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Drugs to cure avian influenza infection – multiple ways
to prevent cell death

S Yuan*,1

New treatments and new drugs for avian influenza virus (AIV) infection are developed continually, but there are still high mortality
rates. The main reason may be that not all cell death pathways induced by AIV were blocked by the current therapies. In this
review, drugs for AIV and associated acute respiratory distress syndrome (ARDS) are summarized. The roles of antioxidant
(vitamin C) and multiple immunomodulators (such as Celecoxib, Mesalazine and Eritoran) are discussed. The clinical care of
ARDS may result in ischemia reperfusion injury to poorly ventilated alveolar cells. Cyclosporin A should effectively inhibit this
kind of damages and, therefore, may be the key drug for the survival of patients with virus-induced ARDS. Treatment with
protease inhibitor Ulinastatin could also protect lysosome integrity after the infection. Through these analyses, a large drug
combination is proposed, which may hypothetically greatly reduce the mortality rate.
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Facts

� The infection of avian influenza induces reactive oxygen
species accumulation, causing hyperimmune response to
the virus, which may have adverse effects on vital organs
and result in high pathogenicity and mortality.

� Clinical care of acute respiratory distress syndrome may
result in ischemia reperfusion injury to alveolar cells that
are poorly ventilated or poorly supplied with blood. The
main mechanism includes mitochondrial permeability
transition and the release of apoptotic mediators.

� Combinations of immunomodulators and antiviral agents
significantly reduced mortality in mice infected with the
avian influenza virus (AIV). However, the reduced mortality
rate was still relatively high (over 10%).

� Virus neuraminidase digests lysosomal membrane glyco-
proteins, which induces lysosome lysis and the release of
lysosomal proteases. This is another mechanism of AIV-
induced cell death.

Open Questions

� New treatments and new drugs for avian influenza are
developed continually; then why is there still such a high
mortality rate?

� Why did acute respiratory distress syndrome clinical cares
enable the survival of only partially AIV-infected patients,
whereas the others died?

� Can immunomodulators and antiviral agents completely
cure AIV infection?

� Is there a hope of reducing the mortality rate to below 1%
(as is the case of the ordinary influenza)?

Over the last decade, an endless stream of severe acute
respiratory syndrome (SARS), influenza (H1N1, H5N1, H7N9)
and associated malignant respiratory diseases have
emerged, which threatens the human health seriously.
Because of their high mortality rate and infectious nature,
these diseases usually cause psychological panic among the
public that is more serious than the diseases themselves. As
reported on 10 May 2013, of the 111 patients we studied
76.6% were admitted to an intensive care unit and 27.0%
died.1 New treatments and new drugs for avian influenza are
developed continually, then why is there such a high mortality
rate? We have to introspect about our current therapies for
avian influenza and develop a better one. In this review,
therapeutic uses of the drugs for avian influenza and
associated pneumonia are summarized. In general, conven-
tional therapies using only antiviral drugs resulted in 50–80%
mortality rate, whereas the new therapies with antiviral drugs
and immunomodulators reduced the mortality rate to 10–50%.
However, this was still a high ratio. The main reason may be
that not all cell death pathways induced by the AIV were
blocked by the therapies (Figure 1). At the end of this review, a
large reagent combination is proposed, which may greatly
reduce the mortality rate prospectively.

1College of Resources and Environmental Sciences, Sichuan Agricultural University, Chengdu, China
*Corresponding author: S Yuan, College of Resources and Environmental Sciences, Sichuan Agricultural University, Chengdu 611130, China; Tel: þ 86 28 86291325;
Fax: þ 86 028 86290983; E-mail: roundtree318@hotmail.com

Received 24.6.13; revised 15.8.13; accepted 16.8.13; Edited by A Stephanou

Keywords: avian influenza virus infection; acute respiratory distress syndrome; cell death; combination therapy; reactive oxygen species
Abbreviations: AICT, avian influenza cocktail therapy; AIV, avian influenza virus; ARDS, acute respiratory distress syndrome; Bax, Bcl-2-associated X protein; Bcl-2,
B-cell lymphoma 2; CsA, cyclosporin A; HPV, hypoxic pulmonary vasoconstriction; IFN, interferon; IL, interleukin; IR, ischemia reperfusion; mPT, mitochondrial
permeability transition; NA, neuraminidase; NF-AT, T-cell-specific transcription factor; NF-IL-2A, IL-2 promoter element; ROS, reactive oxygen species; SARS, severe
acute respiratory syndrome; TLR4, Toll-like receptor 4; TNFa, tumor necrosis factor-a; VC, vitamin C

Citation: Cell Death and Disease (2013) 4, e835; doi:10.1038/cddis.2013.367
& 2013 Macmillan Publishers Limited All rights reserved 2041-4889/13

www.nature.com/cddis

http://dx.doi.org/10.1038/cddis.2013.367
mailto:roundtree318@hotmail.com
http://www.nature.com/cddis


The symptoms of H7N9 infection, that is, the upper
respiratory tract infection, is not very heavy with mild cough,
which does not attach attention to the majority of the patients.
However, the disease progresses very quickly. Ten days
post infection, pulmonary symptom appears immediately
(pneumophila). Next, the condition involves the proliferation
of both lungs, serious lung exudation and low pulmonary
oxygenation (low oxygenated blood). A patient without
effective treatments at that time will develop acute respiratory
distress syndrome (ARDS) and may die a few days later.2

Symptoms of other types of avian influenza and SARS are
almost the same. Hence, the key to survival of the patients
may be not only the suppression of the virus but also the
controlled inflammatory response of the hosts.

The SARS mortality statistics published by World Health
Organization in 2003 showed that the overall average
mortality rate was about 15%, but the mortality rate of young
people with strong immunity was much higher than that of old
people with weak immunity.3 For H5N1, the overall mortality
rate was about 56%. However, the youth group (10–19 years
old individuals) got the highest mortality rate of 73% and the
mortality rate for people over 50 years was only 18%.4

Moreover, H1N1 deaths mostly occur in middle-aged adults
and the severity of the H1N1 cases was by far higher in the
18–50 years age group, contrary to seasonal influenza
where fatal disease occurs most often in the elderly people
(465 years old), with an overall mortality rate being o1%.5

Some researchers believe that the infection of avian influenza
causes multiple complications in the patient, resulting in multi-
organ failure, and may be related to the hyperimmune
response to the virus, which may have adverse effects on
vital organs and result in high pathogenicity and mortality.6–9

The H5N1 virus may set off a cytokine storm, for example,
interferon (IFN)-inducible protein IP-10, IFN-b, chemokines,
interleukin-6 (IL-6) and so on. This cytokine outbreak is likely
to lead to cell death.6–9 These data may suggest that healthy
young people would become the main target of H5N1 attack.
In other words, the stronger the immune system, the more
severe the inflammatory response after the infection and,
thus, the higher risk of death. AIV does not kill us, but we may
be killed by ourselves. For the newborn virus H7N9, no such
full-scale statistics is available now. Nevertheless, from its

high mortality rate and rapid disease progression,1,2 a similar
cytokine burst with an excessive immune response can be
expected (cytokine burst in the H7N9 patient has been proved
recently).10,11

Antioxidant

Reactive oxygen species (ROS) have a crucial role in
inflammatory response.12 Aggregation of neutrophils at
pulmonary alveoli activate and release the oxygen-free
radicals, proteases and lipid peroxide, resulting in injuries
to the pulmonary microvascular membrane and alveolar
epithelial membrane, and the subsequent pulmonary edema
and ARDS. The activated neutrophils generate ROS expo-
nentially (over 10 times the rate in the resting cell). The
oxidative injuries include the following: (i) lipid peroxidation
and detriments to structures and functions of the
cell membrane and the organelle membrane; (ii) enzyme
inactivation; (iii) inactivation of protease inhibitors and release
of lysosomal proteases; and (iv) working on blood plasma to
induce strong chemoattractants, causing more neutrophil
aggregation, more ROS production and subsequently more
severe lung injury.12 Thus, ROS form a positive feedback loop
(they could be self-amplified).

Among all ROS scavengers, ascorbic acid (vitamin C (VC))
is the best choice, as it is effective, non-toxic, easy to be
absorbed and more stable than the others (similar to reduced
glutathione). VC scavenges ROS through a non-enzymatic
process.13 In the ninteenth century, VC had been used to treat
hepatitis, encephalitis, influenza, SARS and some other viral
diseases.13 In 1970, Nobel laureate chemist Linus Pauling
published the book ‘Vitamin C And The Common Cold’,
wherein he advocated that high doses of VC can prevent and
treat colds.14

There is little direct evidence to show that the high amounts
of VC would be helpful for patients during a severe avian
influenza infection. However, an investigation showed that
in several publicized locations, including Vietnam, many
(about 50%) of the humans infected with avian flu (H5N1)
did not die.15 Ely16 suggested that their survival may have
occurred, as the particular viral load constituting their
moderate infection may have been small enough that the

Figure 1 Summary of therapies, mortality rates and the therapeutic mechanisms. AIV, avian influenza virus; ARDS, acute respiratory distress syndrome;
mt, mitochondrion; ROS, reactive oxygen species; CsA, cyclosporin A
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VC they accidentally acquired from their diets was adequate
to defend them.

There are about 4000 species of ‘normal’ mammals that
synthesize VC, on average B50 mg/kg body weight daily
or about 5 g/day (normalized to 70 kg for a human).16,17 This
amount has been found to be essential for optimum health and
resistance to many diseases.13,14 In summary, from a large
number of studies,13–17 we know that effective inhibition of
viral replication and apparent symptom alleviation usually
requires over 5 mM of VC (about 4.4 g for about 5 l of human
blood). However, the general oral dosage of VC tablets is
100–300 mg daily, which is much lower than the dose required
for influenza treatment. For higher absorption efficiency, and
considering that over 1 g of VC by oral administration may
cause diarrhea, nausea, vomiting, stomach cramps and other
side effects,13–17 the injection approach could be adopted for
those patients infected with avian influenza. In addition, long-
term use of high-dose VC (42–3 g/day) causes scurvy after
abrupt stopping. Thus, the VC injection should be reduced
gradually during recovery but not stopped abruptly.13–17

When most patients were identified to be infected by AIV
and have been sick for a couple of days, pulmonary symptoms
started to develop. Their alveolar cells may be already
damaged. Therefore, their risks to develop acute respiratory
failure were very high. Timely pretreatment with VC before
diagnosis in the hospital may be very important for the patient
to avoid lethal inflammation.13–17

Protectant of Mitochondrial Membrane Permeability

Simply providing humans with 50 mg/kg/body weight of VC in
one or few doses (oral or other) on a fixed schedule will not
replicate the sufficiency seen in normal mammals. Mice and
birds can synthesize considerable amounts of VC,16,17 but
they can be still infected by avian influenza. Therefore,
additional treatments other than ROS scavengers have been
applied. For the avian-influenza-infected patient with
pneumonia, continuous increase of alveolar/capillary mem-
brane permeability is the most common damage.12 Mitochon-
dria have a critical role in mediating calcium overload and
oxidative damage (e.g., hydrogen peroxide)-induced cell
death, such as ischemia reperfusion (IR) injury.18–20 The
mitochondrial permeability transition (mPT) after this injury
leads to mitochondrial swelling, outer membrane rupture and
the release of apoptotic mediators (such as cytochrome c).18

The mPT pore is thought to consist of the adenine nucleotide
translocator, a voltage-dependent anion channel and cyclo-
philin D. Cyclosporin A (CsA) can effectively inhibit cyclophilin
D and, therefore, it protects myocardial cells form IR injury
(such as myocardial infarction).18 H1N1 infection inactivated
the cellular catalase, thus leading to the accumulation of ROS
(mainly hydrogen peroxide),21 whereas H5N1 induced extra-
cellular calcium influx, leading to apoptosis.22 ROS accumu-
lation, extracellular calcium influx and the accompanying
mitochondrial damages were also found in hypoxemia
patient’s lung cells.23 Thus, ROS accumulation (especially
hydrogen peroxide) and calcium influx may be the common
injury factors for both IR injuries and ARDS damages. CsA
may have a protective effect on such damages caused by the
avian influenza infection.

Clinical care of ARDS may result in IR injury of alveolar cells
that are poorly ventilated or poorly supplied with blood.
Avian-influenza-infected patients often develop the hypoxic
pulmonary vasoconstriction (HPV),24 which is an essential
physiological mechanism of the lung that directs blood
perfusion from poorly ventilated to well-ventilated lung areas,
to optimize gas exchange. But HPV development may cause
mismatched blood flow and alveolar ventilation, and
may result in life-threatening hypoxemia.23 Some ARDS
clinical cares are usually carried out at this time, for
example, mechanical ventilation, high-flow oxygen therapy,
corticosteroid treatment and inhaled nitric oxide administra-
tion.23,24 However, these treatments may restore the blood
(and oxygen) supply to the poorly ventilated or poorly supplied
alveolar cells, where the damage similar to the IR injury may
occur. Upon HPV, mechanical ventilation and high-flow
oxygen therapy may restore the oxygen supply to the poorly
ventilated alveolar cells. In case of a mismatch of blood flow
and alveolar ventilation, corticosteroid treatment and inhaled
nitric oxide administration may restore the blood supply to the
poorly supplied but well-ventilated alveolar cells. For both the
conditions, IR injury or similar damages may occur (Figure 2).
In other words, more severe cell death may happen after the
ARDS clinical management, but not at the time of occurrences
of HPV or hypoxemia. CsA effectively inhibit this kind of
damage and therefore may be the key drug for the survival of
ARDS patients.

Nevertheless, CsA-treated cells are not protected from Bax
(B-cell lymphoma 2 (Bcl-2)-associated X protein) or tumor
necrosis factor-a (TNFa)-induced mitochondrial dysfunction
and cell death.18 Although H5N1 and H1N1 viruses drama-
tically induced the TNFa factor in alveolar macrophages,25–27

TNF activates both an apoptotic pathway (i.e., TRADD, RIP
and JNK) and a survival pathway mediated by NF-kB
transcription of survival genes. ROS accumulation triggers a
signal to facilitate the TNFa apoptotic pathway.28 Balance
between the pro-apoptotic factor Bax and the anti-apoptotic
members of the Bcl-2 family is regulated by the cellular redox
status. A tilt in favor of the superoxide abets cell survival and
proliferation. On the contrary, a tilt towards hydrogen peroxide
generates an intracellular milieu permissive of death
execution.29 Thereby, a high dose of VC as an antioxidant
(mainly scavenging hydrogen peroxide) may block both
TNF- and Bax-induced apoptosis (Figure 3). Rapamycin
regulates Bcl-2 and TNFa levels too, but it may exacerbate the
H5N1-induced autophagy, which may lead to more severe
cell death.30 Thus, Rapamycin may not be suitable for the
treatment of AIV infection.

Immunomodulators

CsA also inhibits calcineurin activity.31 Calcineurin is a
key enzyme in T-cell activation, which can stimulate the
transcription of NF-AT (T-cell-specific transcription factor) and
NF-IL-2A (IL-2 promoter elements).32 Thus, CsA blocks the
activation of T cells and suppresses the generation of a variety
of cytokines, such as IL-2 and IFNs.32 CsA could not
be replaced by FK506, because CsA works not only as an
immunosuppressant (similar to FK506)31–33 but also as a
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protectant for maintaining the integrity of the mitochondrial
membrane.18

Nevertheless, many side effects were found for CsA, for
example, renal tubular toxicity and vascular–interstitial
lesions. Thus, its substitutes (some small-molecule chemical
compounds) have been developed recently, such as
Debio-025 and GW5.34,35 However, none of them has been
used clinically so far. CsA only shows its apparent side effects
after a long-term use (usually over a year).36 Hence, for the
current AIV therapy (usually within a month), CsA could be
used expediently.

Szretter et al.37 showed that IFNa/b pretreatment signifi-
cantly reduced the replication of the H5N1 virus. Zheng et al.26

indicated that combinations of immunomodulators and
antiviral agents significantly reduced mortality in mice infected
by a high inoculum of influenza H5N1 virus. They used two
immunomodulators – Celecoxib (cyclooxygenase-2 inhibitor)
and Mesalazine (5-amino salicylic acid). These two drugs did
not cause significant immunosuppression and, hence, hardly
influenced the body’s immune system against AIV.26 Six of
the eight cytokines induced by H5N1 and H1N1 (IL-6, IFNa,
macrophage inflammatory protein-1b, IFNg-induced protein
10, regulated on activation normal T cell expressed
and secreted, and monocyte chemotactic protein 1) were
suppressed by Celecoxib (400 mg/ml) and Mesalazine

(200 mg/ml).27 Therefore, Celecoxib and Mesalazine may be
two good candidate drugs that could suppress a cytokine
‘storm,’ besides CsA.

Some people may argue that CsA is a typical immunosup-
pressive agent and may weaken the body’s resistance to
AIV. However, considering that avian influenza causes an
excessive immune response, it could be speculated that
appropriately regulated immunity does not hamper the body’s
normal resistance to AIV. In fact, CsA affects influenza A virus
M1 protein and inhibits the nuclear export of viral mRNA, and
subsequently inhibits virus replication.38

Previous studies reported that acute lung injury caused
by chemical or microbial insults was secondary to the
generation of host-derived, oxidized phospholipid that could
potently stimulate Toll-like receptor 4 (TLR4)-dependent
inflammation.39 A recent study has shown that the TLR4
antagonist Eritoran protects mice from lethal influenza
infection.40 Eritoran is an alternative immunomodulator
(besides CsA, Celecoxib and Mesalazine, as mentioned
above) for controlling the influenza-associated inflammation
(Figure 3). Eritoran was originally designed as a drug for
septicemia. The recent report showed that the survival rate of
PR8 (a mouse-adapted influenza)-infected mice could reach
90% by the Eritoran treatment (if the mice were administered
up to 6 days after influenza infection),40 indicating its strong

Figure 2 Possible IR injury during clinical care of ARDS. (a) Normal ventilation–perfusion matching. (b) HPV. (c) Upon HPV, mechanical ventilation and high-flow oxygen
therapy may restore the oxygen supply to the poorly ventilated alveolar cells (with the possible occurrence of IR injury). (d) Corticosteroid treatment and inhaled NO
administration may restore the blood supply to the poorly ventilated alveolar cells (with the possible occurrence of IR injury). (e) Mismatching of blood flow and alveolar
ventilation results in hypoxemia. (f) Upon a mismatch, mechanical ventilation and high-flow oxygen therapy may restore the oxygen supply to the poorly ventilated alveolar
cells (with the possible occurrence of IR injury). (g) Upon a mismatch, corticosteroid treatment and inhaled NO administration may restore the blood supply to the poorly
supplied but well-ventilated alveolar cells (with the possible occurrence of IR injury). (h) Cell death may ultimately result in ARDS care failure and organ death. CsA may inhibit
this IR injury and alveolar damages

Drugs to cure avian influenza infection
S Yuan

4

Cell Death and Disease



immunomodulatory properties (may be stronger than all other
immunomodulators). However, Eritoran has not been used
formally clinically so far, and it has been observed that it may
cause some notable side effect of a dose-dependent
incidence of phlebitis.41 Similar to CsA, TLR4 also has a
central role in IR injuries,42,43 which might suggest a similarity
between AIV-induced inflammatory reactions and IR-
mediated immune responses.

Protectant of Lysosome Integrity

Neutrophil lysosomes contain a variety of neutral proteases
and acid proteases. When neutrophils are activated or
destroyed, lysosome lysis occurs and the proteases are
released, causing surrounding protein degradation and
increasing alveolar/capillary membrane permeability.44 Thus,

the elastase inhibitor has been considered for the AIV infection
treatment, such as Sivelestat.44 However, Sivelestat is very
expensive. The broad-spectrum protease inhibitor Ulinastatin,
which also inhibits neutrophil elastase and lysosome lysis, may
be used as an alternative selection.45,46 In H5N1-infected cells,
the virus neuraminidase (NA) digests lysosomal membrane
glycoproteins and affects lysosomal hydrolase, thereby under-
mining the integrity of the lysosome.47 Treatment with the
protease inhibitor Ulinastatin could inhibit these destructive
processes and could therefore be of potential importance to
ARDS prevention and cure (Figure 3).

Antiviral Drugs and the Others

For AIV infection cure, suppression of viral replication or
assembly has been adopted at the same time as well.48 NA
inhibitors, such as Oseltamivir and Relenza (or called
Zanamivir), are usually the first choice for AIV inhibition.1,2,48

Besides them, the other two licensed M2 ion-channel
inhibitors, amantadine and rimantadine, are also used.49,50

Another NA inhibitor, peramivir (BioCryst Pharmaceuticals,
Durham, NC, USA), was in phase 3 trials in 2009 for both
intravenous and intramuscular routes of administration.51

Another long-acting NA inhibitor, designated CS-8958, was
under study for use by inhalation, in Japan.52 The viral
polymerase inhibitor T-705 (Favipiravir) was not only active
against all three types of influenza virus (A, B and C) but also
had some activity against other RNA viruses, including some
of the hemorrhagic fever viruses.53,54 Sialidase fusion protein
inhibitor DAS181 (Fludase) is a fusion construct that
incorporates the sialidase from Actinomyces viscosus, a
common oral bacterium linked to a human-epithelium-
anchoring domain; it can be mass produced in Escherichia
coli.55 The sialidase targets the viral attachment process, an
early event in the replication of the influenza virus.55,56 Viral
hemagglutinin inhibitors cyanovirin-N and thiazolides were
also tested for H1N1 infection.57,58

Some new anti-influenza drugs have been developed
recently, such as mechanism-based covalent NA inhibitors59

and Geldanamycin (an inhibitor of the viral polymerase
assembly chaperone Hsp90).60,61 Moreover, combination
therapy with currently available antivirals was supported
by data from animal models and some clinical studies.

Figure 3 Model of the therapeutic mechanisms at the subcellular level.
AIV-induced biochemical changes and cell death pathways are marked in red color.
Potential targets of the drugs are marked in green color. AIV, avian influenza virus;
Bcl-2, B-cell lymphoma 2; CAT, catalase; CsA, cyclosporin A; Cyt c, cytochrome c;
MBCNI, mechanism-based covalent neuraminidase inhibitors; mPT, mitochondrial
permeability transition; ROS, reactive oxygen species; SOD, superoxide dismutase;
TNFa, tumor necrosis factor-a; VC, vitamin C

Table 1 Licensed drugs for curing AIV infection and the complications

Drug names Classification/mechanism Suggested applied occasion Possible side effects

Vitamin C Antioxidant The whole course (of the infection) Diarrhea, nausea, vomiting and stomach cramps
(high dose)

Cyclosporin A Mitochondrial permeability protectant and
immunosuppressant

Middle and advanced stages with the pulmonary symptom
(may be especially useful after the ARDS care)

Renal tubular toxicity and vascular–interstitial
lesions (only after long-term usage)

Celecoxib Immunomodulator, cyclooxygenase-2
inhibitor

The whole course Diarrhea, dyspepsia, headache, respiratory
infections, and so on

Mesalazine Immunomodulator, cyclooxygenase and
lipoxygenase inhibitor

The whole course Headache, flatulence, hair loss and itching

Sivelestat Lysosome integrity protectant and
protease inhibitor

Middle and advanced stages with the pulmonary symptom No side effect observed

Ulinastatin Lysosome integrity protectant and
protease inhibitor

Middle and advanced stages with the pulmonary symptom Shock, itching, rash, nausea, vomiting or
neutropenia (usually after long-term usage)

Oseltamivir Antiviral drug, neuraminidase inhibitor The whole course (especially effective at the early stage) Rare: delirium, hallucinations or unusual behavior
Relenza Antiviral drug, neuraminidase inhibitor The whole course (especially effective at the early stage) Diarrhea, nausea, dizziness, fever and joint pain
Amantadine Antiviral drug, M2 ion-channel inhibitor The whole course (especially effective at the early stage) Hallucinations, difficulty breathing and seizures
Rimantadine Antiviral drug, M2 ion-channel inhibitor The whole course (especially effective at the early stage) Insomnia, dizziness, nervousness and nausea
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The combinations may reduce the risk of development of
resistant influenza virus strains.62,63

To alleviate ARDS, mechanical ventilation, high-flow
oxygen therapy, inhaled nitric oxide administration, corticos-
teroid injection (although short-term high-dose glucocorti-
coids may cause necrosis of the femoral head)64 and other
conventional approaches are also usually applied for critical
patients.23,24,48,65,66 The various strategies used for ARDS
care have been extensively reviewed elsewhere.65,66

Conclusions and Perspective Clinical Trial

AIV mutates vary rapidly and new viruses emerge constantly
(H7N9 was possibly made from a combination of avian
influenza A H9N2 and some other AIVs).2,10 Antiviral resistance
mutations in specimens from patients with H7N9 infection have
been reported recently.67 Thus, vaccine development will
always be one step behind. Therefore, we should pay more
attention to the responses of the human body rather than to the
characters of the virus itself. If the excessive inflammatory
response is restrained, AIV may be cleared later by the body’s
immune mechanism, as is the case of ordinary influenza.

In this review, five categories of drugs and therapeutic
strategies for AIV infection have been summarized:
(i) antioxidant (high-dose VC); (ii) mitochondrial permeability
protectant and immunomodulators (CsA, with or without
Celecoxib/Mesalazine or Eritoran); (iii) protease inhibitors
(Ulinastatin); (iv) antiviral drugs (Oseltamivir/Relenza); and
(v) clinical management of ARDS. Among them, licensed
drugs are listed in Table 1. High doses of VC have been used
for influenza treatments for a very long time;13–17 CsA has
also been used to treat non-organ-transplantation-associated
pneumonia;68 Celecoxib and Mesalazine (two prescription
drugs) successfully cured mice infected with H5N1;26 and
Ulinastatin has a good curative effect on acute lung injury.45

Considering that they work on different cell death pathways,
all four categories of drugs might ideally be used in a large
combination to reduce the mortality rate. This therapeutic
combination could be named ‘avian influenza cocktail therapy’
(AICT), similar to the cocktail therapy for HIV.69 However,
AICT may have additive or possible antagonistic effects on
virus replication or induction of a cytokine storm. Moreover,
the possible side effects of this new combination therapy have
not been tested yet, although the treatment session should not
be very long (usually 2–4 weeks). Moreover, the dosage of the
single compound should be adjusted according to the
combination. For example, the blood concentration of CsA
varies largely among individual patients and may be drama-
tically influenced by some other drugs.70–72 Therefore, careful
pharmaceutical studies should be conducted before the AICT
is made to really enter the clinical trial for human AIV infection.

The AICT and the individual drugs may also be effective to
other high-mortality respiratory viral infections, besides
avian influenza. It might be modified and then used for other
disease therapies, such as SARS, neonatal respiratory
distress syndrome and organ transplantation-associated viral
pneumonia.
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