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Abstract

Summary: Current technologies for single-cell transcriptomics allow thousands of cells to be analyzed in a single ex-
periment. The increased scale of these methods raises the risk of cell doublets contamination. Available tools and
algorithms for identifying doublets and estimating their occurrence in single-cell experimental data focus on dou-
blets of different species, cell types or individuals. In this study, we analyze transcriptomic data from single cells hav-
ing an identical genetic background. We claim that the ratio of monoallelic to biallelic expression provides a discrim-
inating power toward doublets’ identification. We present a pipeline called BIallelic Ratio for Doublets (BIRD) that
relies on heterologous genetic variations, from single-cell RNA sequencing. For each dataset, doublets were artifi-
cially created from the actual data and used to train a predictive model. BIRD was applied on Smart-seq data from
163 primary fibroblast single cells. The model achieved 100% accuracy in annotating the randomly simulated dou-
blets. Bonafide doublets were verified based on a biallelic expression signal amongst X-chromosome of female
fibroblasts. Data from 10X Genomics microfluidics of human peripheral blood cells achieved in average 83%
(63.7%) accuracy, and an area under the curve of 0.88 (60.04) for a collection of �13 300 single cells. BIRD
addresses instances of doublets, which were formed from cell mixtures of identical genetic background and cell
identity. Maximal performance is achieved for high-coverage data from Smart-seq. Success in identifying doublets
is data specific which varies according to the experimental methodology, genomic diversity between haplotypes, se-
quence coverage and depth.

Contact: michall@cc.huji.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Single-cell RNA sequencing (scRNA-seq) technology has evolved
very rapidly in recent years (Kolodziejczyk et al., 2015; Lan et al.,
2017; Zheng et al., 2017; Zilionis et al., 2017). scRNA-seq enables
higher resolution of the expression profile of specific cells within
cells tissue and enables accurate assessment of the single cells’ iden-
tity and variability. This new technology has been applied for a wide
range of biological studies and across many organisms, including
rodents and humans. Complex tissues were dissociated and
sequenced by scRNA-seq resulting in cataloging cells by their types
determining tissue composition (Usoskin et al., 2015; Villani et al.,
2017; Zeisel et al., 2015) and identifying overlooked cell types
(Buettner et al., 2015).

All scRNA-seq studies rely on profiling cell transcriptomes. The
main hurdle in obtaining reliable and high-quality data from
scRNA-seq stems from the limited amounts of RNA per cell and the
stochastic nature of transcription (Ilicic et al., 2016). Specifically,
most current scRNA-seq methods suffer from low capture efficiency
and high dropouts (Haque et al., 2017). Additionally, all single-cell
expression data are signified by a strong signal of monoallelic

expression, which is not detected from the sequencing pool of cells.
The dominant monoallelic expression of single cells (Borel et al.,
2015; Jiang et al., 2017) is attributed to allelic dropout of transcripts
due to the insufficient coverage, and to the cellular phenomenon of
‘transcriptional burst’ (Reinius and Sandberg, 2015). The latter
means that each of the alleles has its kinetics, thus at any specific
time expression mostly stems from a single allele (Larsson et al.,
2019).

Innovative technologies for scRNA-seq were developed to in-
crease high throughput while minimizing biological intrinsic and
technical errors [discussed in Bacher and Kendziorski (2016), Chen
et al. (2019) and Hashimshony et al. (2016)]. Some methods make
use of fluorescence-activated cell sorting (Kolodziejczyk et al., 2015;
Wagner et al., 2018) and microfluidic-based platforms, such as the
C1 Single-Cell Auto Prep System (Fluidigm) (Xin et al., 2016).
These methods are usually followed by a full-length transcript
sequencing as in Smart-seq2 (Picelli et al., 2014). Others use droplet
microfluidic procedures that combine a tagging step before cell lysis
[reviewed in Chen et al. (2019) and Klein et al. (2015)]. Advances in
the droplet technique allow capturing beads with a single cell per
droplet (dscRNA-seq) thus increasing the scale for single-cell
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transcriptomic by two orders of magnitude (Fan et al., 2015; Sheng
et al., 2017). These protocols use only poly-A sequencing and are
thus biased toward the 30 side of the transcript. Most current-day
protocols include additional steps of barcoding the transcripts by
unique molecular tag identifiers (Klein et al., 2015), and further im-
provement of the capturing efficiency (Sheng and Zong, 2019).

One of the pitfalls in the field concerns a faulty identification of
a doublet of cells as a single cell. Doublets rate depends on the con-
centration of the input cells, which is estimated from the dilution
Poisson statistics (Macaulay et al., 2017). An increase in doublets
rate is also associated with the unique features of the subjected tissue
and cells’ isolation protocols. New methods for increasing cell cap-
turing that reduces costs include multiplexing protocols (Zheng
et al., 2017). By increasing the number of cells as input, the multi-
plexed droplet RNA-Seq (dscRNA-seq) benefits from reducing tech-
nical noise (Zhang et al., 2019). However, as a byproduct, it leads
to an unavoidable increase in the number of cell doublets. One of
the methods to identify the rate of doublets in the data includes mix-
ing cells from different origin [e.g. rodents and human (Zheng et al.,
2017)]. Alternatively, the dscRNA-seq setting was carried over sin-
gle cells from several individuals with a different genomic back-
ground that were intentionally mixed for estimating the fraction of
doubles in the sample (Kang et al., 2018). Benefiting from the SNP
profile of each an individual, the Demuxlet algorithm was applied to
estimate mixed individual doublets (Kang et al., 2018). A recently
published Scrublet algorithm analyzes single cells for identifying
problematic multiplets according to the nearest neighbor graph-
based classifier (Wolock et al., 2019). DoubletFinder (McGinnis
et al., 2019a) benefits from the unique cell-state expression profiles
and identify doublets from transcriptionally distinct cells. While
these set of methods can differentiate cell mixtures from distinct
individuals and cell types, they do not attempt to differentiate cells
that originate from the same source or cell type.

In this study, we analyze data from scRNA-seq and dscRNA-seq
for identifying doublets without any prior knowledge of cell-type
composition. Instead, we take advantage of monitoring allele-
specific expression biases. The method called BIallelic Ratio for
Doubles (BIRD) relies on analyzing heterologous SNPs present in
scRNA-seq data. We report on the accuracy on identifying doublets,
which is strongly dependent on sequencing methodologies, coverage,
depth and the degree of allelic diversity in the genomic data.

2 Materials and methods

2.1 Dataset of single cells
2.1.1 Dataset 1: primary human fibroblasts

A dataset of scRNA-seq of female fibroblast UCF1014 was down-
loaded from the European Genome-phenome Archive (https://www.
ebi.ac.uk/ega/home) using accession number EGAD00001001083.
The data consist of two sets of scRNA-seq: 104 cells (22 PCR cycles)
and 59 cells (12 PCR cycles). The data were collected in a C1 Auto
Prep System (Fluidigm) device (Xin et al., 2016) and sequenced
using full transcript Smart-seq2 (Picelli et al., 2014). DNA-seq of
UCF1014 was also downloaded from EGAD00001001084. The se-
quence data were produced and described by Borel et al. (2015).

2.1.2 Dataset 2: peripheral human blood mononuclear cells

The data were created and described in Kang et al. (2018).
Peripheral blood mononuclear cells (PBMCs) scRNA-seq from eight
different individuals were downloaded from the Gene Expression
Omnibus database, accession number GSE96583. This dataset con-
tains three different runs. Two of the runs include a mixture of
scRNA-seq from four different individuals (run_a and run_b sets).
The third run is a mixture of all eight individuals scRNA-seq data
(run_c). Cells were sequenced using 10X Genomics (Chromium in-
strument) methodology. Additional VCF files of exome sequencing
of these individuals were extracted through Github link (https://
github.com/yelabucsf/demuxlet_paper_code/tree/master/fig2). It
shares also an additional file determining the individuals’ origin per
each scRNA-seq as processed by the Demuxlet tool (Kang et al.,

2018). Only cells that were assigned by Demuxlet to belong to
the same individual and therefore could not be explicitly annotated
as singlets or doublets were used for further analysis by our
methodology.

2.2 Biallelic score for single cells
To correctly estimate the allelic-specific expression (ASE) and specif-
ically, the degree of biallelic expression of each cell, the DNA-seq of
cell line UCF1014 was used to create a collection of all heterozygous
SNPs (hSNPs) using Gene Analysis Toolkit (Van der Auwera et al.,
2013). All the hSNPs were kept in a VCF file. The RNA-Seq reads
were preprocessed using Trimmnomatic (Bolger et al., 2014) with
its default parameters. Using STAR (Dobin and Gingeras, 2015)
each scRNA-seq FastQ file was aligned against the GRCh37 (hg19)
UCSC female reference (Ref) (after excluding Y-chromosome). For
dataset 1 (see Section 2.1) The BAM output of the alignment and
the hSNPs VCF were processed using Allelcounter-master (Castel
et al., 2015). The tool creates a table containing the number of reads
for each SNP that matches the Ref and the Alternative (Alt) alleles.
Then, we process the table into two tables, one for the Ref alleles
and the other for the Alt alleles. Both tables contain the number of
reads assigned to each cell for each hSNP. An observation is consid-
ered for cells having �6 reads for a specific hSNP in a specific cell.
The same procedure was applied for all single-cell datasets analyzed
(described in Section 2.1).

For the PBMC dscRNA-seq data (Dataset 2) BAM files of the
three runs were split to single cell BAM files to maintain an
individual-based BAM file per cell. Each single cell was identified
according to its unique cell-based barcode. Each BAM file was
coupled to its corresponding individual VCF according to the identi-
fication by the Demuxlet algorithm. (Kang et al., 2018) and was pre-
processed by Allelcounter-master (Castel et al., 2015). We then
unified all cells that share a specific run, for a specific individual
into two tables containing the number of reads for each hSNP that
matches the Ref and the Alt alleles. As each individual contains its
own set of hSNPs, tables for the Ref, Alt were created for each of
the 16 run-individual pair. For this analysis, for a hSNP to be con-
sidered, we require the number of reads to be �3 per hSNP for the
subjected cell.

For both datasets we calculate for every available hSNP the allel-
ic ratio (AR) of that hSNP in a specific cell as:

ARhc ¼
Alt reads

Alt readsþ Ref reads

� �
hc
;

where h refers to hSNP and c to a specific cell. The AR ranges be-
tween 0 and 1, with a minimal value of 0.0001 for all Ref allele. For
a hSNP with no evidence for expression, the value is zero. Value of
1 is associated with all hSNPs that are fully aligned to the Alt allele.
Genuine biallelic hSNP are bounded by the AR values
(0.1�AR<0.9).

An allele independent score for biallelic ratio (BAR) was calcu-
lated as follows: For a given cell and a given gene, let i be an index
of the informative (heterozygous) variants, and define by Ref

i
and

Alt
i

the number of Ref and Alt reads each informative variant.
Define by Toti ¼ Refi þ Alti the total number of reads for the vari-
ant, and by Min

i
¼ minfRef

i
;Alt

i
g the minimal number of reads out

of the two alleles of the variant. Let i� ¼ argmax
i

Min
ið Þ be the most

informative variant with the maximal BAR (for the given cell and
gene combination). We then define the BAR of the cell-gene as:

BAR ¼Mini�
Toti�

:

Then, for each cell we take the average BAR of all its expressed
genes. In a formal notation

Biallelic Ratiocg ¼
Max Min Ref readsic;Alt readsicf gf ggc

fRef readsigc þ Alt readsigcg

i-hSNP location (in the numerator stands for the specific SNP that
was Max in the denominator), c stands for cell and g for a gene.
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2.3 Doublet simulation and validation
To create a Ref dataset of doublets, we created doublets in silico for
each of the analyzed datasets separately. For the simulations we ran-
domly sample 10% of the single cells to be mixed into cell doubles.
The other 90% of single cells remain singles. This process eventually
creates a composed collection with 5% of the original cells being
simulated doublets. The pair mixing is done by summing together
the cells’ reads from the Ref and Alt tables. Following summation,
for the fibroblast data (Dataset 1), we randomly down-sample the
reads to the average cell reads number. Due to the low coverage of
the PMBCs data (Dataset 2) we skipped this step. In each simula-
tion, we record the BAR values for the singlets and the simulated
doublets. The procedure of creating simulated doublets was
repeated 100 times. For each run, we also record the average of the
BAR values for all the singlets and the average of all simulated
doubles.

The primary fibroblasts of Dataset 1 originated from female
(Borel et al., 2015) and further processed as in Wainer-Katsir and
Linial (2019). Thus, we used the unique property of X-inactivation
to obtain an expression pattern that matches the cell specific activa-
tion of one of the X-chromosomes (Garieri et al., 2018).
Specifically, we calculate AR per hSNP per cell. Then, we calculate
AR* for assessing the BAR for Chromosome X. We consider AR* to
be 1-AR in cases that AR>0.5, thus 0�AR*�0.5.

AR� ¼ if AR � 0:5 AR
if AR > 0:5 1� AR

�

AR* balances between the hSNP expression from either the Ref
or Alt alleles. To avoid a noisy signal from a sporadic expression of
hSNP, we consider only SNPs that were transcribed in >25% of the
cells. We also removed hSNPs that were fully monoallelic to the Ref
or the Alt allele (i.e. AR*<0.1). Out of these hSNPs, for each cell,
we calculate the average of AR*. Cells with an average AR* score of
>0.05 show an unexpected biallelic X-chromosome expression and
are thus considered suspicious as doublets.

2.4 Statistical measures for cell doublet identification
For both datasets Mann–Whitney U test was used to determine dif-
ferences between singlets and simulated doubles according to the
BAR values. For Dataset 1 that is based on Smart-seq2, we applied a
Gaussian Mixture Model (GMM) that differentiates the groups of
singlets from doublets. The GMM was set with two components
one seeking the singlets and the other the doubles. The features that
were given to the GMM include (i) the BAR of each of the cells, and
(ii) the number of expressed genes in heterozygous sites in each of
the cells.

Dataset 2 (based on 10X Genomics technology) is signified by a
poor coverage; therefore, we included additional features per cell for
recovering doublets. The four features that were used are: (i) the
amount of reads over all heterozygous positions; (ii) the number of
expressed genes having heterozygous positions; (iii) the average
BAR values; and (iv) the fraction of genes defined as biallelic out of
all genes expressed in that cell. Each of these features was standar-
dized according to the specific run-individual pair (Kang et al.,
2018). Each dataset was standardized and trained accordingly on its
own values. The datasets were split to training and test sets (with
the training set covers 75% of the data). We applied random forest
(RF) procedure with the four listed features for recording the statis-
tical results. Operating the RF classifier was done with the following
parameters: n_estimators ¼100, random_state ¼42, min_sample-
s_leaf ¼sqrt(sample size), min_samples_split ¼2*sqrt(sample size).
Additionally, singlets and doublets were equal weighted by demand-
ing the class_weight to be balanced. Sensitivity, specificity and ac-
curacy in doublets identification were measured according to the
success and failure in detecting simulated and candidate doubles.
Receiver operating characteristics (ROC) curve and area under the
curve (AUC) were calculated for each run-individual couple, each of
the different runs (run_a, run_b and run_c) and for the combined set
of all three runs.

2.5 Cell separation by gene expression matrix
In this study, we followed the protocol in Lun et al. (2016b). Count
matrix of genes over cells was created for each of the samples using
HTSeq (Anders et al., 2015). The genes to cells matrix was analyzed
using SingleCellExperiment Package (Risso et al., 2018), scater
package (McCarthy et al., 2017) and scran (Lun et al., 2016). Rtsne
package was used to create the t-distributed stochastic neighbor
embedding (t-SNE) (Pezzotti et al., 2017) representation of the 26
first principal components of the PCA of the gene expression profile
of each individual and each run.

3 Results

3.1 Overview BIRD pipeline
In single-cells transcriptomics, monoallelic expression of alleles
across each of the heterozygous positions is a common phenomenon
(Fig. 1A). The majority of the hSNPs are monoallelic due to the sto-
chastic nature of expression (Borel et al., 2015; Reinius and
Sandberg, 2015). In doublets, if one cell expresses one of the alleles
and the others cell the other, the result is shift toward the biallelic
expression (i.e. 0.1�AR<0.9). Therefore, a signal with AR centered
around 0.5 represents a product of expressing hSNPs derived from
both alleles. The key concept underlying BIRD is that doublets can
be identified by a signal derived from the shift toward higher BAR
(see Section 2). The transformation of each gene and each cell from
AR to its average BAR value is illustrated in Figure 1B, left. The dis-
tribution of BAR values from all cells is indicative for the presence
of cells that display a substantial biallelic expression and thus are
most likely cell doublets (Fig. 1B, right). Testing the performance of
BIRD to identify doublets, is based on artificially creating doublets
by combining expression profiles from random single cells and test-
ing the potency of statistical methods to correctly identify such in sil-
ico simulated doublets (Fig. 1C and D).

Fig. 1. (left) Illustration of the BIRDs scheme for scRNA-seq and dscRNA-seq data.

(A) Illustrative schemes for the distribution of AR calculated per each cell. AR val-

ues range between 0 and 1, for the Ref (yellow) and Alt (green) alleles. The blue cor-

responds to biallelic expression. (i) For single cells, AR reflecting an apparent

monoallelic expression; (ii) cell collection with doublets is signified by a shift in AR

to around 0.5. (B) For every gene in every cell, the AR is estimated. BAR for every

gene is calculated. BAR values for scRNA-seq that includes doublets is shown. The

BAR is bounded between 0 and 0.5 from monoallelic (white) to biallelic expression

(dark blue). (C) Simulation of randomly selected single-cells pairs is performed to

create a dataset composed from the original and simulated cell doubles. (D) ML

statistical technique differentiating singlets from doublets. The success of doublet

identification is assessed by visualization and standard measures (e.g. AUC)
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3.2 BAR values for the fibroblast scRNA-seq data
The human primary fibroblast cells (total of 163 single cells) are
comprised of two datasets according to the PCR protocol used for
creating the sequencing library. The first collection consists of 104
cells that underwent 22 PCR cycles, and the second set consists of
59 cells that underwent 12 PCR cycles. Due to the different PCR
protocols, the sequencing depth is different between the two cell col-
lections and they are thus treated for the BIRD protocol as inde-
pendent sets. Figure 2 shows the results of doublet simulations for
each of these datasets. The distributions of singlets versus doubles
for 100 simulation runs (each with 5% of artificially created dou-
blets) are shown in Figure 2A and C. Both datasets resulted in a per-
fect separation with (Mann–Whitney U test statistic¼0, and P-value
<e�34). The mean values for a single simulation run are also very
significant (Fig. 1B and D). The results from the 104 cells (22 PCR
cycles) and the 59 cells (12 PCR cycles) show Mann–Whitney U test
with a P-value of 4.25e�30 and 1.43e�17, respectively. The results
of identifying doublets are data-specific but highly significant for the
two cell collections despite the different sequencing depth associated
with each.

3.3 Doublets verification based on Chromosome

X-inactivation expression pattern
The primary fibroblast cells are of a female origin. Thus, in each
cell, only one of the two X-chromosomes is active (i.e. Xa) while the
other is inactivated. The expression patterns for the subset of hSNPs
with substantial evidence are shown in Figure 3A. Most cells (col-
umns) are signified by a single expression pattern that is indicated
by Haplotype 1 and Haplotype 2. Only a few cells lean toward bial-
lelic expression pattern over many X-chromosome genes. Based on
hierarchical clustering of the cells, the cells that are suspicions as
doublets are clustered in the leftmost subtree and on the leftmost
leaf of the other two subtrees. The distribution of the AR* values
for all 163 cells is shown in Figure 3B. AR*¼0 means monoallelic
X-chromosome expression, and the higher the AR*, the higher the
biallelic expression is. Applying a natural threshold that separates
cells with monoallelic and biallelic patterns (the striped line at
AR*¼0.05) allows focusing on cells that cross the threshold (eight
cells). These cells are marked as cell doublet candidates. Notably,
these suspicious eight cells are also signified by a higher BAR values

for the 104 (Mann–Whitney U test P-value¼2.94e�4) and 59
(Mann–Whitney U test P-value¼0.023) cells.

3.4 Unsupervised identification of doublets for the

fibroblast scRNA-seq data
GMM was used to separate singles from doubles. For the means of
the 100 simulations, the separation between the singles and the dou-
bles means reached 100% accuracy. For an illustrative of a single
simulation run the mean BAR (x-axis) of each cell is plotted with the
number of genes that are expressed in biallelic positions (y-axis,
Fig. 3C and D). The scatter-plots symbols represent cells that are
singlets, candidate cell doublets according to Chromosome X bial-
lelic expression, and artificial doublets that are created by in silico
simulations for the two fibroblast cell collections (104 and 59 cells
based on PCR protocol for 22 and 12 cycles, respectively). Cells that
were predicted as doublets by the GMM (whether true or false) are
shown (dark orange). It is evident that most doublets and the
Chromosome X candidate doublets have relatively high BAR values
and are classified as doublets. For the 104 single-cells dataset, all
simulated doublets (total 5) were identified (average of 5, SD of 0,
with 100% detection rate), and 3/6 (average of 2.28, SD of 0.54,
with 38% detection rate) of the cell candidates by X biallelic expres-
sion were identified. For the 59 cells, all 3 simulated doublets were
identified (average of 2.84, SD of 0.62, with 94.66% detection rate)
and 50% of the cell candidate doublets (average of 1.32, SD of 0.69,
with 66% detection rate) according to the Chromosome X biallelic
expression were correctly identified.

3.5 BAR values for the PBMCs dscRNA-seq data
The 13 364 PBMCs originate from 16 datasets that account for a
pair of a run and an individual. When compared to the fibroblast
cell collections (Dataset 1, see Section 2), the dscRNA-seq is

Fig. 2. (Right) BAR values for human single cells primary fibroblasts population and

in silico simulated doublets. Doublets simulation was done for two datasets of

human primary fibroblasts, which differ by the number of PCR cycles used prior to

sequencing. (A, B) 104 cells, 22 PCR cycles and (C, D), 59 cells, 12 PCR cycles.

Violin plots of the BAR mean values for all single cells means versus simulated dou-

bles means based on 10 simulations (A, C) and cell means of a single simulation (B,

D). The statistical test used is Mann–Whitney U test. The results are (A) statistic¼0,

P-value <e�34; (B) P-value¼4.25e�30; (C) statistic¼0, P-value¼1.281e�34; and

(D) P-value¼1.43e�17

Fig. 3. Validation of cell doublets according to X-chromosome allelic specific pat-

tern. Dataset is a combined collection of human fibroblasts (163 cells). (A) A matrix

of AR values of cells (columns) and hSNPs (rows) is shown (without simulation).

Only high-support hSNPs are included (see Section 2). Gene names are listed

according to their chromosomal order (right). The hSNPs are colored from blue

(AR¼0, Ref allele) to orange (AR¼1, Alt allele), with darker colors marking biallelic

expression. A hierarchical clustering of the cells indicates two main haplotypic ori-

gin (Haplotypes 1 and 2). The arrows and the circles above the branches of the clus-

tering tree indicate cells with strong biallelic expression across the X-chromosome.

(B) Histogram of cells as in (A), by their AR* values. AR*¼0 indicates monoallelic

X-chromosome expression, and larger value marks a higher biallelic expression

level. The dashed line is a natural threshold separating X-inactivated monoallelic

from biallelic expressed hSNPs. (C, D) Scatter plots show the success of detecting

singlets from doubles following a single simulated set for the 104 cells (C) and 59

cells (D). Symbols correspond to singlets as circles and doublets as squares. A cell is

marked by x if it was validated as a doublet on the background of the X-inactivated

status (as in A, B). Dark orange marks cells that were identified by the GMM classi-

fier (see Section 2) as doubles
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characterized by a much lower coverage. Specifically, the number of
informative genes is >2000 for the fibroblasts and only about 25 on
average for the PBMCs.

BIRD was run on each of the 16 run-individual pairs and then in
silico simulations created 5% of the samples to be doublets. The
results from activating the BIRD process for an individual represen-
tative (run_b, individual 1493, denoted b_1493, 766 cells) are
shown in Figure 4.

Figure 4A shows the violin plots of the mean of the BAR values
for 100 simulations for singlets when compared to cell doublets.
The separation is maximal with Mann–Whitney U test yields a
statistic¼0, and a P-value <e�34. For a single run of the simulation
(Fig. 4B), the trend of the doublets being more biallelic is kept with
a separation of the Mann–Whitney U test yielding a P-value of
1.22e�03. Note that, using BAR values alone is insufficient to dis-
tinguish between singles and doubles due to the high intrinsic noise
in the data originated by the 10x Genomics protocol.

3.6 Supervised identification of doublets in the PBMC

dataset
Including additional features and applying a supervised RF machine
learning (ML) protocol (see Section 2), we reached a perfect separ-
ation with 100% accuracy when mean values of singlets and mean
values of simulated doubles are compared for 100 simulation runs.
For a single simulation run, we show the results of the ROC curve
for the unseen, disjoint test set (Fig. 4C), with an AUC of 0.88 (SD
0.04) based on 10 simulation runs. We exploit the expression profile
for the cell collection of b_1493 sample to create a t-SNE represen-
tation (Fig. 4D). The cells are color coded according to the predic-
tion results. Note that, most identified doublets are positioned at the
border of the expression clusters, but eventually other predicted
doublets are fully embedded within an expression cluster. Recall
that the expression profile information was not used by BIRD proto-
col for the prediction.

Similar to the analysis performed for a single dataset (b_1493),
we repeated the analysis for all 16 combinations of runs and individ-
uals. The AUC for the different runs of run-individual pairs were

combined to present the data for each of the runs and the entire
dataset (with 13 364 cells, Fig. 5A). We tested whether the perform-
ance (as indicated by the AUC) is a mere reflection of the number of
cells. However, it is evident that the success in identifying doublets
and the number of cells that are associated with each dataset are not
correlated. The sensitivity [i.e. TP/(TPþFN)] for each of the 16 data-
sets is shown in Figure 5B. The doubles rate in the sample (including
the simulated cells) is shown in. Each sequencing runs is unique in
term of coverage per individuals and the number of cells involved,

Fig. 4. Data used are dscRNA-seq marked as b_1493 based on Dataset 2. Violin

plots of the mean of BAR values for single cells and the in silico simulated doubles.

The mean BAR values shown were tested by Mann–Whitney U test for (A) 100 sim-

ulations (statistic¼0, P-value <e�34), and (B) a single simulation set (P-val-

ue¼1.22e�03). (C) A ROC curve is shown based on a RF model fitting on a

simulated dataset of singles and doubles. (D) t-SNE classification on PCA reduced

data of cell expression. Each dot represents a single cell or a simulated doublet.

Singlets (gray) correspond to cells that are singles and were predicted by the model

as singles. TP (red) correspond to cells that are simulated as doublets and correctly

predicted as such. False negatives (blue) are simulated doubles that were missed by

the model. FP (purple) are misclassified by the model as doubles

Fig. 5. Success in identifying cell doublets simulated from multiplex 10X experiment

covering 13 364 single cells. (A) AUC for the test sets of each of run-individual cou-

ples. Runs refer to run_a, run_b that consist of four different individuals each and

run_c that combines all eight individuals. (B) The sensitivity achieved for the test set

for each of the tested individuals. (C) ROC curve is shown based on a RF model fit-

ting on a simulated dataset of singles and doubles for all the cells (marked all) and

for each of the separated runs (a, b and c)
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we created a unified ROC curve per each run and determined the
AUC associated with each run and the whole dataset (Fig. 5C).

The t-SNE cell representations according to BIRD prediction
based on the RF protocol for each of the 16 datasets in all instances,
the t-SNE representation shows that accurate predictions [true posi-
tives (TP)] tend to cluster together with cells that are marked as false
positives (FP). The estimate for the fraction of doublets from the
mixture of two individuals is �5% (Kang et al., 2018). Therefore,
we expect many of the cells that are marked as FP to be doublets
that are naturally present in the original data.

4 Discussion

Collecting data of single-cell transcriptomes had exposed a new di-
mension of cell variability. This technology had a direct impact on a
wide range of biological questions across all domains of life (Stegle
et al., 2015). Some of these questions are sensitive to the faulty an-
notation of singlets as doubles or vice versa. While the presence of
unrecognized cell doublets from the same cell type will not influence
the misinterpretation for new cell types (Usoskin et al., 2015; Villani
et al., 2017; Zeisel et al., 2015), it might jeopardize interpretation
concerning transcription regulation including transcriptional burst-
ing kinetics (Larsson et al., 2019), Chromosome X-inactivation phe-
nomenon (Garieri et al., 2018; Tukiainen et al., 2017), escaping
from it (Wainer-Katsir and Linial, 2019) and more.

We describe BIRD as a computational/statistical method that
enables the identification of cell doublets from scRNA-seq data. The
method complements other methods that rely on detailed cell mixing
and cell-type expression profiles. BIRD method takes advantage of
the BAM files generated for each scRNA-seq. The ASE that is
extracted from the BAM files is often unused. This is since, routine-
ly, the post-sequencing analysis starts with a cell to gene matrix rep-
resentation thus discards the allelic information. BIRD takes
advantage of this transparent feature for identifying doublets.

Recent methodologies present their potency toward the task of
doublet identification. These methods are based on adding a pre-
sequencing biochemical modification step for barcoding cells. Such
non-trivial tagging procedures exploit antibodies to common cell
surface antigens (cell hashing) (Stoeckius et al., 2018). The
antibody-based method is applicable to cells that carry the relevant
antigens. A new method (MULTI-seq) successfully uses lipid modifi-
cation step for cell indexing. It was shown to be eligible for solid tis-
sues and frozen cells (McGinnis et al., 2019). While there are many
advantages for tagging cells before cell lysis and sequencing, an add-
itional step in the experimental design can lead to batch effect and
other technical and experimental biases. In contrast, the computa-
tional method is generic, yet data sensitive. BIRD shows no prefer-
ence to the identity of the expressed genes, to the specific cell type or
any of the cell extraction protocol.

We illustrate the high performance of BIRD mostly on in silico
simulated doublets. Other studies estimated the occurrence of dou-
blets by artificial mixing of cells of multiple types of cells from dif-
ferent organisms (Kang et al., 2018; McGinnis et al., 2019; Zheng
et al., 2017). However, when a solid tissue is treated to produce a
collection of single cells, the protocol must overcome the adhesion
forces between cells, extracellular matrix cohesion and more.
Additionally, some cells tend to aggregate and clump following their
isolation. All these technical issues may lead to an increasing num-
ber of doublets from neighboring cells with identical genetic back-
ground and expression profile. Therefore, current estimates for
doublet contamination based on peripheral blood samples may be
misleading. We anticipate that the number of reported doublets of
cell mixtures from solid tissue is underestimated and can now be
estimated using BIRD.

There are a number of limitations of BIRD protocol that need to
be addressed: (i) the method is dependent on pre-knowledge of the
individual genomics for assigning hSNPs from the sequenced
scRNA-seq. With the fast accumulation of whole-genome and
exome sequencing in humans and other model animals, it is antici-
pated not to be a limiting factor in the near future. (ii) The assess-
ment of doublets using the notion of Chromosome X-inactivation is

only valid for cells of female origin. Furthermore, for 50% of the
cases, cells can be mixed without providing a biallelic signature (i.e.
a mixture of the same Xa haplotype). (iii) While BIRD protocol
ignores the gene expression profile, a scenario in which the profiles
of cell mixtures do not overlap with each other can occur. This will
result in cell doublets that do not contribute different alleles of the
same genes and thus will not increase the BAR values. In such cases,
BIRD protocol lacks the power to identify doublets. The use of other
doublet cell identification is advisable (e.g. McGinnis et al., 2019;
Wolock et al., 2019). (iv) The method relies on the dominant prop-
erties of stochasticity in the allelic expression of cells. Datasets that
are far less stochastic might display a higher biallelic signal. Under
such conditions, the ability to detect doublets is masked. The mono-
allelic fraction in single cells is a variable property of the experiment
(Kim et al., 2015) with mouse cells showing a lower degree of ASE
relative to humans (Deng et al., 2014; Tang et al., 2011). Indeed,
testing the scRNA-seq from F1 mice strains (Larsson et al., 2019)
confirm that the BAR value distribution is consistent with an intrin-
sic biallelic signature (not shown). In such cases, there is a need to
employ BIRD only on genes that exhibit a more stochastic property
and are signified by a monoallelic expression.

Overall, we described two types of datasets that use the BAR fea-
ture for discriminating singlets from doublets. The overall coverage
of hSNPs and sequence depth are drastically different among the
two analyzed datasets. The unsupervised GMM tool was sufficient
in separating singles from doublets in a dataset of high-hSNP cover-
age (based on Smart-seq2 technology, with a full transcript sequenc-
ing). The high coverage of this methodology is fundamental to the
ability of BIRD to robustly testing a biallelic signal despite a limited
number of cells (163 cells, Dataset 1). The other dataset (dataset 2,
10X Genomics) yields shallow coverage, which is restricted to the 30

tail of the transcripts and was therefore trained using RF. Despite
the described coverage and difference in the sequencing protocols (30

based versus a full-length transcript), the mean values of the simu-
lated doublets were 100% identifiable for the larger 104 cells data-
set and 94.66% for the smaller 59 cells set indicating higher BAR
values for doublets with respect to singlets. The noisy and sparse
data associated with 10X Genomics remain challenging and should
be assessed for each run.

In summary, BIRD protocol is a generic method to identify dou-
blets according to the deviation of single-cells biallelic profile. For most
of the genomics 10X datasets that include hundreds of cells each, AUC
on the task of identifying doublets for the three different runs reached
an average value of 0.88 (60.04). We applied BIRD on datasets of dif-
ferent coverage, scale and accuracy. BIRD uses a data-driven protocol
and is applicable in all instances where in addition to the scRNA-seq/
dscRNA-seq data genomic heterologous sites can be extracted.
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