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Purpose: To standardize the radiography imaging procedure, an image quality control

framework using the deep learning technique was developed to segment and evaluate

lumbar spine x-ray images according to a defined quality control standard.

Materials and Methods: A dataset comprising anteroposterior, lateral, and oblique

position lumbar spine x-ray images from 1,389 patients was analyzed in this study. The

training set consisted of digital radiography images of 1,070 patients (800, 798, and

623 images of the anteroposterior, lateral, and oblique position, respectively) and the

validation set included 319 patients (200, 205, and 156 images of the anteroposterior,

lateral, and oblique position, respectively). The quality control standard for lumbar

spine x-ray radiography in this study was defined using textbook guidelines of as a

reference. An enhanced encoder-decoder fully convolutional network with U-net as

the backbone was implemented to segment the anatomical structures in the x-ray

images. The segmentations were used to build an automatic assessment method

to detect unqualified images. The dice similarity coefficient was used to evaluate

segmentation performance.

Results: The dice similarity coefficient of the anteroposterior position images ranged

from 0.82 to 0.96 (mean 0.91 ± 0.06); the dice similarity coefficient of the lateral position

images ranged from 0.71 to 0.95 (mean 0.87 ± 0.10); the dice similarity coefficient

of the oblique position images ranged from 0.66 to 0.93 (mean 0.80 ± 0.14). The

accuracy, sensitivity, and specificity of the assessment method on the validation set were

0.971–0.990 (mean 0.98 ± 0.10), 0.714–0.933 (mean 0.86 ± 0.13), and 0.995–1.000

(mean 0.99 ± 0.12) for the three positions, respectively.

Conclusion: This deep learning-based algorithm achieves accurate segmentation of

lumbar spine x-ray images. It provides a reliable and efficient method to identify the shape

of the lumbar spine while automatically determining the radiographic image quality.
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INTRODUCTION

Lower back pain (LBP) is a widespread public health problem
and the main cause of disability worldwide (1–3). It is the sixth
leading contributor to the global overall disease burden (4).
LBP brings enormous economic and mental burdens to patients
and has been found to reduce patient incomes by about 87%
compared with the normal population (5).

At present, clinical lumbar X-ray is the preferred imaging
method for the diagnosis of LBP; however, manual measurement
of the various lumbar parameters is time-consuming, laborious,
and inconsistent. Further, diagnosis based on lumbar
spine x-ray images is greatly influenced by the physician’s
subjective perceptions.

Digital radiography (DR) is widely used in clinical practice
due to its high image quality, low radiation dose, fast imaging
speed, and simple operation process. In particular, lumbar DR
can assist doctors to diagnose damage to the lumbar bone, such as
tumors, bone tuberculosis, fractures, and deformity of the lumbar
spine (6).

Despite the rapidity of lumbar DR, compared with magnetic
resonance imaging (MRI) and computed tomography (CT),
its effectiveness in radiologically suspicious examination of the
lumbar spine is relatively poor. High-quality lumbar x-ray
imaging can effectively avoid missed diagnosis and improve the
accuracy of diagnosis (7). Routine radiography of the lumbar
spine include the anteroposterior and lateral projection positions
(8). Bilateral oblique (left and right oblique) radiography is
taken as a supplement to routine radiographs to assist doctors
in the diagnosis of lesions. The oblique position mainly
captures an oblique view of the vertebral body, including the
intervertebral joint space, and inferior and superior articular
processes, and can be used to diagnose trauma, lumbar
spondylolisthesis, inter-articular structure damage and crack, and
vertebral facet joint lesions. However, technologists report that
it is difficult to obtain the proper patient position in spinal
examinations (9), leading to high rejection rates for spinal
examinations generally. Therefore, the radiographic procedure
for the lumbar spine needs to be standardized by medical
guidelines (8, 10).

The quality of a medical image directly affects the diagnosis
and treatment of the disease. Hence, a set of medical image
quality standards have been established by experts based on
domestic and foreign long-term clinical tests (11, 12). Poor
radiographic operation skills, due to a lack of education and
experience, result in poor quality DR images in clinical practice
(9). Trained radiologists are considered to be the reference
for task-based evaluation of medical image quality. However,
the evaluation of a large number of images is time-consuming
and error-prone (13). Therefore, realization of intelligent image
quality control by a machine will have a greater auxiliary effect
on radiographers’ imaging work. Machine learning is used for
medical image analysis to predict the disease curative effect
and can also be used for image quality monitoring. Previously,
an observer model was applied to optimize the parameters
and evaluate the image quality of low-dose CT iterative
reconstructions (14). Automated image quality evaluations using

deep learning have also been performed for image quality
evaluations of liver MRI (15).

Artificial intelligence (AI) has produced breakthroughs
in medical imaging (16–18). By establishing support vector
machines, convolutional neural network (CNN) models, and
improved algorithms, the quantitative analysis and diagnosis
of lumbar spine X-ray has been made possible. Li Y proposed
a new neural network model based on feature fusion deep
learning; this model combined shape and texture information
of the lumbar spine to automatically locate and detect the
vertebral body in lumbar X-ray images, without being impacted
by metal fixation (19). Azimi developed a multi-variable model
to predict recurrent lumbar disc herniation through multi-
layer perceptron (20). Cho proposed a U-net framework that
can quickly identify L1 (1st lumbar spine) and S1 (1st sacral
vertebra) and can be used to evaluate lumbar lordosis (21).
In 2020, Schwartz developed a CNN segmentation algorithm
that was combined with a computer vision algorithm for the
automatic measurement of scoliosis parameters from lumbar
lateral X-ray images; this approach was found to have the
potential to simplify the clinical workflow (22). The application
of AI technology to medical imaging has excellent prospects
for alleviating the workload of clinicians, effectively reducing or
eliminating manual measurement errors, and assisting clinicians
to quantitatively evaluate spinal deformities and other diseases
more objectively.

For patient dose reduction, computer based solutions were
implemented by using Monte Carlo simulation to investigate
the extent of the effect of collimation on the absorbed organ
dose (23, 24). Optimization of radiation dose and image
quality is an important aspect of quality assurance procedures.
Klaus suggested that a quality system should be implemented
globally to ensure a high standard of radiographs produced in
chiropractic clinics (25).

In this study, the aim was to develop an intelligent quality
control model of lumbar spine x-ray radiography using deep
learning via a fully convolutional neural network, U-Net. Real-
time and retrospective evaluation of the deep learning-based
model was performed on the validation dataset. The dice
similarity coefficient (DSC), accuracy, sensitivity, and specificity
were computed according to the criteria of the defined quality
control standard. The experimental results demonstrated that the
proposed quality control framework can be applied to the routine
workflow of a radiographer in order to improve the diagnostic
accuracy and efficiency of the clinician.

MATERIALS AND METHODS

Definition of Reference Standard and
Subjective Evaluation
According to x-ray radiography regulations (8, 10), lumbar spine
radiography includes three positions, the anteroposterior, lateral,
and left and/or right oblique positions. Different positions can
be used to observe different anatomical structures. The qualified
indicators for each position are described below.
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FIGURE 1 | A method for jugement of “Dog” sign. (A) The dog’s mouth is for

ipsilateral transverse process. The dog’s eye is for pedicle. The dog’s ear is for

superior articular process. The dog’s neck is for interarticularis. The dog’s body

is for lamina. The dog’s front leg is for inferior articular process. The dog’s tail is

for contralateral transverse process. (B) The inferior articular processes were

connected in blue line.

Standard Anteroposterior View Image
a. The entire lumbar spine should be visible, with the T11/T12

(the 11th and 12th thoracic vertebra) at the top, the sacral
region at the bottom, and laterally, the transverse processes
and the sacroiliac joint should be included.

b. The vertebral bodies are located at the center of the image,
with symmetrical transverse processes and the pedicle and
sacroiliac joints on both sides. The patient is not rotated, and
the spinous process is in the middle.

c. The intervertebral joints are clearly visible, allowing a clear
view of the lumbar vertebral bodies, pedicles, and facet joints.
The image has sufficient penetration and contrast to show the
trabecular and cortical bones.

d. There is no bilateral shadow on the upper and lower margins
of the third lumbar spine.

Figure 2A1 shows the standard anteroposterior view.

Standard Lateral View Image
a. The entire lumbar spine should be visible, with T11/T12 at

the top and the 2nd sacral vertebra at the bottom. Posterior
columns and spinous processes should be complete.

b. The sciatic notch, superior articular surface, and upper and
lower endplates should be overlapped.

c. The image has sufficient penetration and contrast to show the
trabecular and cortical bones.

d. There is no bilateral shadow on the upper and lower margins
of the third lumbar spine (L3).

Figure 2B1 shows the standard lateral view.

Standard Oblique View Image
a. The articular surfaces and joint spaces of the lumbar spine are

clearly visible. The coverage is the same as the lateral image.
b. The “dog” sign is observed, showing the articular process and

facet joints (as shown in Figure 1A).
c. The image has sufficient penetration and contrast to show the

trabecular and cortical bones.

d. The pedicles are in the center of the vertebral body.

Figure 2C1 shows the standard oblique view.
In this study, the lumbar spine x-ray images of 1,070 patients

were evaluated by three experienced radiologists. The qualified x-
ray images were those that met the criteria listed above for each
radiograph position. Figure 2 presents examples of qualified and
unqualified lumbar spine x-ray images.

Datasets
A total of 1,389 patients were recruited into this cohort
study by the First Affiliated Hospital of Wenzhou Medical
University (Wenzhou, Zhejiang Province). Each patient had
anteroposterior, lateral, and/or oblique position lumbar spine
x-ray images taken. The dataset was randomly split into a
training and a validation set. The training set consisted of
1,070 patients (800,798, and 623 images for the anteroposterior,
lateral, and oblique position, respectively) and the validation
set included 319 patients (200, 205, and 156 images for the
anteroposterior, lateral, and oblique position, respectively). The
regions of the lumbar vertebrae, pelvis, spinous processes, L3
(the third lumbar vertebra), and bilateral shadow of L3 were
labeled on the fontal view of the lumbar spine, as shown in
Figure 3A1. The area of the lumbar vertebrae, spinous processes,
intervertebral foramen, L3, bilateral shadow of L3, and sacral
vertebrae were marked on the lateral view of the lumbar spine,
as shown in Figure 3A2. The lumbar vertebrae, inferior articular
processes, and pelvis were marked on the oblique view of the
lumbar spine, as shown in Figure 3A3. As ground truth for
evaluation of the AI segmentation, all x-ray images were first
delineated by two experienced radiologists, and then confirmed
by a senior radiologist. This retrospective study was performed
in accordance with the principles of the Helsinki Declaration
and was approved by the institutional ethics committee. Given
that this was a retrospective study, the need for obtaining written
informed consent from the patients was waived.

Image Segmentation Using Enhanced
U-Net Architecture
The fully convolutional neural network, U-net, is a state-of-
the-art segmentation algorithm used in the medical image
analysis field. Recent studies have focused on joint encoding
of spatial and channel information to improve segmentation
performance; however, joint encoding of the spatial and channel-
wise information independently has been less studied. A squeeze
& excitation (SE) block (26) has been proposed to address this gap
by integrating spatial and channel dependencies. The SE block
learns a channel-specific descriptor to recalibrate the feature
map, and this is used to emphasize more important channels.
In this work, the aim was to leverage the high performance
of SE blocks for image segmentation with U-net, as shown in
Figure 4A. In this current study, spatial and channel SE blocks
(scSE) were implemented within the U-net frame, as shown in
Figure 4B; the scSE blocks allowed for recalibration of the feature
map along space and channel separately.

The scSE U-net model for image segmentation was applied
to lumbar spine x-ray images taken from three positions, i.e.,
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FIGURE 2 | (A1,A2) Shows images of anteroposterior position. (A1) Shows qualified image. (A2) Shows unqualified image (1. Too many thoracics vertebrae; 2. Not

centered and bent). (B1,B2) Shows images of lateral position. (B1) Shows qualified image. (B2) Shows unqualified image (1. Not clear; 2. Double shadow; 3. The left

and right edges do not overlap). (C1,C2) Shows images of oblique position. (C1) Shows qualified image. (C2) Shows unqualified image (1. Excessive and foreign

bodies in the chest; 2. Insufficient angle; 3. Less at the bottom).

FIGURE 3 | The example of manual segmentation and AI segmentation for three positions, anteroposterior (A1,B1), lateral (A2,B2) and oblique view (A3,B3).

(A1,A2,A3) Ground truth of segmentation by manual marking. (B1,B2,B3) AI segmentation results.

anteroposterior, lateral, and oblique. The first U-net was used to
segment the anatomical features of the lumbar spine, such as the
lumbar vertebra, pelvis, spinous process, intervertebral foramen,
and sacral vertebrae. Then, within the obtained lumbar spine
mask, the second U-net was used to automatically identify the
anatomical features of the lumbar spine.

SE blocks can be inserted within a U-net model by integrating
them after each encoder and decoder block, as shown in
Figure 4A. Specifically, let us assume an output feature mapM ∈

RH×W×C, here H,W, and C are the spatial height, width, and
output channels, respectively. M̂ is the recalibrated feature map
by the SE blocks and is used in the subsequent pooling layers.
In this work, two SE blocks were combined, a spatial SE block
(spatial squeeze, sSE) and a channel SE block (channel squeeze,
cSE); the combined SE blocks were denoted scSE block (27), as
illustrated in Figure 4B. In the sSE block, the feature map is
squeezed along the channels and excites spatially. For the cSE

block, spatial squeeze is performed by a global average pooling
layer. Finally, we can obtain M̂scSE block, which is recalibrated
spatially and channel-wise and is important for fine-grained
image segmentation.

Image Assessment Based on Defined
Criteria
An automatic assessment system was developed based on the
AI segmentation model. Image assessment was performed in
reference to the criteria defined by textbooks (8, 10). These
criteria were based on the important bone structures in the
three x-ray image positions. For each criterion, quantitative
measurement was performed based on manual scoring by
experienced radiologists .

In terms of manual scoring, qualified images included the
following elements: (a) seven spines (T11-L5) in every position,
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FIGURE 4 | Architecture of the spatial information and channel Squeeze & Excitation “U-net.” The input of the network is the normalized image and the output is the

probability map of the segmentation result. (A) SE blocks in U-net. (B) Spatial and channel SE block.

TABLE 1 | Criterion of objective and subjective evaluation.

Objective evaluation Subjective evaluation

Anteroposterior position

Number of spines 7 7 (T11-L5)

Bilateral shadow/L3 (0, 0.21) None

Position of spinous

process

(0.4, 0.6) Middle

Range of pelvis >0 Visible

Lateral position

Number of spines 7 7 (T11-L5)

Bilateral shadow/L3 (0, 0.21) None

Spinous process >0 Visible

Intervertebral foramen >0 Visible

Sacral vertebrae >0 Visible

Oblique position

Number of spines 7 7 (T11-L5)

Range of pelvis >0 Visible

Position of inferior

articular processes

(0.265,0.365) “Dog” signs: Observed

(Number >3)

The objective evaluations were based on the automatic segmentation results of the

AI model.

(b) in the anteroposterior position, the spinous process should
be in the middle; there should be no bilateral shadow on
the upper and lower margins of the third lumbar spine (L3)
and the pelvis should be visible; (c) in the lateral position,
there should be no bilateral shadow of L3, and the spinous
process, intervertebral foramen, and sacral vertebrae should be
visible; (d) in the oblique position, the “dog” sign (Figure 1A)
should be observed and there should be at least three observed
inferior articular processes; the pelvis should also be visible.
A detailed description of this manual scoring is provided
in Table 1.

The automatic and quantitative measures were obtained based
on the AI segmentation results. First, the visibility and number
of the key anatomical features were computed directly from
the segmented bone structures, such as the pelvis, intervertebral

foramen, sacral vertebrae, and spinous process. Then, the number
of segmented bone structures was used to assess whether the
current x-ray image was qualified or not. For assessments
based on the relative area and position, we learned from the
ground truth in the training set and defined a series of ranges
to determine the “dog” sign, bilateral shadow of L3 and the
position of the spinous process. The objective criteria are listed
in Table 1.

For instance, in the anteroposterior view of the lumbar spine, a
centreline was created by connecting all centers of the segmented
spinous processes. If the centreline lay within a certain range,
defined by radiologists according to manual delineation, the
current x-ray image was considered qualified.

For bilateral shadow, the areas of the bilateral shadow (A)
and third lumbar vertebra (B) were calculated directly from the
segmentation. The ratio of A to B was used to assess if there was
obvious bilateral shadow.

In the oblique view of the lumbar spine, as shown
in Figure 1B, the inferior articular processes of the
lumbar vertebrae, which form the shape of a dog, were
connected into a line. Their average position in the whole
vertebrae was calculated. All qualified images that had
the “dog” characteristic were counted and a certain range
was obtained.

Evaluation
Assessment of Segmentation Performance
The scSE U-net model was trained with 1,070 patients (800,
798, and 623 images for the anteroposterior, lateral, and oblique
position, respectively) and then tested with the validation set
(comprising 319 patients: 200, 205, and 156 images for the
anteroposterior, lateral, and oblique position, respectively). The
DSC was used to evaluate the segmentation performance.
Figure 3 provides an example of manual segmentation and AI
segmentation for the three positions.

All segmentation results were then used for the assessment
of the qualification of x-ray images according to criteria defined
in the textbooks (8, 10), as shown in Table 1. The performance
of segmentation algorithms is crucial for x-ray image quality
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TABLE 2 | The segmentation performance (DSC value) of the scSE U-net model

on the anatomy structures of anteroposterior, lateral, oblique position.

Position Segmented object DSC value

Anteroposterior position

Outer contour 0.923

Internal contour 0.930

Pelvis 0.960

Spinous process 0.823

Lateral position

Outer contour 0.954

Internal contour 0.935

Intervertebral foramen 0.712

Spinous process 0.816

Sacral vertebrae 0.915

Oblique position

Inferior articular 0.655

Vertebra 0.925

Pelvis 0.829

control. For anteroposterior position x-ray images, the outer
contour, internal contour, pelvis, and spinous process were
segmented by the U-net model. For lateral position x-ray images,
segmentations included the outer contour, internal contour,
intervertebral foramen, spinous process, and sacral vertebrae.
For oblique position images, the inferior articular, vertebra, and
pelvis were segmented from the x-ray images.

Evaluation of Image Quality Control
Ground truth was based on lumbar spine x-ray images collected
from 1,389 patients and was determined by three experienced
radiologists. Subjective and objective evaluations were carried
out according to the defined criteria, as shown in Table 1. The
objective evaluations were based on the automatic segmentation
results of the AI model. An x-ray image was considered qualified
when all objective criteria satisfied the thresholds, as listed in
Table 1.

Implementation
The proposed AI segmentation algorithms were implemented
using Python (3.6) and Torch (1.2) with NVIDIA TITAN Xp
graphic card (16G Memory). All experiments are performed on
Ubuntu system (16.04) computer with Intel E5-2620 CPU and 16
GB RAM.

RESULTS

Segmentation Results
The DSC values for key features of lumbar spine radiographs
based on the segmentation results of the AI model on
the validation set are shown in Table 2. The segmentation
performance in the anteroposterior position ranged from 0.82
to 0.96 (mean 0.91 ± 0.06), the performance in the lateral
position ranged from 0.71 to 0.95 (mean 0.87 ± 0.10), and
the DSCs in the oblique position ranged from 0.66 to 0.93

(mean 0.80 ± 0.14). The computation of the AI segmentation in
anteroposterior, lateral, and oblique positions are 0.38, 0.37, and
0.34 s/frame, respectively.

Classification Results
The final model obtained from the training set was applied to
the validation set. The results of the automatic assessment are
presented in Table 3. The thresholds for quantitative evaluation
were based on manual scoring. In the anteroposterior position,
the spinous processes were assessed to be in the middle of the
spine when the average center points were between 0.4 and 0.6.
In the anteroposterior and lateral position, if the bilateral shadow
area/L3 area ratio was between 0 and 0.21, the third lumbar
spine was assessed to have no bilateral shadow. In the oblique
position, when the threshold of the position of the inferior
articular processes was between 0.265 and 0.365, the “dog” sign
was determined to be seen. For other key anatomical features,
such as the pelvis, intervertebral foramen, and sacral vertebrae,
the model segmentation was considered effective as long as the
segmented part could be identified in the image. In each position,
there should be seven visible spines, according to the criteria.

Figures 5A–C shows three unqualified x-ray images from
the three different positions. In Figure 5A, it can be seen that
there are more than seven spines. The assessment results for the
bilateral shadow/L3 was 0.195215 and position of spinous process
was 0.511964, which were in reasonable range.

In Figure 5B, the number of spines was greater than the
threshold of seven. The assessment of the bilateral shadow/L3
was 0.071301, which was within the reasonable range. The
intervertebral foramen and spinous processes were clearly visible.
In Figure 5C, the number of spines was greater than seven. The
value for the position of the inferior articular was <0.265, which
means the “dog” sign was not visible. A qualified x-ray image is
shown in Figure 5D. The number of spines was seven and the
values of the positions of the inferior articular processes were in
the right range, indicating that the “dog” sign was visible.

DISCUSSION

In this study, we developed a quality control model for lumbar
spine radiography using a deep-learning method based on
the U-net architecture (28) to automatically determine image
quality. The model can accurately identify and segment the key
anatomical features of the lumbar spine from three positions,
and then quantitatively analyse the segmentation results. These
quantitative indicators can be used for the determination of
radiographic image quality based on radiographic standards;
these standards are based on the reasonable threshold range
defined based on manual analysis.

In the current study, the image quality analysis results of
319 patients in the validation set showed that the qualified
rate was quite low for both the manual evaluation (7.0, 14.6,
and 4.5% for the anteroposterior, lateral, and oblique position,
respectively) and AI evaluation (7.0, 15.6, and 3.2%, respectively).
These statistics indicate that image quality control management
is crucial for lumbar radiography. Most of the unqualified
images had more than seven spines, but the reasonable number
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TABLE 3 | Results of the automatic assessment system on the validation set that including 319 patients (200, 205, and 156 images for anteroposterior, lateral, and

oblique position, respectively).

Ground truth

AI Evaluation Qualified Unqualified Accuracy (%) Sensitivity (%) Specificity (%)

Anteroposterior position

Qualified 13 1

Unqualified 1 185

Overall 99.0 92.9 99.5

Lateral position

Qualified 28 4

Unqualified 2 171

Overall 97.1 93.3 97.7

Oblique position

Qualified 5 0

Unqualified 2 149

Overall 98.7 71.4 100.0

FIGURE 5 | AI segmentation and automatic assessment by Quality Control Model. The unqualified cases (A–C). The qualified case in (D).

of lumbar vertebrae is five according to normal physiological
anatomy. This indicates that the photographic range was set too
large during radiography. The aim of radiography is to obtain
images that are adequate for clinical purposes with minimum
radiation dose exposure to the patient. Therefore, the assessment
of image quality is required to achieve a balance between
the radiation dose and optimum performance. Reasonable
control of the x-ray range can improve image resolution and
effectively reduce radiation dose exposure to other parts of the
patient, which is an essential aspect of the regulation of x-ray
examinations (8).

Oblique radiography requires special attention as the patient’s
angle of tilt is critical to determining the presence of lesions at
particular sites. The “dog’s neck” represents the interarticularis.
Clear visibility of the “dog” is essential to determining whether
there is a break in the interarticularis. The threshold value in this

article was defined by the position information of the inferior
articular processes in the whole spines; this is an innovative
method for judging the presence of the “dog” sign.

It is very difficult to identify the dog shape based on its features
due to variation in patient body shape and position, and this
study achieved good results based on quantitative assessments.
For cases where the “dog” sign could manually be identified in
the oblique position, the proposed model was able to accurately
determine qualified images by the threshold value. This provides
an innovative solution for x-ray image quality control.

This model has significant application value due to its high
accuracy in recognizing and segmenting the lumbar vertebrae.
The following workflow is envisaged for applying this model
(Figure 6). First, DR of the patient’s lumbar spine is performed
to obtain images of the anteroposterior, lateral, and oblique
views. Second, the images are transferred to the server of the
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FIGURE 6 | The application of Lumbar Spine X-ray radiography quality control model.

quality control model established by us, namely, the AI server.
The model will detect, segment, and evaluate the x-ray images.
Third, the evaluation results are presented on the post-processing
workstation and can be displayed on a monitor or a small
pad next to the DR device. Forth, based on the quality control
evaluation results, the radiographers can check the images in
real time. If unqualified images are found, the radiographers can
re-photograph these views. For example, when photographing
the lumbar oblique position, if the “dog” sign is not visible, the
radiographer can adjust the angle of the patient’s tilt and re-
photograph to obtain a suitable diagnostic image. In addition,
the quality control model can remind the radiographer to adjust
the exposure range and avoid unnecessary radiation damage to
the patient.

Radiographic image quality problems have increasingly been
reported in recent years. Radiologists acknowledge that high-
quality medical images contribute to the timeliness and accuracy
of clinical diagnosis. Quality control in medical imaging is an
ongoing process and not just a series of infrequent evaluations
of medical imaging equipment. The quality control process
involves designing and implementing a quality control program,
collecting and analyzing data, investigating results that are
outside the acceptance levels for the quality control program,
and taking corrective action to bring these results back to an
acceptable level (11). For example, some studies (29, 30) have
improved the quality of thoracic CT examinations by providing
patients with breathing training. The issues raised by Waaler
and Hofmann (12) regarding the rejection and duplication of

diagnostic x-ray images pose new challenges to radiographic
imaging. The quality control process involves key personnel in
the imaging department, including the radiologist, radiologic
technologist, and qualified medical physicist.

Owusu-Banaheneaour’s research (7) found that the highest
rejection rate of 57.1 ± 0.7% was for cervical spine examinations
in both adults and children, with overexposure and patient
positioning being the actual causes; this is consistent with the
current research. Obtaining high-quality radiographic images
depends on quality control measures, proper selection of
technical factors during exposure, and patient position. Shoulder
and spinal examinations generally have the highest rejection
rates. Technologists have reported that proper patient position
can be difficult in these examinations (9). In the current study,
the patient’s position during lumbar oblique view radiography
was critical to the imaging results. It was clear that there were
significant differences in the way each technologist performed
examinations and that some technologists were contributing to
the overall rejection rate much more than others.

Recently, AI-based techniques have been applying to the
control of medical image quality. Several intelligent AI models
of chest radiographs have been published, and these can provide
timely feedback on unqualified images. For example, in Hwang’s
and Annarumma’s studies (31, 32), deep learning algorithms
were used to classify the urgency of abnormal chest radiographs,
so that abnormal cases could seek expert opinions as soon as
possible. In one study, a CNN suitably adapted to the blind
quality assessment task was found to accurately predict the
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quality of images with high agreement with human subjective
scores (33). In another study, Alfaro-Almagro’s research team
developed an automated quality control tool to identify images
with problems either in their acquisition or in the later processing
steps (34). Tarroni proposed a fast, fully-automated, learning-
based quality control pipeline for cardiac MR images, specifically
for short-axis image stacks (35). Meineke suggested that
machine learning can comprehensively detect CT examinations
with dose optimization potential to simplify CT quality
assurance (36).

Radiologists and radiographers are supportive of the
application of AI technology in radiology practice (37). The
study byMohamedM found that radiographers’ awareness of the
role of AI and its challenges could be improved by education and
training (38). Research also indicates that the practice of AI in
radiology requires structured training programs for radiologists
and radiographers in order to reduce work stress and better serve
patients (38). The study by Abuzaid et al. (39) revealed that AI
can be applied in MRI in various ways, such as to optimize image
quality and avoid image artifacts.

The development of AI-assisted lumbar disease diagnosis is
still in its early stages, and further exploration is needed to
improve the AI algorithm and deep learning algorithm, establish
a high-quality database, and formulate quantitative standards for
new parameters.

Several limitations of this study should be noted. First, images
with foreign objects, such as metal objects, were not segmented
and detected. Although obvious foreign objects can be found
in time, small external or internal foreign objects are easily
overlooked. Secondly, variation in DR equipment can result in
variation in image quality. This study did not detect the imaging
quality of the machine itself, and thus, we cannot put forward
suggestions for ideal resolution, signal-to-noise ratio, and other
aspects. Further, this study was unable to assess whether the
image quality was unqualified due to insufficient photographic
conditions of the machine itself. Finally, the model described in
this study has not been externally validated. The quality control
model needs to be constantly updated to accommodate a variety
of lumbar radiographs.

CONCLUSION

In summary, we have developed a lumbar spine radiography
quality control model based on U-net architecture. This model
showed good segmentation accuracy and provided image quality
evaluation results in real time. The proposed AI model allows

for the standardization of radiographers’ imaging work while
reducing unnecessary radiation doses for patients.
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