in the metabolic axis of osteovascular metabolism in
CKD. FGF23 is negatively correlated with Trabecular
Bone Score (TBS), while klotho is positively correlated
with TBS. FGF23 and klotho, in combination with TBS,
show promise as early markers of trabecular bone im-
pairment in CKD [30]. Among HD patients, higher levels
of serum intact FGF23, rather than C-terminal FGF23,
were associated BMD values at the lumbar spine and
femoral neck [31]. However, further research is needed to
validate these findings.

Increased FGF23 plasma levels are associated with
declining kidney function and serve as a predictor for
future cardiovascular mortality risk [32]. In addition, low
Klotho/FGF23 ratio was significantly associated with
increased renal events in the cohort of Korean predialysis
CKD patients [33]. Furthermore, a meta-analysis was
conducted to elucidate the role of klotho and FGF23 in
human arterial remodeling across recent studies, spe-
cifically focusing on arterial calcification, thickness, and
stiffness [34]. Concretely speaking, FGF23 primarily
induces left ventricular hypertrophy and heart failure,
while klotho deficiency primarily contributes to arterial
calcification and atherosclerotic disease combined with
hyperphosphatemia [35].

Bone Marrow Mesenchymal Stem Cell Exosomes

In 2022, Wang et al. published a compelling per-
spective in “Nature Communications,” suggesting that
EVs derived from an aging bone matrix could serve as
conveyors of the calcification paradox [36]. During bone
resorption, osteoblast-secreted EVs are released from the
aging bone matrix into the bone marrow [36]. These
vesicles facilitate the expression of peroxisome
proliferator-activated receptor gamma and adipogenic
differentiation of bone marrow mesenchymal stem cell
(BMMSC) by delivering miR-483-5p, resulting in an
imbalance between bone and fat, leading to osteoporosis
[36]. Simultaneously, the same vesicles originating from
the aging bone matrix can traverse the circulatory system
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and accumulate in the blood vessels. Through the transfer
of miR-2861, they induce the expression of RUNX2 in
VSMCs and drive their transition into osteoblast-like
cells, ultimately culminating in VC. This mechanism
offers an insight into the calcification paradox [37].

Recent studies have indicated that bone marrow
mesenchymal stem cells can secrete exosomes (Exos).
However, there have been limited investigations into the
effects of BMMSC-Exos on VC within the CKD field.
Previous research has demonstrated that BMMSC-Exos
can inhibit vascular smooth muscle calcification, al-
though the precise mechanisms underlying this phe-
nomenon remain elusive. Liu et al. [38] conducted a
series of studies on BMMSC-Exos in 2019 and found
that BMMSC-Exos could reduce high phosphate-
induced calcification in human aortic VSMCs by reg-
ulating the miRNA profile [38]. In 2021, they further
elucidated that BMMSC-Exos could hinder high
phosphate-induced transdifferentiation and calcifica-
tion of VSMCs by targeting the NONHSAT 084969.2/
NF-κB axis [39]. Additionally, miR-381-3p, which di-
rectly targets NFAT5 mRNA, plays a significant role in
this process [40]. Moreover, BMMSC-Exos inhibited
high phosphate-induced aortic calcification and ame-
liorated renal function through the SIRT6-HMGB1
deacetylation pathway [41].

Sclerostin and the Wingless/Integrated Signaling
Pathway

The wingless/integrated (WNT) signaling pathway
seems to exert a significant influence on VC. Multiple
studies indicate markedly higher serum sclerostin levels
in patients with CKD compared to those without CKD
[42, 43]. This elevation in sclerostin levels in CKD is
attributed to increased production rather than impaired
kidney function, which affects its excretion [44]. In
theory, dedifferentiated VSMCs can transdifferentiate
into osteoblasts/chondrocytes or adipocytes [45]. The
phenotypic fate of these cells depends on extracellular
stimuli, which can activate or inhibit various signaling
pathways [45]. Differentiation into osteoblasts and
chondrocytes is governed by the Wnt/β-catenin signaling
pathway [46]. Conversely, peroxisome proliferator-
activated receptor gamma signaling pathway is a
strong inducer of adipocyte differentiation [45–47], as
shown in Figure 1.

Researchers have identified several interesting pat-
terns. Given the similarity between the development of
ectopic VC and bone formation, it is reasonable to

speculate that sclerostin may play a role in this patho-
logical process by promoting ectopic calcification by
stimulating osteogenic activity in arterial vessels. How-
ever, studies involving mice with adenine-induced renal
damage have shown that sclerostin gene knockout results
in broader VC, indicating that sclerostin may have a
protective role in VC [48]. Sclerostin secreted by calcified
blood vessels may provide some protection against VC
but can also worsen bone disease simultaneously [49].
Sclerostin from different sources may have varying effects
on the bone-vascular axis in CKD-MBD. On one hand,
sclerostin may be involved in the vascular influence on
bone. Most experts believe that elevated sclerostin levels
in the serum mainly originate from calcified smooth
muscle cells [47]. Research has shown that calcified aortas
from uremic rats secrete large quantities of sclerostin and
Dkk1 when cultured outside the body. When incubated
with osteoblast-like UMR-106 cells, these calcified aortic
rings strongly inhibit the formation of calcium crystals
[50]. On the other hand, sclerostin also participates in the
influence of the bone on blood vessels. In patients with
CKD, the 1α-hydroxylase enzyme is deactivated in the
kidneys. Damaged kidneys stimulate 1α-hydroxylase
activity in bone cells, leading to an increased local pro-
duction of 1,25(OH)2D through elevated cytokine re-
lease. This, in turn, reduces BMP-2 in bones and stim-
ulates the production of osteocytic sclerostin. Osteocytic
sclerostin can inhibit BMP-2-induced osteogenic trans-
differentiation in arterial walls, thereby alleviating arterial
calcification [51]. In summary, both circulating and os-
teocytic sclerostin can exert a protective effect by in-
hibiting WNT-induced calcification. This finding helps
elucidate why anti-sclerostin monoclonal antibodies,
which block sclerostin activity, can enhance bone re-
modeling, but may also promote VC [52]. Therefore, the
treatment objective for CKD-MBD should not solely
focus on antagonizing sclerostin activity, but rather on
reducing sclerostin production by minimizing osteogenic
transdifferentiation in VSMCs [10]. As graphically shown
in Figure 2, the role of Sclerostin in CKD-MBD is clearly
illustrated.

OPG and the Receptor Activator of Nuclear Factor κ-B
Ligand Signaling Pathway

Osteoprotegerin is a glycoprotein produced by oste-
oblasts and is a member of the tumor necrosis factor
superfamily. It regulates bone homeostasis primarily
through the receptor activator of nuclear factor κ-B ligand
(RANKL) signaling pathway, helping maintain bone
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Fig. 1.Opposed interplay between the canonicalWnt/β-catenin pathway and PPARγ pathway in vascular smooth
muscle cells Dedifferentiated VSMCs can transform into osteoblasts/chondrocytes or adipocytes depending on
extracellular stimuli that activate or inhibit signaling pathways. The Wnt/β-catenin pathway governs differ-
entiation into osteoblasts and chondrocytes, while the PPARγ pathway strongly induces adipocyte differentiation.
PPARγ, peroxisome proliferator-activated receptor gamma.

Fig. 2. Role of sclerostin in CKD-MBD
sclerostin mediates the intricate interac-
tions between bone metabolism and vas-
cular health, affecting both bone formation
and VC in CKD. Elevated sclerostin levels
in serum are primarily derived from cal-
cified smooth muscle cells. Reduced activity
of the 1α-hydroxylase enzyme leads to in-
creased sclerostin production in bones,
which inhibit BMP-2 and osteogenic
changes in arterial walls, potentially miti-
gating arterial calcification.
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health [53]. This ligand is produced by stromal cells,
osteoblasts, and osteocytes and is crucial for the differ-
entiation of monocyte-macrophage osteoclast precursors
into multinucleated osteoclasts and the activation of
mature osteoclasts [53]. OPG, which functions as a
soluble receptor for RANKL, predominantly exists in a
free form and does not bind to cell membranes. By acting
as a decoy receptor for RANKL, OPG impedes the
maturation and formation of osteoclasts, thereby in-
hibiting bone resorption [53, 54]. Inhibition of the
RANKL signaling pathway also improved the bone
phenotype of adenosine-induced CKD-MBD mice. CKD
mice with RANKL gene knockout did not have high levels
of bone resorbing cells, nor did they form cortical po-
rosity, indicating that RANKL is an important factor in
CKD bone pathology and a potential therapeutic target
for protecting bones in CKD [55].

Although the role of the RANKL-RANK-OPG sig-
naling pathway in bone formation has been extensively
studied, its regulatory function in VC remains largely
unexplored. Mice lacking the OPG gene tend to develop
early onset osteoporosis and VC, indicating the crucial
role of the OPG/RANK/RANKL signaling pathway in
connecting the bone and blood vessels. Administering
recombinant OPG or inducing OPG overexpression in
OPG-deficient mice mitigated osteoporosis and re-
versed arterial calcification [56]. OPG is produced by
VSMCs and ECs and can potentially slow the pro-
gression of VC by binding to RANKL receptors. A
prevalent hypothesis is that OPG produced by VSMCs,
and ECs enters the bloodstream and exerts effects on
distant bones, such as reducing bone resorption and
affecting bone turnover. The anti-VC activity of OPG
appeared to increase with increasing calcium load
[19, 57].

Alkaline Phosphatase

ALP is a highly conserved enzyme that catalyzes the
hydrolysis of phosphate monoesters, showing optimal
activity at an alkaline PH. There are four forms of ALP
isoenzymes present in the human body: tissue nonspecific
ALP (also known as liver/bone/kidney ALP), intestinal
ALP, placental ALP, and germ cell ALP. In the serum, the
bone and liver ALP subtypes are the most abundant, with
a ratio of approximately 1:1, constituting over 90% of the
total ALP activity [58].

B-ALP is primarily produced by osteoblasts. B-ALP
can be divided into four isoforms (B/I, B1x, B1, and B2),
all of which are expressed in the human bone tissue and

VSMCs. Notably, B1x is detected only in the serum of
patients with CKD, especially exhibiting the highest ac-
tivity in those on dialysis. B-ALP plays a crucial role in
tissue mineralization and is expressed in osteoblasts,
chondrocytes, and other mineralizing cell types (such as
calcified VSMCs). One of the primary functions of B-ALP
is to hydrolyze the mineralization inhibitor PPi into two
phosphate molecules. In addition to inactivating PPi,
B-ALP can deactivate the calcification inhibitor OPN
through dephosphorylation, thereby modulating its ac-
tivity. B-ALP is present in vesicles shed by VSMCs and
contributes to calcification by promoting hydroxyapatite
crystal deposition in the ECM [59].

Bone Morphogenetic Protein

BMPs are multifunctional growth factors of the
transforming growth factor-beta superfamily. They
play critical roles in various developmental processes
including heart development, neurogenesis, and os-
teogenesis. Among the BMP family members, BMP-2
was the first to be characterized and is one of the most
studied BMPs. It is pivotal during embryonic devel-
opment and a powerful inducer of mesenchymal stem
cell differentiation into osteoblasts, making it a key
participant in bone formation [60].

VSMCs may also express BMP-2, which, in a BMPR-
2-dependent manner, can promote monocyte infiltra-
tion and inflammation in atherosclerotic lesions and
induce angiogenesis and the proliferation and migration
of ECs. The upregulation of BMP-2 expression in de-
differentiated human VSMCs and the downregulation of
BMP-2 agonists further support the idea that BMP-2
might engage in paracrine signaling, thereby facilitating
inflammatory responses. Under BMP-2 stimulation,
aortic smooth muscle cells can simultaneously express
osteogenic marker Msx2 and smooth muscle markers,
indicating that the transdifferentiation of fibroblasts into
the osteoblast lineage may contribute to the develop-
ment of VC [11].

Osteopontin

OPN is a transformation-related phosphoprotein in
the SIBLING family and is encoded by the SPP1 gene
[61]. It exhibited a dual phenotype. OPN is secrete OPN,
which can inhibit hydroxyapatite formation and promote
bone resorption. Moreover, OPN can induce minerali-
zation at sites of calcium accumulation. The expression of
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OPN in cardiovascular diseases depends on its status.
Although OPN is minimally expressed under normal
conditions, its expression can increase significantly under
various pathological conditions [62, 63].

The role and mechanisms of OPN in ectopic calcifi-
cation have primarily been investigated in VC, focusing
on two key aspects [64]. First, OPN can bind hydroxy-
apatite. In vitro studies have indicated that OPN effec-
tively impedes the formation and expansion of hy-
droxyapatite crystals. OPNs specific RGD sequence of
OPN encompasses a calcium-binding region abundant in
aspartic acid. With negatively charged glutamic and as-
partic acid residues, serine/threonine kinase substrate
sites, and other calcium-binding motifs, OPN can bind
substantial quantities of Ca2+ (up to 50mol of calcium per
mole of OPN). The second aspect pertains to how OPN
facilitates monocyte uptake, thereby hindering calcifi-
cation. OPN is synthesized by matrix or inflammatory
cells at sites of ectopic calcification, where it adheres to
biological hydroxyapatite, initially impeding crystal
growth in a physical manner. This interaction between
OPN and hydroxyapatite also furnishes recognition sites
for macrophages and multinucleated giant cells, leading
to local accumulation and upregulation of carbonic an-
hydrase II [64].

In 2021, Mace et al. [20] proposed a hypothesis that
might explain the “calcification paradox.” Using a rat
model of 5/6 nephrectomy-induced VC, OPN was found
to be the third most highly expressed gene in the aorta.
Additionally, the expression of OPN overlapped with
areas of calcification, suggesting that it might play a
protective role in the local environment by preventing the
deposition of calcium-phosphate crystals. This observa-
tion suggests that vascular changes in CKD could lead to
defects in bone mineralization, limiting the deposition of
calcium and phosphate in bones, which in turn could
accelerate crystal formation within blood vessel walls.
This creates a vicious cycle of bone demineralization
and VC.

Runt-Related Transcription Factor 2

RUNX2 is essential for the proliferation of osteoblast
precursor cells and immature osteoblasts, as well as for
the upregulation of bone matrix molecules [65]. It is
regarded as a key regulatory factor in bone development
and is the primary trigger for osteoblast differentiation
[66]. RUNX2 is mainly expressed in chondrocytes,
osteoblast-lineage cells, and thymic cells, where it is
crucial for chondrocyte maturation and osteoblast dif-

ferentiation. In immature osteoblasts, RUNX2 regulates
bone matrix protein genes, such as Col1a1, Col1a2,
Spp1, Ibsp, and bone γ-carboxyglutamic protein
(Bglap)/Bglap2, and induces osteoblast maturation [67].
Additionally, in vitro cell culture studies confirmed the
key role of RUNX2 in vascular cell calcification, in-
cluding its effects on VSMCs, ECs, and vascular pro-
genitor cells. Specifically, elevated RUNX2 expression
alone is sufficient to promote osteogenic differentiation
and calcification in VSMCs. Although the specific
mechanism by which RUNX2 promotes calcification in
VSMCs is not entirely clear, insights from bone biology
can help elucidate the pathways leading to RUNX2
upregulation in the vascular system. Major signaling
pathways, such as BMP-2, ERK/MAPK, and PI3K/AKT,
may contribute to VC and atherosclerosis by promoting
the expression, post-translational modification, and
transcriptional activity of RUNX2 [68].RUNX2 can also
function as a part of the deoxyribo nucleic acid (DNA)
damage response, linking DNA damage signals with
osteogenic gene transcription and apoptosis, thereby
promoting calcification. It localizes to DNA damage
sites and is involved in DNA repair by regulating histone
H2AX phosphorylation [69].

CPPs and Calcification Propensity

CPPs act as a natural buffering system that helps
prevent hypercalcemia and hyperphosphatemia by se-
questering these ions. When mineral homeostasis is
disturbed, elevated levels of calcium and phosphate can
lead to the formation of circulating CPPs, which aggre-
gate excessive ions into less harmful complexes [70].
There are two types of CPPs: primary and secondary
CPPs. Primary CPPs (CPP1) are amorphous and soluble,
and they are the predominant form of circulating CPP. In
vitro, CPP1 spontaneously transforms into secondary
CPPs (CPP2), which are larger and more crystalline.
CPP2 may mediate the effect of phosphate on arterial
calcification or directly induce oxidative stress in VSMCs
leading to mineralization [71]. Larger CPP2 was asso-
ciated with risk of mortality [71]. In summary, CPPs are
essential for maintaining the balance of calcium and
phosphate [72].

The primary-to-secondary CPP transformation time,
also known as the serum T50, reflects the serum’s en-
dogenous ability to prevent calcium phosphate precipi-
tation [73]. Higher T50 values indicate longer transition
times and therefore a lower propensity for calcification
[74]. T50 holds significant clinical relevance due to its
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association with increased cardiovascular and all-cause
mortality, as well as the progression of coronary artery
calcification [75]. Additionally, T50 reflects the presence
of other serum factors that contribute to the calcification
process [76]. T50 is a critical factor in several CKD co-
horts and has a potential to serve as a standard tool for
evaluating VC [77]. A lower T50 or faster transformation
of CPP1 to CPP2 has been demonstrated to be correlated
with higher mortality rates [71].

Secondary CPPs exhibit the capacity to induce cal-
cification in cultured vascular smooth muscle cells and
innate immune responses in cultured macrophages,
whereas primary CPPs lack such pathogenic activity.
Specifically, secondary CPPs containing crystalline CaPi
may serve as a pathogen for VC and chronic nonin-
fectious inflammation in CKD patients [71, 78]. CPPs
may exert influence on calcifying microvesicles-
mediated calcification through several mechanisms.
First, CPPs can induce apoptosis of VSMC, leading to
the formation of apoptotic bodies which serve as a nidus
for calcification. Second, CPPs are capable of causing an
increase in cytoplasmic Ca2+ levels, and elevated cyto-
solic Ca2+ levels in VSMC contribute to the development
of procalcifying calcifying microvesicles. Third, CPPs
have been found to be present in calcified atherogenic
lesions, where they may fuse with and integrate into the
emerging microcalcifications [70].

CPPs cause Ecs dysfunction by impairing nitric oxide
metabolism and generating oxidative stress [79]. The
upregulation of H+ and Ca2+ translocation, Ca2+ stress,
generation of reactive oxygen species and oxidative stress,
unfolded protein response, mitochondrial outer mem-
brane permeabilization, and intrinsic apoptosis pathways
in mitochondria and ER proteomes provide a framework
for organelle-specific response after the internalization of
CPP-1 or CPP-2 by the ECs [80].

T50 was moderately associated with mineral and in-
flammatory parameters but did not conclusively establish
an association with BMD in HD patients [81]. It is
demonstrated that blood CPPs possess the capability to
exit from blood vessels in the bone and directly reach
osteoblasts. It is not phosphate or calcium themselves, but
rather CPPs that may be responsible for inducing fi-
broblast growth factor-23 secretion and production in
osteoblasts or osteocytes [82].

The concept of a “bone-vascular axis” has been proposed,
suggesting a complex interaction between the mechanisms
that regulate both systems. It is suggested that fetuin-A and
CPP may act as mineral chaperones in this interplay. The
pathways involved in the production and accumulation of
CPP are thought to be connected to the processes of bone

function and remodeling, and may contribute to the par-
adoxical relationship between low BMD and increased VC,
particularly in patients with CKD [83].

Treatment Prospect

The bone-vascular axis plays a central role in the
pathogenesis of CKD-MBD. Researchers are actively
exploring drugs or therapeutic methods that can antag-
onize bone metabolism-related proteins, with the aim of
alleviating VC while addressing osteoporosis. Romoso-
zumab is a monoclonal antibody used for the treatment of
osteoporosis. It promotes bone formation by inhibiting
the action of sclerostin, but it can exacerbate VC and
increase the risk of cardiovascular events [52]. Therefore,
the therapeutic goal for CKD-MBD is not to antagonize
the activity of sclerostin, but rather to reduce its pro-
duction by decreasing the osteogenic transdifferentiation
of vascular smooth muscle cells [10].

Denosumab is a monoclonal antibody used primarily in
the treatment of osteoporosis and certain types of bone-
related conditions, such as bone metastases from cancer. It
works by inhibiting RANKL, a protein essential for the
formation, function, and survival of osteoclasts, the cells
responsible for bone resorption [84, 85]. It resulted in in-
creased BMDs at the lumbar spine and total hip, as well as a
slight increase in calcified areas in a time-dependent manner
[86]. However, some studies suggest that denosumab
therapy has no effect on VC [87]. It even can potentially
inhibit the progression of coronary artery calcification and
lead to a reduction in osseous calcification, particularly in
severe cases of high bone turnover [88]. Restoring the
balance of RANKL-OPG by regulating the production of
endogenous OPG may present a therapeutic approach for
future prevention of bone loss and alleviation of VC [88].

Lanthanum carbonate, sucroferric oxyhydroxide, and
etelcalcetide can reduce the burden of CPP1 and CPP2 in
the serum of dialysis patients [89–91]. Hiroshi Kurosu1
and Makoto Kuro-o have proposed identifying CPPs as
effective therapeutic targets. A CPP adsorption column
made with alendronate can delay the occurrence of
cardiovascular events without significantly lowering se-
rum phosphate levels. This approach is aimed at estab-
lishing it as a medical device to improve clinical outcomes
in dialysis patients [92].

Basic research targeting the bone-vascular axis is
ongoing, but each study tends to focus solely on either the
bone or the blood vessels [93], rather than considering
them as a whole. As a result, effective treatment methods
have yet to be discovered.
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Conclusion

CKD-MBD is a complex multifactorial syndrome with
no effective treatment currently available. Some scholars
have proposed that inhibiting the transdifferentiation of
VSMCs into osteoblast-like cells is fundamental to reducing
VC, which may serve as a treatment goal in patients with
CKD-MBD. Most current articles on the bone-vascular axis
focus on the skeleton as an organ, where bone metabolic
proteins are transported to blood vessels through various
paracrine pathways. However, how blood vessels, in turn,
influence the skeleton to drive the cycle of disease is an
intriguing proposition that warrants further investigation.
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