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Abstract
Prehypertension is a new risky disease defined in the seventh report issued by the
Joint National Commission. Hence, detecting prehypertension in time plays a very
important role in protecting human lives. This study proposes a method for cat-
egorising blood pressure values into two classes, namely the class of healthy blood
pressure values and the class of prehypertension blood pressure values, as well as
estimating the blood pressure values continuously only by employing photo-
plethysmograms. First, the denoising of photoplethysmograms is performed via a
discrete cosine transform approach. Then, the features of the photoplethysmograms
in both the time domain and the frequency domain are extracted. Next, the feature
vectors are categorised into the two classes of blood pressure values by a multi‐
model fusion of the classifiers. Here, the support vector machine, the random
forest and the K‐nearest neighbour classifier are employed for performing the
fusion. There are two types of blood pressure values. They are the systolic blood
pressure values and the diastolic blood pressure values. For each class and each
type of blood pressure values, support vector regression is used to estimate the
blood pressure values. Since different classes and different types of blood pressure
values are considered separately, the proposed method achieves an accurate esti-
mation. The computed numerical simulation results show that the proposed method
based on the multi‐model fusion of the classifiers achieves both higher classifica-
tion accuracy and higher regression accuracy than the individual classification
methods.

1 | INTRODUCTION

Due to the improvement in global economy, the total number
of overweight and obese people is rising. This results in more
incidences of cardiovascular diseases, which are the common
causes of death and disabilities among humans. The guidelines
issued by the American College of Cardiology/American Heart
Association (ACC/AHA) define systolic blood pressure values
between 120 and 129 mmHg and diastolic blood pressure
values higher than 80 mmHg as the blood pressure values
corresponding to elevated blood pressure [1]. In this study,
systolic blood pressure values between 120 and 139 mmHg and
diastolic blood pressure values between 80 and 89 mmHg were
defined as the prehypertension blood pressure values. Since
hypertension is a major cause for cardiovascular diseases [2],

prehypertension is also defined as a new risky disease [3]. On
the other hand, hypertension blood pressure values are also
used as a major syndrome for performing the diagnosis of
cardiovascular diseases. Hence, a continuous and accurate
estimation of the blood pressure values as well as detection of
prehypertension and alerting people regarding the occurrences
of cardiovascular diseases play an important role in human
lives.

In clinical practice, the cuff‐based method or the intra‐
arterial cannulation‐based method are usually used to esti-
mate the blood pressure values. However, the former cannot
perform continuous measurement and it is inconvenient for
performing signal acquisition. On the other hand, the latter is
invasive, which my put the users at risk of infection. Therefore,
there is a need for a non‐invasive and continuous blood
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pressure monitoring system. The continuous estimation of
blood pressure values via wearable and non‐invasive signal
acquisition methods has recently been developed. Here, both
electrocardiograms and photoplethysmograms are employed
for performing the estimation [4]. However, it is worth noting
that electrocardiograms detect electrical signals. The quality of
electrocardiograms is degraded in the presence jewellery or
metallic objects in the body during the signal acquisition pro-
cess. Nevertheless, it is not easy to remove metallic objects
such as dental implants. Moreover, the major feature extracted
from electrocardiograms and photoplethysmograms used for
estimating the blood pressure values is the pulse transit time.
However, extracting this feature requires synchronisation be-
tween the electrocardiograms and the photoplethysmograms,
which causes difficulty in designing and implementing the
hardware device. On the other hand, photoplethysmograms
are optically obtained plethysmograms. They are versatile and
easier to be acquired [5]. The estimation of blood pressure
values by employing only photoplethysmograms became more
realistic with the emergence of digital sensors [6]. Therefore,
this study only employs photoplethysmograms for continu-
ously estimating the blood pressure values.

It is worth noting that the relationship between photo-
plethysmograms and blood pressure values is unknown.
Hence, the machine learning approach is employed to build the
model. The common machine learning methods include the
support vector machine, the random forest and the K‐nearest
neighbour classifier. However, different machine learning
methods have their strengths and weaknesses. Hence, this
study proposes a fusion approach to integrate different ma-
chine learning methods to perform blood pressure estimation.
The rest of this study is as follows: Section 2 presents the
denoising method for improving the quality of the acquired
photoplethysmograms. Section 3 presents the method for
performing feature extraction. Section 4 reviews three popular
classification models. Section 5 presents a multi‐model fusion
of the classifiers. Section 6 presents the computed numerical
simulation results. Finally, a conclusion is drawn in Section 7.

2 | DENOISING OF
PHOTOPLETHYSMOGRAMS

This study proposes a discrete cosine transform‐based method
for performing the denoising of photoplethysmograms. Here,
the proposed method consists of two approaches. One is to
perform lowpass filtering by only selecting the coefficients in
the lowpass frequency band. Another approach is to perform
thresholding by only selecting the large magnitude coefficients.
The details are discussed below.

2.1 | Dataset

There are 219 subjects from the Guilin People’s Hospital in the
Guang‐Xi Province of China. They consented prior to the
study via written letters. As many photoplethysmograms are of

poor quality, they cannot be used for extracting the features.
Therefore, only 246 photoplethysmograms are retained. Here,
104 photoplethysmograms are from healthy subjects with
normal blood pressure values and 142 photoplethysmograms
are from subjects with prehypertension blood pressure values.
As a wide range of the blood pressure values is covered, this
dataset is highly representative.

In this study, the photoplethysmograms are sampled at
1000 Hz. Hence, a photoplethysmogram with 2100 points
contains more than one pulse. Therefore, the photo-
plethysmograms are segmented into pieces, with each piece
containing 2100 points. Besides, the corresponding invasive
blood pressure values are used as the reference values for
performing the training.

2.2 | Denoising algorithm

In this study, the discrete cosine transform [7] is used to
perform the denoising of the photoplethysmograms. For each
photoplethysmogram, the following procedures are
performed:

Step 0 Denote the threshold value as E.

Step 1 The discrete cosine transform coefficients of the
photoplethysmogram are computed.

Step 2a The absolute values of the entire discrete
cosine transform alternating current coefficients are
sorted in descending order.

Step 2b The first 32 largest discrete cosine transform
alternating current coefficients are selected and the
remaining discrete cosine transform alternating current
coefficients are set to zero.

Step 2c First, initialise a zero vector. In each iteration, a
discrete cosine transform alternating current coeffi-
cient is selected starting from the maximum absolute
value of these 32 coefficients. The corresponding zero
in the initialised vector is replaced by this selected
coefficient. This step is repeated until the ratio of the
sum of the energy of the selected discrete cosine
transform alternating current coefficients to the sum of
the energy of all these 32 discrete cosine transform
alternating current coefficients reaches the value of E.
Then, the first zero in the initialised vector is replaced
by the discrete cosine transform direct current coeffi-
cient. Next, the inverse discrete cosine transform is
applied to this initialised vector to obtain the denoised
photoplethysmogram.

Step 3 Find the maximum point of the denoised pho-
toplethysmogram. Then, construct a local neighbour-
hood around this maximum point. where there are 249
points and 450 points on the left and on the right side
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of this maximum point, respectively. Here, this local
neighbourhood of the photoplethysmogram contains
700 points and should include a single pulse of the
photoplethysmogram.

Step 4 This first order derivative of the photo-
plethysmogram is called the velocity of the photo-
plethysmogram. The velocity of the photoplethysmogram
within this local neighbourhood is computed. If the total
number of the peaks of the velocity of the photo-
plethysmogram within this local neighbourhood is more
than the threshold number denoted as Q, then E is
reduced by a ratio denoted as R and we go back to
Step 2c.

Step 5 The obtained signal is taken as the final denoised
photoplethysmogram for performing the feature
extraction discussed in the next section.

The working principle of the proposed denoising algo-
rithm is as follows: Since the photoplethysmograms are over-
sampled, the clean photoplethysmograms are the narrow band
signals and the noises are the wide band signals. As a result, the
signal‐to‐noise ratio of the photoplethysmograms can be
improved if only the first several discrete cosine transform
coefficients are retained. In particular, since the heart rate of
majority of the people is less than 115 pulses per minute and
the sampling rate of the photoplethysmograms is 1000 Hz, the
maximum frequencies of the photoplethysmograms are located
before the ðð115� 2100Þ=ð60� 1000ÞÞth discrete cosine
transform coefficient. However, as the photoplethysmograms
contain around 8 harmonics of the fundamental frequencies,
ðð115� 2100� 8Þ=ð60� 1000ÞÞ ≈ 32 discrete cosine trans-
form coefficients are retained. Besides, the clean photo-
plethysmograms have large magnitudes in the passbands, while
the noises have low magnitudes in the whole frequency band
and the signal‐to‐noise ratios of photoplethysmograms can be
increased by setting the discrete cosine transform coefficients
with the small values to zero. Moreover, if the noises are
detected, then the noises should be further suppressed by
reconstructing the signal using a smaller number of the discrete
cosine transform coefficients. Hence, the above procedures are
repeated by using a smaller value of E, if the noises are
detected.

It is worth noting that only 32 discrete cosine transform
coefficients are picked up in Step 2b. Hence, the photo-
plethysmograms basically occupy the whole frequency band
defined by these 32 discrete cosine transform coefficients. As a
result, most of the discrete cosine transform coefficients
should be selected and E should be initialised to a value close
to 1. Therefore, this study chooses the value of E as 0.999.
Likewise, R should be small to guarantee that only a very small
number of the discrete cosine transform coefficients is dis-
carded in the next iteration. Therefore, this study chooses the
value of R as 0.001. On the other hand, an ideal photo-
plethysmogram is shown in Figure 2. It can be seen that a

pulse of the photoplethysmogram consists of two durations,
with each duration starting with the positive slope. This im-
plies that the total number of the peaks in the first order
derivative of the photoplethysmogram within a pulse is equal
to 2. Hence, the noise can be detected in the time domain if
the total number of the peaks in the first order derivative of
the photoplethysmogram within a pulse is greater than 3.
Therefore, this study chooses the value of Q as 3.

Figure 1 shows a realisation of the noisy photo-
plethysmogram and the corresponding denoised photo-
plethysmogram. It can be seen from Figure 1 that the noise is
significantly reduced. This demonstrates the effectiveness of
the proposed denoising algorithm.

3 | FEATURE EXTRACTION

In this study, the features of the photoplethysmograms in both
the time domain and the frequency domain are extracted.

F I GURE 1 (a) A noisy photoplethysmogram. (b) The corresponding
denoised photoplethysmogram
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3.1 | Features in the time domain

Figure 2 shows the points in an ideal photoplethysmogram for
extracting the features in the time domain. In particular, they
include the following:

1. The time interval between the systolic peak and the dicrotic
notch

2. The ratio of the systolic peak to the dicrotic notch
3. The ratio of the systolic peak to the diastolic peak
4. The area under the photoplethysmogram within the time

interval between the minimum peak and the maximum
slope

5. The area under the photoplethysmogram within the time
interval between the maximum slope and the systolic peak

6. The area under the photoplethysmogram within the time
interval between the systolic peak and the dicrotic notch

7. The area under the photoplethysmogram within the time
interval between the dicrotic notch and the minimum peak

8. The total number of heart beats per minute.

Further details of these time domain features can be found
in [8].

3.2 | Features in the frequency domain

The discrete cosine transform coefficients of the photo-
plethysmograms are computed. Since around 20 discrete
cosine transform coefficients are selected in the denoising al-
gorithm, only 20 discrete cosine transform coefficients are
employed as features in the frequency domain for estimating
the blood pressure values [9].

3.3 | Feature selection

By using the random forest to rank the importance of the
features [10], four features are removed. In particular, the
second feature and the fifth feature in the time domain and
the fifth feature and the sixth feature in the frequency domain
are removed. As a result, 24 features are extracted from each
photoplethysmogram and they form a feature vector for esti-
mating the blood pressure values.

4 | REVIEWS ON THE EXISTING
CLASSIFICATION MODELS

In this study, the support vector machine, the random forest
and the K‐nearest neighbour classifier are employed for per-
forming the fusion of the classifiers.

4.1 | Support vector machine

The support vector machine is a two‐class classifier. It consists
of a non‐linear kernel and a conventional perceptron. Here, the
perceptron is designed based on maximising the minimum
distance between two manifolds, with each manifold repre-
senting an individual class of objects. In fact, finding the hy-
perplane for dividing these two manifolds with the largest
geometric margin is an H∞ optimisation problem. For more
details about the support vector machine, please refer to [11].

Let N and n be the total number and the dimension of the
feature vectors, respectively. Let xi ∈ Rn be these feature vectors.
Let yi be the corresponding classes of the objects. Here, these
two classes of the objects are represented by þ1 and −1. Then,
yi ∈ f þ 1;−1g. When yi ¼þ1, xi belongs to a positive class of
the objects. When yi ¼ −1, xi belongs to a negative class of the
objects. Let T be the set of the input output pairs. That is,

T ¼
��

x1; y1
�
;
�
x2; y2

�
; :::;

�
xN ; yN

��
ð1Þ

Let f ð⋅Þ be the kernel function and w be the vector rep-
resenting the hyperplane for separating these two manifolds.
Then, the design of the hyperplane is formulated as the
following optimisation problem:

max
w

ε; ð2aÞ

subject to

yif
T
ðxiÞw ≥ ε for i¼ 1;⋯;N ; ð2bÞ

and

ε ≥ 0þ: ð2cÞ

This optimisation problem can be re‐cast to a linear pro-
graming problem and many efficient algorithms such as the

F I GURE 2 The points in the photoplethysmogram for extracting the
features in the time domain
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simplex method can be employed for finding the solution of
this optimisation problem.

4.2 | Random forest

The random forest is an ensemble‐based bagging algorithm. In
particular, the random forest selects the feature vectors
randomly for generating the decision trees. Let M be the total
number of the feature vectors to be extracted from the original
training set by the bootstrap method [12]. Let L be the total
number of the features to be randomly selected from all the
features. The best partitioning feature is selected as the node to
construct a decision tree. Each decision tree is a weak learner.
The class with the most votes from all the weak learners is
taken as the final classification output [13].

It is worth noting that a feature is selected among all the
features and a node divides the decision tree into the left
subtree and the right subtree in conventional decision tree‐
based methods [14]. Compared to the conventional decision
tree‐based methods, the random forest improves the formation
of the decision trees in the following senses: The random
forest randomly selects some features from all of the features.
Then, an optimal feature is selected from among these
randomly selected features to partition the decision tree into
the left subtree and the right subtree. This further enhances the
generalisation ability of the model.

4.3 | K‐nearest neighbour classifier

The K‐nearest neighbour classifier makes a classification de-
cision based on the K‐nearest neighbours around a particular
point. Here, the value of K, the distance measured and the
decision rule for determining the class are the three basic el-
ements of the K‐nearest neighbour algorithm [15]. When these
three elements are pre‐defined, the classification of an input
feature vector partitions the feature space into subspaces, with
each subspace representing a class of objects.

5 | MULTI‐MODEL FUSION OF THE
CLASSIFIERS

This study classifies these 246 photoplethysmograms into two
classes of blood pressure values, namely the healthy class of the
blood pressure values and the prehypertension class of the
blood pressure values. It is worth noting that there are other
classes of blood pressure values as well. However, the total
number of samples for the other classes of blood pressure
values is very small. Hence, this study ignores these small
classes of blood pressure values. Besides, it is worth noting that
there are two types of blood pressure values. They are the
systolic blood pressure values and the diastolic blood pressure
values.

Since the blood pressure varies as the body activity varies,
there is an overlap between the range of the healthy blood

pressure values and that of the prehypertension blood pressure
values. Hence, in order to classify whether the acquired pho-
toplethysmograms belong to the healthy blood pressure values
or the prehypertension blood pressure values, the reference
blood pressure values are not used for performing this clas-
sification. Instead, the reference blood pressure classes defined
by the medical experts are employed.

For each type of the blood pressure values, all the feature
vectors are randomly divided into training set A and test set B
without the overlap. Here, training set A and test set B contain
80% and 20% of all the feature vectors, respectively. Training
set A is further divided into training set C and training set D
without the overlap. Here, the ratio of the total number of the
feature vectors in training set C to that in training set D is 1:3.
The detailed procedures for performing the multi‐model
fusion of the classifiers are as follows:

Step 1 The input–output pairs in training set C is used
to train the classification models based on the random
forest, the K‐nearest neighbour classifier and the sup-
port vector machine.

Step 2 The input–output pairs in training set D is used
to verify these three classification models obtained in
Step 1. First, the predicted classes of the blood pres-
sure values are obtained. Then, symbol ‘1’ is notated if
the predicted class is the same as the actual class.
Otherwise, symbol ‘0’ is notated if the predicted class is
different from the actual class. Now, there are eight
possibilities representing the classification accuracies of
these three classifiers for each feature vector in training
set D. Table 1 shows these eight possibilities.

Step 3 The feature vectors in training set D and their
corresponding identity numbers representing the pos-
sibilities of the accuracies of the classifiers defined in
Table 1 are used to train an accuracy model based on
the random forest.

TABLE 1 The eight possibilities of the accuracies of the classifiers
based on the feature vectors in training set D

Random
forest

Support vector
machine

K‐nearest
neighbour

Identity number
representing the
possibilities

1 1 1 7

1 1 0 6

1 0 1 5

1 0 0 4

0 1 1 3

0 1 0 2

0 0 1 1

0 0 0 0
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Step 4 The feature vectors in test set B are used to
predict the classes of the blood pressure values using
the three classification models obtained in Step 1.
Moreover, the feature vectors in test set B are also used
to predict the accuracy of various classifiers using the
accuracy model obtained in Step 3. Since the symbol
representing 1 refers to the class predicted by the
corresponding classifier being the same as the actual
class for this feature vector, the class predicted by the
corresponding classifier remains changed. On the other
hand, since the symbol representing 0 refers to the
class predicted by the corresponding classifier being
different from the actual class for this feature vector,
the class predicted by the corresponding classifier is
changed to another class. Then, the final class of the
blood pressure values is determined based on the
majority votes among these three processed predicted
classes of the blood pressure values.

Finally, the blood pressure values are estimated as follows:
For each group and each type of the blood pressure values, the
feature vectors and the corresponding blood pressure values in
training set A are used to train the regression model via the
support vector regression. Then, the feature vectors in test set
B are used to verify the support vector regression models.

6 | COMPUTED NUMERICAL
SIMULATION RESULTS

In this study, the average accuracy and the average root mean
square error are employed as the metrics of classification and
regression, respectively, for evaluating the performance of
various methods. In order to obtain the more reliable results,
the cross‐validation approach is employed, that is, the dataset
used for performing the classification and the regression is
randomly shuffled 50 times. Then, various methods are applied
for the shuffled data. Finally, the average root mean square
error and the average accuracy are computed for evaluating the
performances of various methods.

Since the proposed method is based on a fusion of three
individual classification methods, it is meaningful to compare
the individual classification methods to verify whether the
fusion algorithm is effective or not. Table 2 shows the average
classification accuracies obtained based on these three indi-
vidual classification models and the proposed fusion method.
Further, Table 3 shows the root mean square errors obtained
based on these three individual classification models and the
proposed fusion method. As the proposed method has
considered the classification accuracies of the individual
models and the decision is performed based on majority
vote, the obtained result is more reliable. Besides, as the
accuracies of the individual models have been considered
and the incorrect classification results have been corrected
based on the photoplethysmograms, the proposed method
can further improve the overall classification accuracy based
on the photoplethysmograms. This improvement is reflected
by the results shown in Table 2 and Table 3. The accuracy
achieved by the proposed fusion method is higher than that
achieved by the individual classification models. Also, the
root mean square errors achieved by the proposed fusion
method are lower than those achieved by the individual
classification models. This concludes that the proposed
fusion method outperforms the individual classification
models.

In order to test the robustness of the proposed method,
the ratio of the total number of the feature vectors in training
set A to that in test set B is changed to 9:1. Training set A is
further divided into training set C and training set D without
the overlap. Here, the ratio of the total number of feature
vectors in training set C to that in training set D is 2:7. The
average accuracy and the average root mean square error are
shown in Table 4 and Table 5, respectively. It can be seen that
similar results are obtained. Hence, the proposed method is
robust.

To evaluate the required computational complexity of the
proposed algorithm, the total time taken for these three single
classification algorithms and the proposed algorithm are listed
in Table 6. Although the proposed method takes longer time
than the single classification methods, the total time taken

TABLE 3 The root mean square errors obtained based on these three individual classification models and the proposed fusion method

Random forest Support vector machine K‐nearest neighbour The proposed method

Systolic blood pressure 11.2854 14.6151 11.8264 10.8386

Diastolic blood pressure 7.7366 8.5006 8.1031 7.6445

TABLE 2 The classification accuracies
obtained based on these three individual
classification models and the proposed fusion
method

Random forest Support vector machine K‐nearest neighbour The proposed method

67.2653% 51.9592% 61.5510% 72.3265%

TABLE 4 The classification accuracies
obtained based on these three individual
classification models and the proposed fusion
method

Random forest Support vector machine K‐nearest neighbour The proposed method

68.4800% 51.3600% 65.6800% 73.2000%
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based on the proposed method is less than 1 s, which is
acceptable for the majority of consumer electronics‐based
applications.

7 | CONCLUSION

This study proposes a multi‐model fusion of classifiers for
estimating blood pressure values. Here, only photo-
plethysmograms are acquired via a wearable and non‐invasive
device. First, the discrete cosine transform approach is
employed for performing the denoising of the photo-
plethysmograms. There are two types of blood pressure values.
They are the systolic blood pressure values and the diastolic
blood pressure values. Further, there are two classes of blood
pressure values. They are the healthy blood pressure values and
the prehypertension blood pressure values. First, a part of the
training data is used to train three different classifiers for
performing the classification of the blood pressure values.
Another part of the training data is used for verifying the
classification of the blood pressure values. The obtained results
are used to train a model based on the accuracy of various
classifiers. For the test data, these three classifiers are used for
performing the classification of the blood pressure values.
Also, the model based on the accuracy of various classifiers is
used to modify the classes predicted by the individual classi-
fiers. The final class of blood pressure values is determined
based on majority votes among these three modified predicted
classes of blood pressure values. Finally, support vector
regression is used to estimate the blood pressure values for
each type and each class of blood pressure values. The
computed numerical simulation results show that the proposed
method achieves higher classification accuracy and lower mean
square errors than the individual classification models.

Since the proposed method is based on a supervised
learning approach, one of the limitations of the proposed
method is that a strong correlation between the training data
and the test data is required. In future, the physical mechanism
governing the relationship between the blood pressure values
and the reflection intensity of infrared light will be investi-
gated. The obtained results will be compared with those ob-
tained by the ambulatory blood pressure monitoring system.
Besides, the blood glucose monitoring function will be
developed via the wearable non‐invasive device because it
cannot be developed via the ambulatory blood pressure
monitoring system.
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