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Abstract

Methods

Fecal samples were collected from 92 bats in Slovenia, consisting of 12 different species,

and the bacterial microbiota was assessed via next generation sequencing of the 16S rRNA

gene V4 region.

Results

Sequences were assigned to 28 different phyla, but only Proteobacteria, Firmicutes, Bacter-

oidetes and Actinobacteria accounted for�1% of sequences. One phylum (Proteobacteria),

one class (Gammaproteobacteria), three orders (Pseudomonadales, Lactobacillales, Bacil-

lales), four families (Enterobacteriaceae, Pseudomonadaceae, Staphylococcaceae, Carno-

bacteriaceae), and five genera (Pseudomonas, Staphylococcus, Carnobacterium, an

unclassified Enterobacteriaceae, Acinetobacter) accounted for 50% of sequences. There

were no significant differences in the relative abundances of any phyla between bat species,

but various differences were noted at lower taxonomic levels, such as Enterobacteriaceae

(P = 0.007, most abundant in M. blythii), Pseudomonadaceae (P = 0.007, most abundant in

Rhinolophus hipposideros) and Chlamydiaceae (P = 0.04, most abundant in Myotis myotis).

There were significant differences in richness between species in both adults and juveniles/

subadults, but there was no impact of sex on any alpha diversity index. When only adults

are considered, there were significant differences in community membership between M.

blythii and M. emarginatus (P = 0.011), and M. blythii and R. hipposideros (P = 0.004).

There were also significant differences in community structure between M. blythii and M.

emarginatus (P = 0.025), and M. blythii and R. hipposideros (P = 0.026). When adults of the

four main species were compared, 14 OTUs were identified as differentially abundant using

LEfSe. Only one difference was identified when comparing R. hipposideros adults and juve-

nile/subadults, with Klebsiella over-represented in the younger bats.

Conclusions

Bats have a complex and diverse microbiota with a high relative abundance of Proteobac-

teria. The relevance of this difference is unclear and requires further study. Differences in
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the microbiota were observed between bat species, perhaps reflecting different diets and

environmental exposures.

Background

Bats (order Chiroptera) are a diverse group of mammals adapted to a variety of ecological

niches across the globe. They are the only mammals capable of true flight, which is essential

for their biology. They are able to migrate over long distances, creating opportunities for

diverse exposure and widespread dissemination of microbes. Bats that reside in temperate

zones such as northern and central Europe migrate south to warmer geographical locations or

hibernate to avoid cold environmental temperatures. [1]

Focus on bats often pertains to their status as reservoir host for several emerging zoonotic

viral pathogens, as well as many common human and animal viruses. [2–4] They have devel-

oped a benign phylogenetic relationship with several viral and non-viral intracellular patho-

gens, with some of them having or potentially having a zoonotic character. [2] Their presence

in a variety of human habitats, and their ability to migrate over larger geographical distances

make them significant sources of transmission of pathogens to humans, livestock and wildlife

species. [5, 6] Migration habits and their tendency to share roosting sites with other migrating

and non-migrating bat species also enables horizontal spread of pathogens within and among

bat species. [2, 5] Such behaviour is also critical for transmission of bat specific viral and non-

viral infectious diseases, [7, 8] including those with a potential negative impact on the sustain-

ability of bat population, [7, 9] as evident from a significant decline in North American bat

population due to White-nose syndrome caused by Pseudogymnoascus destructans. [10, 11]

Attention is increasingly being paid to the importance of the broad microbiota communi-

ties, or microbiotas, present in or on animals. These microbiotas play important but poorly

defined roles in health and disease. Through diverse effects such as pathogen inhibition, co-

aggregation and regulation of the immune system and metabolism, microbial communities

can have profound effects on their host and on other microorganisms (e.g. viruses, fungi, pro-

tozoa). An important aspect of determining the role of microbiotas in the prevention or patho-

genesis of disease is understanding what constitutes a normal microbiota and factors that can

influence such microbial communities. The objective of this study was to describe the fecal

microbiota of bats collected during their autumn migration across central Europe.

Materials and methods

Study population and sampling

Sampling of bats was conducted in 8 different parts of Slovenia (Fig 1, Table 1) during their

autumn migration across central Europe from August to September 2014. Bats were captured

with mist nets and placed individually in clean custom made bags by one of the authors (TK)

and her team from the Centre for Cartography of Fauna and Flora. [12] Bats were speciated

based on their morphology, and age and sex were determined for each animal. [13] All bats

were released within 30 min of their capture at the capture location. Fecal samples (guano)

were collected from bats only if naturally excreted before they were placed into a bag. Feces

was caught with a sterile glove (Ansell Ltd, UK), transferred into 2 mL sterile tubes (Eppendorf

Tubes, Germany) and stored at -20˚C within four hours of collection. If multiple fecal pellets

were excreted they were pooled.

Fecal microbiota of bats
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The study was carried out during the program “Monitoring of population of selected bats

species in years, 2014/2015, [14] carried out by Centre for Cartography of Fauna and Flora

with approval of Slovene Ministry of the Environment and Spatial Planning (document No.:

35601-35/2010-6). Bats were handled as specified in the European and Slovene Nature conser-

vation regulations.

DNA extraction and 16S rRNA gene PCR

A commercial kit (E.Z.N.A. Stool DNA Kit, Omega Bio-Tek Inc., Doraville, Georgia, USA)

was used for DNA extraction and DNA quantity and quality were assessed by spectrophotom-

etry (Nano Drop, Roche, Mississauga, Canada). The V4 region of the 16S rRNA gene was

then amplified using primers 564F and 785R [15] and amplicons were sequenced by Illumina

MiSeq using 2X250 chemistry, providing fully overlapping paired end reads. Negative (PCR

water instead of template) controls were included in all runs.

Data analysis

Analysis was performed using the open-sourced bioinformatics package MOTHUR (v1.35).

[16] After assembly of paired end reads, sequences underwent a series of quality control filters

to remove those that contained any ambiguous base calls, were inconsistent with the target

amplicon size (240 bp), contained runs of holopolymers >8bp in length, or did not align with

the correct 16S rRNA gene region. Uchime [17] was used to detect chimeras, which were sub-

sequently removed. Taxonomy was assigned using the ribosomal database project 16S rRNA

dataset [18]. Relative abundances of taxa were compared between the four main bat species by

Wilcoxon test, with the Benjamini-Hochberg technique used to adjust P values false discovery

rate. Analysis of less common species was not performed because of the low statistical power.

Alpha diversity was calculated using Chao1 richness, inverse Simpson’s diversity and Shan-

non’s evenness tests, and compared using Steel-Dwass or Wilcoxon rank sum tests. Logistic

regression was used to evaluate the impact of age, gender and species on alpha diversity

Fig 1. Cave sampling sites across Slovenia (SLO). Depiction of bat sampling sites in Slovenia.

https://doi.org/10.1371/journal.pone.0196728.g001

Fecal microbiota of bats

PLOS ONE | https://doi.org/10.1371/journal.pone.0196728 May 23, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0196728.g001
https://doi.org/10.1371/journal.pone.0196728


indices. Chi-square test was used to compare the proportion of adult samples between differ-

ent species. A P value of�0.05 was considered significant for all analyses. Statistical analyses

were performed using JMP13 (SAS Institute, Cary, NC, USA).

Sequences were also binned into operational taxonomic units (OTUs) at a 3% dissimilarity

level using the average neighbour method. Subsampling was performed to normalize sequence

Table 1. Bat species collected from different caves in Slovenia.

Cave and species No. of samples

Cave: Belojaca (JK2204) 8

Barbastella barbastellus 1

Miniopterus schreibersii 2

Myotis bechsteinii 1

Myotis emarginatus 1

Myotis myotis 1

Myotis nattererii 1

Rhinolophus ferrumequinum 1

Cave: Ciganska jama (JK0493) 4

Barbastella barbastellus 1

Myotis bechsteinii 1

Myotis daubentonii 1

Rhinolophus hipposideros 1

Cave: Golobina (JK0131) 3

Myotis daubentonii 2

Myotis emarginatus 1

Cave: Jama hudega bika (JK9803) 23

Myotis emarginatus 9

Myotis nattererii 1

Rhinolophus hipposideros 13

Cave: Pekel pri Zalogu (JK0553) 3

Myotis myotis 3

Cave: Predjamski sistem (JK0734) 17

Barbastella barbastellus 1

Miniopterus schreibersii 1

Myotis blythii 11

Myotis daubentonii 1

Myotis myotis 1

Pipistrellus pipistrellus 2

Cave: Skadovnica (JK0482) 30

Barbastella barbastellus 1

Myotis bechsteinii 1

Myotis daubentonii 1

Myotis emarginatus 8

Myotis myotis 2

Myotis nattererii 1

Plecotus auritus 1

Rhinolophus hipposideros 15

Steeple (Church Sveti Duh) 4

Myotis myotis 4

Sum 92

https://doi.org/10.1371/journal.pone.0196728.t001
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number for subsequent analyses, consisting of random selection of a number of sequences

from each sample that corresponded to the smallest number of sequences from an individual

sample. Dendrograms were developed through production of newick-formatted tree files in

mothur, with visualization using FigTree v1.4.2 (Institute of Evolutionary Biology, University

of Edinburgh, Edinburgh, UK). Trees were developed based on the traditional Jaccard index

(a measure of community membership) and the Yue & Clayton measure of dissimilarity

(a measure of community structure that evaluates membership and relative abundances).

Unweighted unifrac was used to evaluate differences between groups, based on those dendro-

grams. Principal coordinate analysis (PCoA) was performed to visualize differences in com-

munity membership and structure. Differentially abundant OTUs were identified using linear

discriminate analysis effect size (LEfSe). [19] Samples were also evaluated using the Dirichlet

multinomial mixtures method for probabilistic modeling [20] to determine whether the sam-

ples could be assigned to more than different metacommunities (enterotypes).

Results

Study population

Samples were collected from 92 bats; 29 (32%) Rhinolophus hipposideros (lesser horseshoe bat),

19 (21%) Myotis emarginatus (Geoffroy’s bat), 11 (12%) each of M. myotis (greater mouse-

eared bat) and M. blythii (lesser mouse-eared bat), five (5.4%) Myotis daubentonii (Dauben-

ton’s bat), four (4.3%) Barbastella barbastellus (Barbastelle bat), three (3.3%) each of Miniop-
terus schreibersii (Schreibers’ bent-wing bat), Myotis bechsteinii (Bechstein’s bat), and Myotis
nattererii (Natterer’s bat), two (2.2%) Pipistrellus pipistrellus (common pipistrelle) and one

(1.1%) each of Plecostus auritus (brown long-eared bat) and Rhinolophus ferrumequinum
(greater horseshoe bat). Sixty seven (73%) were males, 21 (23%) were females and sex was

undetermined for 4 (4.3%). Sixty-two (67%) were adults, eight (8.7%) were subadults and 18

(20%) were juveniles. Juveniles and adults were combined for further analysis. Age was unde-

termined for four (4.4%). There was disproportionate representation of ages and sexes between

species, with adults representing 34% (10/29) of R. hipposideros, 45% (5/11) of M. myotis, 95%

(18/19) in M. emarginatus and 91% (10/11) of M. blythii (P<0.001), necessitating subgroup

analysis.

Sequence metrics

A total of 6,909,990 sequences passed all quality control filters, ranging from 14,455 to 152,372

per sample (median 73,937, mean 75,109). The entire database was used for comparison of

relative abundances, while samples were normalized by subsampling of 14,455 sequences per

sample for calculation of alpha and beta diversity. Median Good’s coverage was 0.978 (median

absolute deviation 0.00979).

Taxonomy

Twenty eight different phyla were identified, but only four (Proteobacteria, Firmicutes, Bac-

teroidetes and Actinobacteria) accounted for 1% or more sequences overall. Many phyla

were quite rare, as the 15 phyla with the lowest relative abundances accounted for only 0.07%

of sequences. Five genera from the phylum Proteobacteria (Pseudomonas, Staphylococcus,
Carnobacterium, an unclassified Enterobacteriaceae, Acinetobacter) accounted for 50% of

sequences. The relative abundance of Proteobacteria was particularly high in M. blythii and

R. hipposideros.

Fecal microbiota of bats
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Relative abundances of the ten most common phyla in the four major bat species (all ages

combined) are presented in Table 2. There were no statistically significant differences in the

relative abundances of any phyla between bat species, perhaps in part due to the the marked

inter-individual variation. Various differences were noted at lower taxonomic levels. Predomi-

nant families are displayed in Fig 2. There were significant differences in Enterobacteriaceae

(P = 0.007, most abundant in M. blythii), Pseudomonadaceae (P = 0.007, most abundant in R.

hipposideros) and Chlamydiaceae (P = 0.04, most abundant in M. myotis). Predominant genera

are displayed in Fig 3. Significant differences were identified for Pseudomonas (P = 0.006), an

unclassified Enterobacteriaceae (P = 0.002) and Serratia (P = 0.002).

Because of the differences in age distribution between bat species, sub-analyses were per-

formed. When only adults are considered, there were no differences between phyla. There

were few differences at lower taxonomic levels (data not presented). At the genus level, the rel-

ative abundances of Pseudomonas (P = 0.028), an unclassified Enterobacteriaceae (P = 0.027)

and Serratia (P = 0.028)(Fig 4) were significantly different. The most common genera for the

main bat species are reported in Table 3.

Comparison of adult vs younger R. hipposideros yielded no significant differences at any

taxonomic level. Comparison of ages of other bat species was not performed because of the

small sample sizes.

The presence of selected genera containing potentially zoonotic species was also assessed

based on previous reports in bats. Salmonella was identified in 18 (20%, median 0%, range

0–0.0174%) samples, Campylobacter in 41 (44%, median 0%, range 0–0.131%) and Clostridium
in 90 (98%, median 0.0068%, range 0–3.99%). Bartonella was identified in 39 (42%, median

0%, range 0–3.80%) samples, Rickettsia in 16 (17%, median 0%, range 0–0.086%) and Coxiella
in two (2.2%, median 0%, range 0–0.0156%). There was no association between the relative

abundance of any of these taxa and age, sex, bat species or bat genus (all P>0.10). However,

there was an association between the presence of Rickettsia and bat genus, with a significantly

higher prevalence in Rhinolophus (28%) compared to Myotis (8.2%). There was no such associ-

ation for other genera.

Alpha diversity

There were significant differences in bacterial richness between species in both adults and

juveniles/subadults, but no differences in diversity or evenness (Table 4). Alpha diversity was

also compared between adult and juvenile/subadult R. hipposideros, and no significant differ-

ences were identified (all P>0.15). There was no impact of sex on any alpha diversity index

either overall or with R. hipposideros (all P>0.28).

Table 2. Median relative abundances, with absolute median deviation, of the ten predominant phyla from the fecal microbiota of four bat species.

Phylum Myotis blythii (n = 11) M. emarginatus (n = 19) M. myotis (n = 11) Rhinolophus hipposideros (n = 29)

Proteobacteria 0.47 (0.321) 0.13 (0.629) 0.13 (0.299) 0.54 (0.105)

Firmicutes 0.14 (0.335) 0.21 (0.624) 0.15 (0.336) 0.13 (0.109)

Bacteroidetes 0.003 (0.000122) 0.005 (0.00168) 0.026 (0.00254) 0.005 (0.000463)

Actinobacteria 0.0011 (0.0002) 0.0014 (0.00368) 0.0031 (0.00281) 0.0065 (0.00621)

Spirochaetes 0.00022 (0.000126) 0.00054 (0.000548) 0.00020 (0.000146) 0.00015 (0.000136)

Chlamydiae 0.00015 (0.001) 0.0001 (0.000446) 0.00036 (0.000345) 0.00003 (0.000031)

Deinococcus-Thermus 0.0011 (0.000233) 0.0012 (0.00316) 0.0007 (0.000185) 0.0016 (0.00122)

Verrucomicrobia 0.00020 (0.000133) 0.00039 (0.00117) 0.00033 (0.000298) 0.00020 (0.000181)

Chloroflexi 0.00002 (0.000016) 0.00009 (0.000335) 0.00013 (0.000115) 0.00024 (0.000242)

TM7 0.00004 (0.000043) 0.00013 (0.000653) 0.00012 (0.000091) 0.00007 (0.000069)

https://doi.org/10.1371/journal.pone.0196728.t002
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Beta diversity

When only adults are considered, there were significant differences in community member-

ship, as determined by unifrac, between M. blythii and M. emarginatus (P = 0.011), and M.

blythii and R. hipposideros (P = 0.004)(Fig 5). There were also significant differences in com-

munity structure between M. blythii and M. emarginatus (P = 0.025), and M. blythii and R. hip-
posideros (P = 0.026).

Comparison between adults and younger bats was also performed using R. hipposideros
alone, and no differences in community membership (P = 0.57) and structure (P = 0.85) were

identified.

LEfSe

When adults of the four main species were compared, 14 OTUs were identified as differentially

abundant using LEfSe (Table 5). Only one difference was identified when comparing R. hippo-
sideros adults and juvenile/subadults, with Klebsiella over-represented in the younger bats

(LDA score 2.9).

Fig 2. Comparison of family level data. Median relative abundances of predominant families in the fecal microbiota of Myotis
blythii (n = 11), M. emarginatus (n = 29), M. myotis (n = 11) and Rhinolophus hipposideros (n = 29).

https://doi.org/10.1371/journal.pone.0196728.g002
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Core microbiota

No OTUs were present in all samples at a minimum relative abundance of 1%. One OTU (Car-
nobacterium) was present in 76% (70/92) of samples at that minimum relative abundance,

while Staphylococcus was present in 68% (63/92) and an unclassified Enterobacteriaceae was

present in 54% (50/92).

Discussion

This study provides insight into the fecal microbiota of a selection of bat species from central

Europe. At a high level, the dominance of the phyla Proteobacteria, Firmicutes, Bacteroidetes

and Actinobacteria is consistent with the fecal microbiota of other mammals [21–26]. How-

ever, within that group of common phyla, Proteobacteria typically accounts for a smaller per-

centage of the microbiota than was noted here. [27–34] The median relative abundances of

this phylum in M. blythii (47%) and R. hipposideros (54%) were particularly high. A cloning-

based study of eight frugivorous and three insectivorous bats from India also reported pre-

dominance of Proteobacteria, [9] while members of the Enterobacteriaceae family (phylum

Proteobacteria) were most commonly identified in a small culture-based study of the intestinal

microbiota of the short-nosed fruit bat (Cynopterus brachyotis). [35] In a recent next-genera-

tion sequencing of six fecal samples from four different insectivorous species, Proteobacteria

was the second most common phylum, but still accounted for 32% of sequences. [36] How-

ever, in mammals increases in the relative abundance of Proteobacteria have been widely asso-

ciated with dysbiosis, being found in various disease states. [25, 37, 38] While detailed clinical

Fig 3. Comparison of genus data. Median relative abundances of predominant genera in the fecal microbiota of Barbastella barbastellus (n = 4),

Miniopterus schreibersii (n = 3), Myotis bechsteinii (n = 3), Myotis blythii (n = 11), M. daubentonii (n = 5), M. emarginatus (n = 29), M. myotis (n = 11),

M. natterii (n = 3), Pipistrellus pipistrellus (n = 2), Plecotus auritus (n = 1) and Rhinolophus ferrumequinum (n = 1) and R. hipposideros (n = 29).

https://doi.org/10.1371/journal.pone.0196728.g003
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history is not available, overt abnormalities were not identified in any of these bats, and the

authors are not aware of any confirmed or anecdotal issues with abnormal bat morbidity or

mortality in the bat population during the time of this study. It seems that the abundance of

Proteobacteria in insectivorous bats could be more likely related to their phylogeny and their

association with caves (environment) than their diet [36, 39]. Proteobacteria, along with Acid-

obacteria, and Actinobacteria, are the dominant taxa on cave walls worldwide. [40–42]

Various genera accounted for the Proteobacteria sequences, with Pseudomonas being

amongst the most common. While unusual compared to other mammals, this is consistent

with a recent digestion gradient gel electrophoresis (DGGE)-based study suggested that

Pseudomonas was one of the most common genera in the fecal microbiota of hibernating

R. euryale. [43] This genus is most often implicated as an opportunistic pathogen; however,

some Pseudomonas from the skin microbiota of bats have been shown to be inhibitory in vitro
against Pseudogymnoascus destructans, [11] the cause of the devastating white-nose syndrome.

Associations between the bat’s microbiota and the pathogenesis of this syndrome warrant fur-

ther investigation. Members of the class Clostridia, a predominant member of the phylum Fir-

micutes, were relatively uncommon, particularly compared to studies of other mammals. This

Fig 4. Comparison of predominate genera in adult bats. Comparison of the median relative abundances of three predominant genera in the

fecal microbiota of adult Myotis blythii (n = 10), M. emarginatus (n = 18), M. myotis (n = 5) and Rhinolophus hipposideros (n = 10).

https://doi.org/10.1371/journal.pone.0196728.g004
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group, especially members of the Clostridiales order, has often been associated with gastroin-

testinal health in other species. [25, 44–46] A major challenge with microbiota studies is put-

ting the abundant and complex data into broader applied contexts. Whether the differences

noted here represent potential health problems is unclear but bears consideration.

Bats are known to harbour a wide range of potential bacterial zoonotic pathogens. A previ-

ous microbiota study reported identification of genera associated with zoonotic species, namely

Coxiella, Bartonella and Rickettsia. [36] Here, Bartonella, Rickettsia and Coxiella sequences were

identified. Interpretation of these results is a challenge. Broad range next generation sequencing

approaches are not optimal for identification of low abundance members of a community and

do not differentiate individual species. The public health relevance is also unclear, because of

the lack of speciation within those genera and limited likelihood of exposure of some pathogens,

Table 3. Genera with the highest median relative abundances (plus absolute median deviation) in the fecal microbiota of adult bats of four bat species.

Myotis blythii (n = 10) M. emarginatus (n = 18) M. myotis (n = 5) R. hipposideros (n = 10)

Unclassified Enterobacteriaceae (0.31,

0.0758)

Staphylococcus (0.23, 0.107) Pseudomonas (0.18, 0.0145) Pseudomonas (0.32, 0.175)

Carnobacterium (0.27, 0.163) Carnobacterium (0.087, 0.0138) Staphylococcus (0.13, 0.0282) Acinetobacter (0.100.0216)

Lactococcus (0.066, 0.0282) Pseudomonas (0.065, 0.0169) Ignatzschineria (0.098,

0.000735)

Carnobacterium (0.091, 0.040)

Staphylococcus (0.050, 0.0137) Enterococcus (0.065, 0.00119) Weissella (0.089, 0.00021) Staphylococcus (0.089, 0.0031)

Pseudomonas (0.049, 0.0145) Ignatzschineria (0.062, 0.00269) Acinetobacter (0.082, 0.00639) Unclassified Enterobacteriaceae (0.072,

0.0193)

Obesumbacterium (0.041, 0.00462) Unclassified Gammaproteobacteria (0.045,

0.0125)

Wohlfahrtiimonas (0.043,

0.00187)

Yersinia (0.064, 0.0024)

Enterococcus (0.035, 0.0056) Unclassified Enterobacteriaceae (0.042,

0.0719)

Vagococcus (0.039, 0.00763) Enterococcus (0.043, 0.0176)

Unclassified Planococcaceae (0.031,

0.0011)

Unclassified Planococcaceae (0.038, 0.00115) Psychrobacter (0.037, 0.00033) Obesumbacterium (0.036, 0.00639)

Serratia (0.031, 0.0393) Providencia (0.032, 0000281) Paenalcaligenes (0.029, 0.004) Providencia (0.029, 0.0057)

Sporosarcina (0.015, 0.000059) Obesumbacterium (0.022, 0.00105) Enterococcus (0.025, 0.0345) Serratia (0.015, 0.00303)

https://doi.org/10.1371/journal.pone.0196728.t003

Table 4. Median alpha diversity values for fecal microbiota of the four main bat species.

Index Myotis blythii (n = 10/1)� M. emarginatus (n = 18/1) M. myotis (n = 5/6) Rhinolophus hipposideros (n = 10/19)

Combined Observed richness 317a 402a,b 458a,b 700b

Estimated richness 811a 933a 918a,b 2279b

Evenness 0.354a 0.379a 0.422a,b 0.459b

Diversity 4.32a 4.69a 5.42a,b 8.64b

Adults Observed richness 304a 303a,b 458a,b 675b

Estimated richness 762a 927a,b 918a,b 1806b

Diversity 3.95 4.47 5.42 7.51

Evenness 0.35 0.37 0.32 0.40

Juvenile/subadult Observed richness NT NT 343 606

Estimated richness NT NT 1142 2359

Diversity NT NT 5.3 9.6

Evenness NT NT 0.37 0.50

Within rows, different superscripts indicate P<0.05.

NT: Not tested because of small sample size.

� numbers represent adults/non-adults

https://doi.org/10.1371/journal.pone.0196728.t004
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particularly arthropod-borne pathogens like Bartonella and Rickettsia. Enteropathogenic bacte-

ria may be of greater relevance, but the lack of ability to speciate common and diverse genera

such as Clostridium and Escherichia limits any conclusions that can be made about potential

zoonotic risks. Thus, care should be taken when making inferences about shedding of zoonotic

pathogens. Targeted efforts, such as through culture or species-specific PCR, are needed to

properly assess the prevalence of individual species.

Fig 5. Community membership of predominant bat species. Principle coordinate analysis depicting the community membership of the fecal bacterial microbiota of

Myotis blythii (green, n = 11), M. emarginatus (red, n = 29), M. myotis (blue, n = 11) and Rhinolophus hipposideros (purple = 29), with 50% ellipsoid coverage.

https://doi.org/10.1371/journal.pone.0196728.g005

Table 5. Linear discriminant analysis effect size (LEfSe) results.

Myotis blythii M. emarginatus M. myotis
Lactococcus (Firmicutes) Providencia (Proteobacteria) Unclassified Lactobacillales (Firmicutes)

Serratia (Proteobacteria) Aerococcus (Firmicutes) Vagococcus (Firmicutes)

Unclassified Enterobacteriaceae (2 OTUs, Proteobacteria) Staphylococcus (Firmicutes) Weissella (Firmicutes)

Pantoea (Proteobacteria) Unclassified Gammaproteobacteria (Proteobacteria)

Persicirhabdus (Verrucomicrobia)

LEfSe analysis identified differentially abundant operational taxon units (phylum in brackets) in the fecal bacterial microbiota of adults of four major bat species; Myotis
blythii (n = 10), M. emarginatis (n = 18), M. myotis (n = 5) and R. hipposideros (n = 10)

https://doi.org/10.1371/journal.pone.0196728.t005
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Richness is an alpha diversity index that indicates the number of different members (e.g.

species) in a community. Significant differences in richness were identified, with richness

being higher in both adult and subadult R. hipposideros compared to M. blythii. Differences

in beta-diversity were also identified, with most differences involving M. blythii. Reasons for

these differences are not readily apparent but may relate to exposure to different bacteria dur-

ing feeding, from insect prey or the environment. Limited information is available about the

environment or diet of these bat species at the time and location of sampling. The potential

impact of prey on the microbiota is highlighted by the commonness of insect associated genera

such as Ignatzschineria, Paenalcaligenes and Wohlfahrtiimonas.
Only a modest impact of age was identified in this study. While the impact of age on the

microbiota has been well established in many species, the microbiota tends to stabilize rela-

tively early in development, prior to adulthood. [21, 47] Juvenile bats, while still growing,

may have already largely developed an ‘adult’ microbiota. Presumably, a greater impact of age

would have been noted if younger bats were sampled. However, access to different ages was

limited to the ages of bats that were caught during sampling. The number of younger bats was

limited so care must be taken with any conclusion of the impact of age, but these data suggest

that differences between juvenile and adult bats are limited, at least for R. hipposideros.
It is unclear how well these results can be extrapolated to other bat species and bats from

other regions. There are over 1200 different species of bats, with marked differences in habitat,

diet, range and size. There are potential impacts of geography, diet, environmental exposures

and likely a range of other variables on the microbiota. Therefore, further study of bats in dif-

ferent regions would be useful to determine how conserved the microbiota is between species

and regions. As part of that, identification of whether there is a true ‘core’ microbiota would be

interesting. Core members, taxa that are present in most or all bats, or at least bats with similar

habitats or diets (e.g. insectivores) would likely represent bacteria that have evolved closely

with bats and that may play more important physiological or nutritional roles. In this study,

Carnobacterium was the most widely distributed of the common (� 1% relative abundance)

OTUs. This Firmicutes member (class Bacilli, Order Lactobacillales) has been studied most

as a cause of packaged meat spoilage, [48] but has been found in a range of sources and sites,

including dust, shrimp, the nasopharyngeal microbiota of cattle, donkey milk and feces of vari-

ous species. [49–53]

Bats harbour a diverse and complex bacterial microbiota that can vary between species and

age groups. There appear to be fundamental differences in the composition of the fecal micro-

biota when compared to other mammalian species, and further study of variation between and

within bat species, as well as the impact of the microbiota on health, is indicated.
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47. Costa MC, Stämpfli HR, Allen-Vercoe E, Weese JS. Development of the faecal microbiota in foals.

Equine Veterinary Journal. 2015. https://doi.org/10.1111/evj.12532 PMID: 26518456.

48. Cauchie E, Gand M, Kergourlay G, Taminiau B, Delhalle L, Korsak N, et al. The use of 16S rRNA gene

metagenetic monitoring of refrigerated food products for understanding the kinetics of microbial subpop-

ulations at different storage temperatures: the example of white pudding. International journal of food

microbiology. 2017; 247:70–8. https://doi.org/10.1016/j.ijfoodmicro.2016.10.012 PMID: 27751567.

49. Konya T, Koster B, Maughan H, Escobar M, Azad MB, Guttman DS, et al. Associations between bacte-

rial communities of house dust and infant gut. Environmental research. 2014; 131:25–30. https://doi.

org/10.1016/j.envres.2014.02.005 PMID: 24637181.
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