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Simple Summary: As pencil beam scanning (PBS) proton therapy delivers doses via spot-scanning,
the dose rate quantification is very different from the electron and scattering proton techniques in
FLASH radiotherapy. Currently, there is no consensus on the definition of the PBS proton therapy
dose rate calculation for normal tissues and targets. This study focuses on the dose rate quantification
of organs-at-risk and target based on three proposed dose rate metrics using proton transmission
beams. The differences in dose rate metrics have led a large variation for organs-at-risk dose rate
assessment and may result in a different correlation expectation between dose rate and biological
effects for pre-clinical experiments. An awareness of the differences in proton PBS dose rate calcu-
lation is important to design experiments and clinical trials to uncover FLASH-RT’s biological and
physiological mechanisms.

Abstract: To quantitatively assess target and organs-at-risk (OAR) dose rate based on three proposed
proton PBS dose rate metrics and study FLASH intensity-modulated proton therapy (IMPT) treatment
planning using transmission beams. An in-house FLASH planning platform was developed to
optimize transmission (shoot-through) plans for nine consecutive lung cancer patients previously
planned with proton SBRT. Dose and dose rate calculation codes were developed to quantify three
types of dose rate calculation methods (dose-averaged dose rate (DADR), average dose rate (ADR),
and dose-threshold dose rate (DTDR)) based on both phantom and patient treatment plans. Two
different minimum MU/spot settings were used to optimize two different dose regimes, 34-Gy in
one fraction and 45-Gy in three fractions. The OAR sparing and target coverage can be optimized
with good uniformity (hotspot < 110% of prescription dose). ADR, accounting for the spot dwelling
and scanning time, gives the lowest dose rate; DTDR, not considering this time but a dose-threshold,
gives an intermediate dose rate, whereas DADR gives the highest dose rate without considering
any time or dose-threshold. All three dose rates attenuate along the beam direction, and the highest
dose rate regions often occur on the field edge for ADR and DTDR, whereas DADR has a better dose
rate uniformity. The differences in dose rate metrics have led a large variation for OARs dose rate
assessment, posing challenges to FLASH clinical implementation. This is the first attempt to study
the impact of the dose rate models, and more investigations and evidence for the details of proton
PBS FLASH parameters are needed to explore the correlation between FLASH efficacy and the dose
rate metrics.

Keywords: proton therapy; pencil beam scanning; dose rate; FLASH radiotherapy; lung
hypofractionation

1. Introduction

Pre-clinical investigations have shown that ultra-high dose rate (>40 Gy/s) electron
beam radiotherapy (FLASH radiation therapy (RT)) leads to fewer radiation-induced
toxicities, but is as effective as conventional dose rate radiotherapy regarding tumor
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control [1,2]. With growing interest in this novel dose delivery approach, recent studies
have reported that FLASH-RT achieves enhanced normal tissue protection compared to
conventional-RT in the mouse brain, pig skin, and cat experiments [3–5]. Fouillade et al.’s
mouse and human lung cell in vitro experiments showed that FLASH-RT can minimize the
induction of pro-inflammatory genes and persistent DNA damage and facilitates radiation
recovery by preserving lung progenitor cells [6]. Bourhis et al. reported the first FLASH-RT
skin treatment using a linac with a favorable outcome both on normal skin and tumor [7].

A proof-of-concept FLASH-RT experiment, using a clinical proton system, was per-
formed at the Institut Curie France, where a max dose rate of 40 Gy/s was reached with
scattering delivery techniques [8]. Buonanno et al. firstly reported the long-term effects
of proton irradiations at FLASH dose rates, in vitro, using a low energy experimental DC
accelerator [9]. Beyreuther et al. studied the FLASH effect through irradiating zebrafish
embryo using the scattering technique on an IBA proton system [10]. More recently, re-
searchers from the University of Pennsylvania reported their FLASH progress on an IBA
proton system, where a dose rate > 100 Gy/s was reached on a small animal radiation
therapy platform via scattering systems [11]. The effects of FLASH irradiation using pencil
beam scanning (PBS) proton irradiation in a Varian ProBeam system were then reported by
Cunningham et al. [12].

Proton therapy techniques have been identified as potential platforms for the clinical
translation of FLASH-RT [13,14]. For current proton PBS planning and treatment, multiple
energy layers are used to generate spread-out Bragg peaks (SOBP) to cover the target
volume. However, using SOBP becomes difficult for FLASH-RT to deliver ultra-high
dose rate spots across an entire target volume with sufficiently high mean dose rates due
to the inefficiency of beam transmission for lower energies beam [13,15]. Additionally,
the typical energy/layer switch time is ~200 ms for energy degradation-based cyclotron
systems [16] and on a scale of >1000 ms for synchrotron systems [17], which also prolongs
the beam-on time. Therefore, the current intensity-modulated proton therapy (IMPT)
planning strategies using multiple energies hardly reach the FLASH dose rate threshold
in OARs [18]. To date, there are no in vivo data for conformal FLASH irradiations from
any proton PBS system using SOBP treatment planning [13], while transmission delivery
using beam shoot-through from different angles with a single high-energy is more practical
to reach the FLASH dose rate and also minimizes range uncertainties in heterogeneous
tissues like the lung.

Unlike electron and proton scattering techniques that deliver uniform fluence to the
entire field simultaneously, PBS requires hundreds of pencil beam spots to be delivered
sequentially to cover the entire target volume. Due to its intrinsic nature, the PBS dose
rate quantification is much more complex. Most clinical proton systems use cyclotrons
to accelerate charged particle beams via a high frequency (MHz) alternating voltage, and
protons are accelerated to the desired energy and then extracted by an electrostatic field.
Protons are concentrated into bunches as quasi-continuous current during the delivery.
The instantaneous beam current can be specified as the mean current of each pulse. The
magnitude of the instantaneous proton current can be adjusted by the cyclotron control
system, which correspondingly changes the instantaneous dose rate in the treatment
nozzle. The lateral spot dose profile usually follows a Gaussian distribution in the air or
homogeneous phantom. Thus, the center of the spot has a maximum dose rate, and the
dose rate decreases radially from the center to the lateral direction of a spot. In our TPS,
we generated a single spot plan and placed the isocenter at the water phantom surface,
the max dose rate at ~4 cm of the central axis in the water phantom was defined as the
spot peak dose rate (SPDR) [19], which was used to compare the dose rate for different
minimum MU/spot settings. The spot size is an important factor determining the rapidity
of the transverse dose rate falloff for a given spot, while the scanning speed between spots
determines the averaged (mean) dose rate. It will be crucial to consider all of these factors
to assess if the normal tissue or OARs reach the dose rate threshold for the desired FLASH
sparing effect.
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To date, there are two distinct proposals on the calculation of dose rate of PBS proton
beam: one is weighing the dose rate by the spot dose contribution to an individual point-
of-interest dose-averaged dose rate (DADR) [18], and the other method is to average the
dose deposition in a region-of-interest over time—averaged dose rate (ADR) [20]. Recent
studies also indicate that the FLASH sparing effect is not only determined by dose rate
but also related to the dose. Bourhis et al. summarized all of the most relevant parameters
for the FLASH effect and concluded that those parameters are “the combination of dose,
dose rate within the pulse, and overall time of irradiation (<200 ms), and not only the
mean dose-rate as we initially thought.” [21]. All pre-clinical studies to date [1,3,11,22,23]
have been performed using a pulse structured beam and dose rate characterized by (mean)
instantaneous dose rate; thus, the instantaneous dose rates of the spots can be an important
indication to correlate the FLASH sparing effect. It might be more relevant to use a
dose-threshold to exclude the PBS low dose tails that deposit doses less than a dose-
threshold from the instantaneous dose rate calculation for a region-of-interest (voxel).
Therefore, we proposed a dose threshold dose rate (DTDR) to quantify the 3D dose rate
distribution for FLASH irradiation. In the hypothesis, a dose rate larger than the currently
accepted FLASH-RT threshold (40 Gy/s) is expected to optimize FLASH treatment planning
and biological experimental designs [19]; however, it is not clear how the different dose
rate calculations may affect the treatment planning considerations and biological and
clinical outcomes. On the other hand, the underlying biological mechanism of a FLASH
effect remains incompletely determined. Multiple hypotheses have been suggested by
linking the high dose rate to the rapid oxygen depletion [24,25], immune response [26,27],
reduction of peroxyl radical lifetime [28], preservation of normal tissue stem cells [22,29],
etc. The quantitative assessment of the different dose rate methods will be meaningful
to give guidance for FLASH-RT planning and treatment. This study aims to investigate
the FLASH-RT dose rate determination and its impact on treatment planning toward
clinical applications.

2. Materials and Methods

This study was conducted using a Varian ProBeam proton system. An in-house
3D PBS dose rate calculation tool using pencil beam convolution superposition (PCS)
algorithm [30] was developed to calculate the dose rate. The PBS spot delivery time and
scanning time between spots were modeled. Similar to the dose volume histogram (DVH)
representation of a 3D dose distribution, the 3D dose rate distribution is concentrated using
a single dose rate volume histogram (DRVH) curve to represent the voxel-based dose rate
distribution. The DRVHs for both OARs and targets were calculated.

In a Varian ProBeam system, the cyclotron beam current is variable for different
energy layers and automatically determined by the minimum monitor unit (MU) of a spot
in the energy layer [20]. Thus, the minimum MU/spot of an energy layer determines the
deliverable dose rate of the transmission plan. The Varian research group assumed a 2 ms
spot delivery time of the minimum MU and 10 mm/ms scanning speed for the ADR dose
rate calculation in the ProBeam FLASH mode [20]. The transmission FLASH-RT plans
were generated based on the above hypotheses for the ProBeam system. This study was
conducted under institutional review board (IRB) approval.

2.1. FLASH-RT Treatment Planning

Based on the open-source matRad TPS [31], a planning platform developed in house
was used to optimize all transmission IMPT plans using 240 MeV proton beams. The
240 MeV is the highest energy calibrated in TPS; assuming that the 240 MeV beam has
a similar spot profile and stopping power in the plateau region compared to 250 MeV
beam but having a lower transmission efficiency. Thus, the theoretical transmission of the
250 MeV beam was used for the dose rate calculation. All three methods, DADR, ADR,
and DTDR, were applied to derive the DRVHs for all the FLASH-RT plans to assess the
dose rate to both tumor and OARs.
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A cohort of 9 consecutive lung cancer patients previously treated by proton SBRT
was replanned using transmission FLASH beams for the study. The transmission plans
were developed with two different standard-of-care prescriptions: 45 Gy in 3 fraction and
34 Gy in 1 fraction for all patients [32,33]. Since the short beam-on time of each treatment
field (<1 s), the dose interplay effect [34] may not be a concern for each treatment field,
while in between fields and fractions, the target motion still needs to be considered. Thus,
4 DCT and the internal target method were used to compensate for the inter-fractional and
intra-fractional tumor motion. The internal clinical target volume (iCTV) was generated on
an averaged-CT by the union of CTVs on the corresponding 10-phase images of a 4 DCT.
The iCTV volume varied from 24 to 226 cm3 with a median value of 61 cm3. All plans
were generated using a 5-beam arrangement with 72 degrees equal angle intervals to give
uniform dose distributions to the target. Figure 1 shows the dose distribution and beam
arrangement for a typical case, with target coverage for all cases normalized to 100% iCTV
receiving 95% of the prescription dose for comparison purposes. The higher the minimum
MU/spot in an energy layer, the higher the SPDR can be achieved. The minimum 100 and
400 MU/spot, representing medium and high dose rates, were chosen as the threshold
for treatment planning. In total, 36 transmission FLASH-RT plans were optimized for
this study.

Figure 1. The 3D dose distribution of transmission plan using a 5-field arrangement. The dashed lines indicate the beam
direction, and the red contour shows the iCTV.

2.2. PBS Dose Rate Calculation Methods
2.2.1. Dose-Averaged Dose Rate (DADR)

Recently, van de Water et al. [18] proposed a dose-averaged dose rate (DADR) method
to evaluate the dose rate on proton PBS planning and treatment applications for head and
neck patients. Based on the van de Water et al. method, here we calculate the DADR dose
rate in Equation (1).

.
D

DADR
j =

N

∑
i=1

Dj,i

∑N
i=1 Dj.i

.
Dj.i (1)

Here, i denotes a spot, j represents a voxelized region in the target, and Dj,i is the

dose deposited by the i-th spot to the j-th voxel.
.

Dj.i is the i-th spot dose rate in the j-th
voxel, which is equivalent to the combination of the proton flux rate and proton dose
contribution to the j-th voxel, as reported in [18], and geometrically, it is determined by a
Gaussian distribution

.
Dj.i =

.
Dmaxe−

(rj−rc
i )

2

σ2 (2)
.

Dmax is the max dose rate at the spot center that determines the
.

Dj,i following the
Gaussian falloff in the spot lateral direction. Here, rj denotes the position of j-th voxel, rc

i
denotes the position of the i-th spot center, and σ is the spot sigma. In this case, to calculate
the overall dose rate in a particular voxel j, dose rates contributed from multiple spots
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are considered during the beam delivery. This method does not account for the temporal
separation between spots. Therefore, it will provide the same dose rate estimate from an
array of spots, regardless of the duration required to accumulate the dose.

2.2.2. Averaged Dose Rate (ADR)

Folkerts et al. [20] proposed an averaged dose rate (ADR) method to calculate the PBS
dose rate. Both duration of individual spot delivery and scanning from one spot to the
next spot are considered for dose rate calculation. The dose rate calculation formula is
shown in Equations (3)–(6) for a particular voxel, j; (Dj − 2d*) is the total dose deposited
in voxel j during the irradiation Tj, d∗ is a preset dose-threshold that determines the
irradiation start time t0 and the end time t1. By applying the dose-threshold, d∗, the non-
significant dose accumulation to voxel j from all the scanning spots is excluded from the
dose rate calculation. A dose-threshold of 0.1 Gy was chosen as the cutoff by Folkerts
et al. This dose rate value can be calculated for voxels in a region-of-interest, and statistics
reported accordingly.

.
D

ADR
j =

Dj − 2d∗

Tj
(3)

where,
dj(t0) = d∗ (4)

dj(t1) = Dj − d∗ (5)

Tj = t1 − t0 (6)

2.2.3. Dose-Threshold Dose Rate (DTDR)

PBS delivers doses via spot-scanning. The dose is at its maximum at the spot center
and decreases from the center to the lateral direction. DTDR uses a dose-threshold to
exclude the low dose tails of spots from dose rate calculation. As shown in Equation (7),
for voxel j, the dose-threshold dose rate (DTDR) is the minimum instantaneous dose rate
of all the spots that deposit dose to the voxel above a predefined dose-threshold d∗,

.
Dj,i is

the i-th spot dose rate in the j-th voxel calculated using Equation (2).

.
D

DTDR
j = min

( .
Dj,i

)
, if Dj,i > d∗, i = 1, 2 . . . n (7)

2.3. Pencil Beam Scanning Parameters

Monte Carlo beam modeling of the Varian ProBeam system has demonstrated that the
definition of 1 MU contains ~5.17 × 106 protons for 240 MeV beams [35]. Figure 2a reflects
the dose rate distribution for a single spot with 100 MU in a water phantom. Figure 2b
shows the correlations of SPDR, nozzle beam current, and MU/s for the FLASH mode.
Theoretically, when the system works at the highest transmission with a nozzle current
~640 nA [36–38], it corresponds to an SPDR of 2600 Gy/s. This study used minimums of
100 and 400 MU/spot, corresponding to two different instantaneous dose rates of 167 Gy/s
and 670 Gy/s, to assess the hypofractionation lung transmission FLASH plan quality and
3D volume dose rate distribution using these three types of dose rate metrics.
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Figure 2. (a) The dose rate profile for a 240 MeV single spot with 100 MU at the central plane along depth direction
(indicated by the arrow), (b) the theoretical calculation for nozzle current, minimum MU/spot, SPDR, and MU for proton
beam under FLASH mode.

3. Results
3.1. Phantom Dose Assessment

To benchmark our calculation with Folkerts et al. [20], we created the same spot map
and set the SPDR to 1300 Gy/s. As shown in Figure 3a, a 5 × 5 cm2 field with a spot spacing
of 5 mm was generated in a water phantom. All three different dose rate calculations are
performed, as shown in Figure 3c–e, and the color wash indicates the magnitude of the
dose rate. Figure 3b shows DRVHs for the three methods, demonstrating that the DADR,
ADR, and DTDR methods calculated the dose rate in the same phantom, and all three dose
rate methods could result in 100% of the volume being covered by at least 40 Gy/s. Because
the ADR method considers each spot’s duration and scanning time, it gives the lowest dose
rate compared to DADR and DTDR methods. Additionally, we observed from Figure 3d
that the ADR is scanning direction-dependent, and there are two dose rate bump strips at
the most outside spot lines of the scanning map. The DADR method weighted the dose
without considering the spot duration and scanning time; the dose rate was uniform across
the scanning map with the highest dose rate in most outside spots. The DTDR method uses
a 0.1 Gy dose-threshold to exclude the spot low dose tail from the dose rate calculation,
making the dose rate distribution a regular pattern. This dose rate pattern is similar to the
spot map, but the highest DTDR occurs between the spots not at the spot center, which
is different from the results of the ADR method. This can be explained as the spot dose,
and dose rate follows a Gaussian dose rate falloff from the spot center to the surrounding
area, the lower dose rate at the spot center originates from the adjacent spots; DTDR of
a voxel is the minimum dose rate contributed by the neighboring spot; therefore, the 2D
dose rate distribution shows a lower dose rate at the center of a spot. On the other hand,
the dose-threshold determines the distance from the region-of-interest to the adjacent spots
that can be considered for dose rate calculation. For instance, if a spot center dose is 100%,
the dose reduces to 1% at ~3 × sigma from the spot center which corresponds to a dose
rate of 1% of the spot center max dose rate at a distance of ~3 × sigma. Thus, a large
dose-threshold will generate a higher DTDR distribution and vice versa.

3.2. Plan Quality Assessment

Figure 4 shows the MU distributions of all spots for one patient. The mean MU/spot
is ~200 for the 15 Gy-100 MU plan, while the mean MU/spot is 455 MU for the 34 Gy-
100 MU plan. For the 15 Gy-400 MU plan, the mean MU/spot is 530 MU, while for the
34 Gy-400 MU plan, the mean MU/spot is ~660 MU.
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Figure 3. (a) A 5 × 5 cm2 dose map at water phantom surface with spots marked by dots, (b) DRVH comparisons for all
three calculation methods, (c–e) 2D dose rate distributions for DADR, ADR, and DTDR, respectively.

Figure 4. The MU statistics of spots for one patient using two different prescriptions
(15 Gy × 3 fractions and 34 Gy × 1 fraction) and two minimum MU/spot settings: the bar height
represents the mean MUs of one plan. The error bar represents the MU standard deviation from the
mean values.

All transmission plans could achieve a reasonably good uniformity (hotspot < 110% of
prescription dose). Figure 5a,b shows the averaged DVHs of the target volumes and OARs
for all nine patients. The 100 MU plan had a better uniformity and lower OAR doses for
both of the different prescriptions. As shown in Figure 5c, the D2%, representing the hot
spots dose volume, can be reduced by ~5% in the 15 Gy plans using 100 MU/spot instead
of 400 MU/spot, whereas, for the 34 Gy plan, the hot dose difference is minimal between
two different MU/spot settings. This indicates that the plan with a higher fraction dose
(34 Gy/fraction) could have better uniformity by using both low and high (100 and 400)
MU/spot, whereas the lower fraction dose (15 Gy/fraction) plan needs a smaller minimum
MU/spot to achieve a more uniform dose distribution.
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Figure 5. The average DVHs for all 9 patients for (a) 15 Gy × 3 plans and (b) 34 Gy × 1 plans; (c) is the target uniformity
comparison using D2% as the representative for the hot dose; the ends of the box denote the interquartile (25–75th percentile),
a horizontal line inside the box marks the median, and the whiskers are the two lines outside that represent the highest and
lowest observation.

Table 1 presents the OAR dose metrics of the four scenarios for the spinal cord,
functional lung, heart, and esophagus, and all these mean values and their standard
deviations were derived based on the average DVHs for all nine patients. As no constraints
are available for FLASH-RT yet, constraint parameters from RTOG0915 for 34 Gy in one
fraction SBRT are used [32,33]. Both 100 and 400 MU/spot plans are compared; in general,
lower MU plans can achieve lower OAR dose, especially for 15 Gy in three-fraction plans,
while for 34 Gy in one-fraction plans, the dosimetry differences are small between 100 and
400 MU/spot settings.

Table 1. OAR dose metrics for all transmission plans (RTOG0915 metrics are applied).

OAR RTOG0915
Constraints

34 Gy × 1
(100 MU)

34 Gy × 1
(400 MU)

15 Gy × 3
(100 MU)

15 Gy × 3
(400 MU)

Esophagus D 5 cc (Gy) 19.1 ± 9.8 19.5 ± 9.8 24.2 ± 14.2 25.9 ± 12.1
D max (Gy) 25.2 ± 9.5 25.5 ± 9.3 33.3 ± 12.1 34.8 ± 11.6

Heart
D 15 cc (Gy) 13.8 ± 14.1 13.6 ± 13.8 17.5 ± 18.4 18.2 ± 18.6
D max (Gy) 20.9 ± 14.6 21.3 ± 14.2 26.6 ± 18.6 28.6 ± 19.2

Lung-GTV V 7 Gy (cc) 909.2 ± 382.2 924.3 ± 399.2 1111.1 ± 495.4 1178.8 ± 495.0
V 7.4 Gy (cc) 825.0 ± 348.0 833.8 ± 370.4 1081.6 ± 495.9 1162.8 ± 488.9

Spinal cord
D 0.35 cc (Gy) 17.4 ± 5.1 17.9 ± 5.4 22.7 ± 7.5 25.4 ± 8.0
D 1.2 cc (Gy) 16.3 ± 4.6 16.9 ± 5.0 21.4 ± 6.9 24.0 ± 7.6
D max (Gy) 18.7 ± 5.7 19.1 ± 5.8 24.3 ± 8.3 27.6 ± 8.8

3.3. 3D Dose Rate

The dose rate distribution was calculated for each field then overlaid on the CT
images. Therefore, the voxels having non-zero doses for each field were included for
DRVH calculation, and the DRVH of a plan was sampled from all five fields. Figure 6a–c
shows the 3D dose rate distributions over the patient anatomy for each beam angle,
calculated using ADR, DADR, and DTDR methods. As seen in Figure 6a–c, the high dose
rate regions often occurred at the field edge for ADR and DTDR, while DADR resulted in
a better dose rate uniformity over the whole field. All three dose rates attenuated along
the beam direction due to the protons being scattered gradually when passing through
tissue. Figure 6d–f shows the DVHs and DRVHs for the target and OARs; as shown in
Figure 6d, a notable portion of OARs received irradiation at dose rates below 40 Gy/s
dose rate threshold when using the ADR method, whereas the majority of the volume
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of each OAR received irradiation with a dose rate > 40 Gy/s when using the DADR and
DTDR methods.

Figure 6. The dose rate comparison among all three methods for a typical patient using a minimum 400 MU/spot and
34 Gy × 1 fraction. (a–c) Show the dose rate distributions from each different field over patient anatomy, (d–f) are the DVHs
and DRVHs, the solid lines are DVHs and the dashed lines are the DRVHs, and the 40 Gy/s dose rate is indicated by the
vertical dashed lines.

To quantify the target dose rate and OARs to determine if the FLASH dose rate was
reachable, a dose rate coverage index V40Gy/s was defined, representing the percentage
of the volume receiving a dose rate ≥ 40 Gy/s. Table 2 presents the dose rate statistics
among the three different calculation methods for all nine patients. Not surprisingly, ADR
considering the spot dwelling and scanning time gave the lowest dose rate, DTDR using
instantaneous dose rate not considering any other time effect but a dose-threshold of
0.1 Gy gave an intermediate dose rate, and DADR gave the highest dose rate without
considering any time or dose thresholds. The SPDR for 100 MU/spot was ~168 Gy/s, the
ADR V40Gy/s of iCTV for 34 and 15 Gy/fraction were only 0.04% and 0.3%, and when using
400 MU/spot with SPDR of ~670 Gy/s, the ratios increased to 81.4% and 99.3%. DADR
could always maintain a desired V40Gy/s of iCTV (~100%) using either a minimum 100 or
400 MU/spot for 15 or 34 Gy/fraction plans. When the dose rate was calculated using
DTDR, V40Gy/s of iCTV was much higher for 400 MU/spot plans than the 100 MU/spot
plans. In addition, the V40Gy/s for 15 Gy/fraction was higher than the 34 Gy/fraction plans
for both 100 and 400 MU/spot settings. Figure 7a summarizes the averaged dose rate for
all the OARs under each of the planning scenarios, and similar trends of V40Gy/s for iCTV
can be found for the OARs. The ADR could not give sufficient OAR V40Gy/s coverage using
100 MU/spot for 34 or 15 Gy/fraction plans; however, the V40Gy/s could be increased to
83.6% (34 Gy/fraction) and 93.4% (15 Gy/fraction) when a 400 MU/spot was used. Similar
to the target dose rate, DADR always calculated a high OARs V40Gy/s (>88.9%). In the
DTDR method, the V40Gy/s of OARs was much higher under a 400 MU/spot than under
a 100 MU/spot. Meanwhile, the V40Gy/s for 15 Gy/fraction plans was higher than the
34 Gy/fraction plans. Compared to a 15 Gy/fraction plan, the spots at larger distances
for the 34 Gy/fraction plan were also considered to contribute to the local instantaneous
dose rate when applying an absolute dose threshold in DTDR due to its higher mean spot
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dose. Each spot had the same machine-defined SPDR and a dose rate falloff following a
Gaussian distribution. The inclusion of distant spots guaranteed a lower local instantaneous
dose rate.

Table 2. V40Gy/s statistics for iCTV and OARs among ADR, DADR, and DTDR methods. The ratios are calculated by
averaging the plans for all nine patients under each of the three dose rate methods, and the standard deviation is expressed
in the parentheses. The last row of the table shows the averaged dose rate for the five OARs under each of the three dose
rate methods for illustration purposes.

34 Gy × 1,
Min MU: 100MU

15 Gy × 3,
Min MU: 100MU

34 Gy × 1,
Min MU: 400MU

15 Gy × 3,
Min MU: 400MU

ADR DADR DTDR ADR DADR DTDR ADR DADR DTDR ADR DADR DTDR

(%)

iCTV 0.04
(0.1)

98.8
(2.5)

0.0
(0)

0.3
(0.8)

98.8
(2.5)

25.7
(12.3)

81.4
(23.1)

100
(0.03)

97.2
(2.4)

93.3
(7.4)

100.0
(0.13)

99.9
(0.2)

esophagus 0.8
(1.6)

91.4
(5.7)

0.3
(0.7)

3.1
(1.5)

91.0
(5.5)

26.7
(15.1)

87.4
(10.4)

99.8
(0.2)
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Figure 7. (a) is the averaged V40Gy/s for all the OARs under each of the three dose rate methods; the ADR and DTDR are 1.0%
and 0.3% are represented by a star and triangle for better illustration. (b,c) Time structures determined by dose-threshold
0.1 Gy for ADR calculation under 15 Gy/fraction and 34 Gy/fraction, respectively.

4. Discussion

Thoracic malignancies are particularly challenging tumors to treat and are associated
with, perhaps, the highest rates of radiation-induced high-grade toxicities. Definitive
radiation therapy for lung and thoracic cancers can result in potentially fatal radiation
pneumonitis, quality-of-life-limiting pulmonary fibrosis, and esophagitis that can lead to
hospitalizations and failure to thrive [39]. Additionally, there is increasing recognition
that radiotherapy to the chest can lead to a variety of cardiac toxicities and major cardiac
events [40]. As such, ways to reduce both acute and late toxicities associated with thoracic
radiotherapy are critically needed. The potential normal tissue sparing effect of FLASH
might be a particularly attractive clinical option. This study investigated three types of
3D dose rate calculation methods and quantified their difference by assessing the dose
rates for nine lung cases under two prescribed hypofractionation treatment scenarios. The
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received dose rate for OARs is one of the major considerations in the FLASH sparing effect;
however, the entire OAR volume in the beam path was not always found to reach the
FLASH dose rate (>40 Gy/s). The differences in dose rate metrics have brought a large
variation in DRVH for OARs and targets. The realistic parameters of minimum MU/spot
and fractionation dose need to be optimized to achieve sufficient plan quality and a high
ratio of coverage for OARs with FLASH dose rate.

The MU definition varies between different vendors, and the spot delivery mechanism
can also be different. ProBeam working under a layer-wise delivery manner means that
the spot dose rate of each layer is determined by the minimum MU/spot. Awareness of
the delivery mechanism difference between different types of machines will be important
to model the dose rate correctly. This study was based on a Varian ProBeam system, and
the other types of spot delivery mechanisms were not included.

The clinical cyclotron systems, except for one compact synchrocyclotron system using
range shifter plates in treatment nozzle to pull back proton ranges [41], all use energy
degrader and energy selection system to generate lower energy proton beams to treat
tumors at variable depths. The energy selection and beam trimming by apertures cause
a large number of protons to be lost in the proton transportation. The low transmission
efficiency for lower energy beams prevents it from achieving a higher beam current in the
treatment room. Additionally, the energy switch time (~200 ms) is relatively long compared
to the total field delivery time of <1 s. Therefore, the transmission plans with high-energy
beams are more suitable for FLASH-RT applications. However, the transmission plans do
not use any Bragg peak for dose delivery, which results in exposure to normal tissues distal
to the target volume and unnecessary irradiation exposure not seen with clinical proton
therapy [42].

The first proton PBS human trial is using a forward treatment planning method [43],
and currently, the accessibility of commercial TPSs for FLASH inverse treatment planning
is limited. The TPS capability to optimize the spot weight may vary between different TPSs.
Different optimizers and dose calculation engines (analytical versus Monte Carlo algorithm)
can result in various plan quality and dose rate distributions. The planning parameters,
including the minimum MU/spot, fraction dose, selection of beam angles, prioritization
for OARs sparing, and target coverage, all impact the plan quality and final dose rate
distribution. Therefore, the treatment planning strategies, the DVH, and DRVH need to be
extensively studied once these commercial TPSs are available for clinical application.

The duration of each spot is at an order of magnitude ~10−3 s, the radiation-induced
events like the DNA damage begin over a time scale of 10−12–10−7 s [44,45], the rapid
consumption of local oxygen occurs on the scale of 10−3 s [46], and oxygen diffusion in
a time-scale of ~10−2 s [47]. Different researchers have proposed that either the mean
dose rate over the entire field delivery time [12,22,24] or the instantaneous dose rate of the
pulse [21] is more relevant to the FLASH sparing effect based on their understanding of the
currently available experimental data. DADR and DTDR, using the instantaneous dose rate,
ignore the dwelling time of spots and scanning time between spots which may overestimate
the dose–rate effect. The dose–threshold of DTDR could be tissue-specific, and the meaning
of the values is not clear yet. Adrian et al. [48] conducted the in vitro FLASH-RT versus
conventional-RT experiments to characterize the correlation between cell survival fraction
and the delivered dose, dose rate, and oxygen concentration. This in vitro analysis showed
that for a particular hypoxic condition (1.6% oxygen concentration), the FLASH-sparing
effect starts at 5–10 Gy, is apparent at ≥15 Gy, and significant at 18 Gy. Earlier studies by
Wilson et al. [49] have shown that for oxygen concentrations of 0.4%, a dose of 5–10 Gy
is sufficient to deplete cellular oxygen at the FLASH dose rate. Adrian et al. [48] studies
show no survival fraction difference for dose < 5 Gy between FLASH-RT and conventional-
RT. Different values of the dose-threshold will produce a wide deviation of the DTDR
distribution. Alternatively, ADR averages dose rates over the entire delivery of one field,
giving lower dose rate estimation. Similarly, the dose-threshold of 0.1 Gy used in the
ADR method is debatable. A clinically relevant dose-threshold needs to be determined by
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the biological study. In addition to minimum MU/spot and dose-threshold, the fraction
dose also plays an important role in determining the dose rate distribution. Figure 7a
shows that the 34 Gy/fraction plans have a lower ADR than the plans with lower fractional
dose of 15 Gy. This can be explained by applying the preset dose–threshold 0.1 Gy in the
ADR calculation. As indicated in Figure 7b,c, for an arbitrary voxel, the 0.1 Gy threshold
determines the start and end time window for the ADR calculation. For a given dose rate
(MU/s), the 15 Gy/fraction plan has a much narrow time span than the 34 Gy/fraction
plans since the mean MU/spot of 34 Gy/fraction is larger than the 15 Gy/fraction plans.
The ADR takes both the spot and the scanning time into consideration, and for a given
cyclotron beam current or minimum MU/spot, a larger field size requires a longer beam
time; therefore, the dose rate and the V40Gy/s coverage will decrease with the increase of
field size.

If it is possible, it will be important to quantify proton PBS dose rate using these
3-metric during pre-clinical study for better understanding the roles of the dose rate in
FLASH sparing effect. Recent research [50] using both continuous (40 Gy/s) and pulsed
beams (40 Gy/s with 10% duty cycle) studied the FLASH efficacy for the treatment of
non-small cell lung cancer in mice. That study found that both FLASH and Pulsed-FLASH
dose-rate modes had significantly smaller lung tumors than mice treated with proton
radiation delivered at conventional dose-rate. It will be of great interest to understand the
roles of the instantaneous versus the time-averaged dose rate when more data are available
to the FLASH-RT community. The limitation has been pointed out by other researchers [18],
namely that “all the pre-clinical FLASH experiments only using single beams and with a
validated radiobiological explanation for the FLASH effect still lacking, the impact of dead
times between spots on the effective dose rate remains unclear.” Additional in vitro and
in vivo work is needed to determine if the FLASH effect is still achieved as fractionation
increases and the number of fields increases.

5. Conclusions

The minimum MU/spot settings are critical to maintain an acceptable plan quality
while at the same time reaching a FLASH dose rate. The higher MU/spot corresponds to
the higher dose rate, while the target uniformity becomes worse. The plans with higher
fraction doses have better target uniformity than the ones with lower fraction doses when
the minimum MU/spot is higher (400 MU/spot). The ADR and DTDR methods show that
part of OARs could not reach the FLASH dose rate, whereas the DADR method gives a
much higher dose rate than the ADR and DTDR methods. The different PBS dose rate
calculation methods may result in a different correlation expectation between dose rate
metrics and biological effects for pre-clinical experiments. An awareness of the differences
in proton PBS dose rate calculation is important to design experiments and clinical trials to
uncover FLASH-RT’s biological and physiological mechanisms.
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