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Abstract
Eye tracking (ET) technology is increasingly utilized to quantify visual behavior in the study of the development of domain-
specific expertise. However, the identification and measurement of distinct gaze patterns using traditional ET metrics has been
challenging, and the insights gained shown to be inconclusive about the nature of expert gaze behavior. In this article, we
introduce an algorithmic approach for the extraction of object-related gaze sequences and determine task-related expertise by
investigating the development of gaze sequence patterns during a multi-trial study of a simplified airplane assembly task. We
demonstrate the algorithm in a study where novice (n = 28) and expert (n = 2) eye movements were recorded in successive trials
(n = 8), allowing us to verify whether similar patterns develop with increasing expertise. In the proposed approach, AOI
sequences were transformed to string representation and processed using the k-mer method, a well-known method from the field
of computational biology. Our results for expertise development suggest that basic tendencies are visible in traditional ET
metrics, such as the fixation duration, but are much more evident for k-mers of k > 2. With increased on-task experience, the
appearance of expert k-mer patterns in novice gaze sequences was shown to increase significantly (p < 0.001). The results
illustrate that the multi-trial k-mer approach is suitable for revealing specific cognitive processes and can quantify learning
progress using gaze patterns that include both spatial and temporal information, which could provide a valuable tool for novice
training and expert assessment.
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Introduction

Advances in the technology of eye tracking (ET) have provid-
ed us with a deeper understanding of specific cognitive pro-
cesses and the development of perceptual expertise. Using
traditional ET metrics, the majority of studies have focused
on the analysis of visual expertise by investigating the eye
movements of individuals in a wide range of domains, such
as teaching (McIntyre & Foulsham, 2018a), medicine
(Castner et al., 2020; Fox & Faulkne-Jones, 2017; van der
Gijp et al., 2017) or aviation (Haslbeck & Zhang, 2017).
Traditionally, these studies use ET as summary statistics, such
as fixation duration, dwell time duration, fixation count, or
time to first fixation to analyze expertise specific gaze behav-
ior (Cristino et al., 2010; Kanan et al., 2015; Ooms et al.,

2012). These metrics, however, only capture the simplest of
temporal information, while neglecting the temporal and spa-
tial context of eye movements (Cristino et al., 2010). Studies
using summary statistics have often generalized their findings,
claiming that experts experience fewer fixations and shorter
fixation durations, even though it has been established that
expertise is highly domain-specific (Chi, 2006). Jarodzka
and Boshuizen (2017) concluded that the reported measures
are too reductionist to capture interesting insights into the
nature of task- and stimuli-specific expert behaviors.

Researchers have since looked increasingly beyond tradi-
tional ET measures and have studied expertise by including
the sequential information of gaze sequences. Sequential anal-
ysis has been shown to reveal a learner’s overall learning
behavior (Tsai et al., 2012) and that in-depth analysis of indi-
viduals’ cognitive strategies during goal-oriented tasks (Hou
et al., 2009) can be achieved. Moreover, Day et al. (2018)
found that studies on expert and novice gaze behavior could
benefit from identifying patterns that appear with a higher
likelihood in a specific expertise group. Consequently, the
comparison of gaze sequences using measures of string
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similarity, such as the Levensthein distance (Levenshtein,
1966), has successfully advanced our understanding of exper-
tise development by showing that experts’ eye movements are
more similar to each other than to those of lower expertise
levels (Kanan et al., 2015; Tien et al., 2015; Watalingam
et al., 2017). In these so-called string-edit approaches, such
as ScanMatch (Cristino et al., 2010), a gaze sequence is con-
verted into a string of letters, where each letter is assigned to a
fixation onto a specific object or area of interest (AOI), thus
conserving the temporal and spatial fixation information. Two
sequences are then compared by counting the number of op-
erations that are needed to convert one sequence into the other,
which provides the similarity score (Anderson, Anderson,
Kingstone, & Bischof, 2015a).

However, for the analysis of perceptual expertise develop-
ment, two central aspects have yet to be considered. First,
although the commonly applied string-edit approaches con-
sider sequential gaze information during sequence compari-
son, the spatial and the temporal object relationship is lost
after the similarity score calculation (Cristino et al., 2010;
Day et al., 2018). Thus, after showing that differences be-
tween experts and novices exist, the question remains as to
which task-specific gaze sequences can be consistently mea-
sured in expert eye movements and whether a suitable ET
metric can be found that allows quantification of visual exper-
tise development. Second, in the overwhelming majority of
studies that investigate the development of expert gaze behav-
ior, it is common practice that a single dataset of participants
from different stages of development is recorded and that the
gaze sequences of each group are then compared to specify
expertise-related similarities (Castner et al., 2018; Eivazi et al.,
2012). While this approach allows the analysis of how ex-
perts’ and novices’ eye movements differ at the specific time
of the study, it stems from the assumption that all novices will
eventually develop gaze sequences that are very similar to
those of experts, with increasing training. However, to be able
to truly reveal which behaviors are developed during training,
multiple measurements on the same participants should be
considered. Only then can we understand what behaviors
drive the development of expert behavior within an individual
under stable learning conditions (Gegenfurtner, 2013).
Because of these limitations, a different approach to analyze
gaze sequences is needed that can on one hand reveal task-
specific gaze patterns and, on the other, allow the quantifica-
tion of the development of expertise over time. In the field of
computational biology, algorithms for quantitative DNA and
protein sequence comparison approaches have been devel-
oped and optimized for decades. One well-established ap-
proach is k-mer analysis, which counts the frequency of sub-
sequence patterns of neighboring elements with length k (2-
mer, 3-mer, 4-mer, etc.) (Manekar & Sathe, 2018). The com-
parison of subsequences preserves the information of the

composition of said sequences, which, in this case, is the se-
quence of letters representing fixations on AOIs.

In this article, we demonstrate the ability of a k-mer pattern
approach to determine the development of expertise, by ap-
plying the algorithm to object-related gaze data of an ET study
involving a natural handling task. By analyzing the sub-
pattern frequencies over multiple successive trials of the same
expert and novice subjects, we show that k-mer patterns can
provide a suitable metric to quantify the development of task-
related expertise.

Related works

This section aims to highlight the previously conducted re-
search in the field of visual expertise and sequence compari-
son approaches, and provides an overview of the k-mer anal-
ysis approach.

Eye movements in the study of visual expertise

Eye tracking (ET) has established itself as a popular research
tool for the study of behavioral patterns (Duchowski, 2017;
Land & Hayhoe, 2001) and, due to easier accessibility of the
technology, has been increasingly applied to investigate visual
expertise and expertise development (Brunyé et al., 2014;
Crowe et al., 2018; Kelly et al., 2016). Particularly in the field
of medicine, it has been of increasing interest what constitutes
expertise, to increase the effectiveness and efficiency of nov-
ice training and diagnostic accuracy (van der Gijp et al.,
2017). Using ET summary statistics, Wood et al. (2013) found
that during the interpretation of skeletal radiographs, experts
when compared to novices exhibit shorter fixation durations
and are faster to fixate on the site of the fracture. In a study on
laparoscopic skill acquisition, Wilson et al. (2011) discovered
that experts show more fixations on task-relevant areas, while
Gegenfurtner et al. (2011) showed that experts have longer
saccades and, again, shorter time to fixate on task-relevant
information. Zimmermann et al. (2020) measured fewer AOI
transitions between task-critical objects during expert trials
compared to novices during a cardiovascular intervention.
Conversely, other studies have reported that novices, not ex-
perts, focused more of their attention on the surgical task
(Zheng et al., 2011) and that experts visited fewer task-
relevant areas (Jaarsma et al., 2015). In their review on ET
study results for visual diagnostic performance in radiology,
van der Gijp et al. (2017) found conflicting results regarding
the relationship between the level of expertise and ET sum-
mary statistics. While in all studies the number of fixations
seems to decrease with high levels of expertise, no generali-
zation could be made on AOI fixation durations, the number
of fixations on AOIs, dwell time ratios, saccade lengths, or
image coverage.
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Van der Gijp’s results coincide with our knowledge that
expertise is highly domain-specific (Beck et al., 2013; Chi,
2006; Sheridan & Reingold, 2017) and that results based on
traditional ET summary statistics cannot and should not be
generalized (Fox & Faulkne, 2017; Jarodzka & Boshuizen,
2017). Hence, in order to reveal more in-depth insights into
the nature of perceptual expertise development, we are faced
with the challenge of finding eye movement-based metrics
that can help uncover task-specific, behavior-based develop-
ment of expertise, while being generally applicable to a wide
range of domains.

String-edit approaches

First introduced by Noton and Stark (1971), the scanpath the-
ory postulates that fixed viewing sequences are generated top-
down as a result of the specific model of a subject. Using a
string editing approach, Privitera and Stark (2000) were the
first to achieve scanpath comparison that compared both the
temporal and the spatial information of fixations. In string-edit
approaches, gaze sequences are converted into strings of let-
ters, where each fixation of a different AOI is assigned a
specific alphabetical character (Anderson, Anderson,
Kingstone, & Bischof, 2015a). Furthermore, additional infor-
mation about the length of the fixation can be included by
repeating a letter based on the fixation duration (Cristino
et al., 2010). Finally, by counting the number of operations
needed to convert one sequence into the other, by using for
example the Levenshtein distance (Levenshtein, 1966), a
score is calculated to assess the similarity between eye move-
ments in the context of a task (Foulsham et al., 2012).

One algorithm that was successfully adapted from compu-
tational biology to eye movement analysis is the Needleman-
Wunsch algorithm (Kübler et al., 2017). Compared to the
traditional string-edit approach, this algorithm allows local
alignments between matching AOI patterns of two scanpath
sequences.

In over two decades, various algorithms have been pro-
posed to further improve gaze sequence comparisons, such
as MultiMatch (Dewhurst et al., 2012), SubsMatch 2.0
(Kübler et al., 2017), EyeMSA (Burch et al., 2018) or
ScanMatch (Cristino et al., 2010). MultiMatch compares the
similarity of scanpaths as geometric vectors, including mea-
sures of saccade length and direction, without needing to cou-
ple ET data to predefined AOIs (Dewhurst et al., 2012;
Jarodzka et al., 2010). SubsMatch 2.0 classifies eye move-
ments between groups based on k-mer subsequences, while
EyeMSA allows pairwise and multiple sequence alignments.
For an in-depth description see Nicola C. Anderson’s et al.
(2015a, b) review on scanpath comparison methods.

In the context of expertise development, the majority of ET
studies have applied gaze sequence similarity in the following
two ways: the evaluation of experience-related eye movement

similarities and the classification of the expertise level based
on the gaze sequence. McIntyre and Foulsham (2018b) have
successfully shown that the gaze sequences of subjects, within
the same level of expertise, are more similar than between
subjects of different expertise groups. Castner et al. (2020)
proposed a model for scanpath classification that is capable
of extracting expertise-specific gaze behavior during a study
of dental radiograph inspection.

However, as previously mentioned in the introduction,
these approaches have some known limitations. One of the
biggest limitations, next to the high computational cost of
pairwise sequence comparison, is that similarity calculation
is an essentially reductionist approach that reduces gaze be-
havior to a single cumulative score. While many measures of
similarity can be used as a metric to determine behavioral
differences between groups (Fahimi & Bruce, 2020), it does
not allow one to infer which gaze sequences are developed
during the evolution of novices to experts. Measuring similar-
ity over time would indicate that individuals behave more
similarly to experts, but the questionwould remain as to which
of the gaze sequences changed during training.

Therefore, a metric is sought that, firstly, keeps the contex-
tual temporal and spatial information of a specific task or
domain, while, secondly, allows quantitative measurement
of gaze patterns and, thirdly, enables one to infer the level of
expertise development. Here, we propose to apply k-mer anal-
ysis object, or AOI, related gaze sequence patterns.

k-mers

In the field of computational biology, it is a common approach
to identify similarity relationships between DNA sequences,
with the goal to gain a fundamental understanding of how
biological organisms function (Liu et al., 2013). Next to the
Needleman–Wunsch algorithm, k-mer analysis has
established itself as a simple but effective sequence analysis
method (Ren et al., 2017). Compared to sequence alignment
and string-edit approaches, the k-mer method segments each
sequence into subsequences of length k and counts their ap-
pearance within the sequence. Hence, sequences can be com-
pared based on the k-mer count of each pattern, while the
individual components that are contained within each subse-
quence are conserved. In DNA analysis, each DNA sequence
is regarded as a string with four letters (A, G, C, T), and the
choice of k determines the number of possible combinations,
with no. of combinations=no. of AOIsk (Manekar & Sathe,
2018). Because k-mers can be applied to all sequences in
character representation, they can be applied to gaze se-
quences in the commonly used string-edit form. Bulling
et al. (2013) have applied k-mers to electrooculography
(EOG) signals to recognize high-level contextual cues, and
Elbattah et al. (2020) have used k-mers to describe sequence
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patterns of fixations and saccades to assist the automated di-
agnosis of autism.

In the present study, we have used higher-level ET data that
was created using fixation-to-object mapping. Each dwell on
an AOI was assigned a specific letter. Consequently, each k-
mer pattern both preserves the sequence of k successive
looked-at AOIs and allows us to compare different expertise
levels by evaluating the appearance count of frequently
appearing patterns.

Method

Subjects

Thirty subjects, mostly students, participated in the study (16
male, 14 female, mean age ± SD = 23.76 ± 2.3 years). All
participants reported normal or corrected-to-normal vision
and no neurological conditions. Each participant provided in-
formed consent prior to testing and received no monetary
compensation.

Stimuli

As was mentioned in the introduction, it is desirable to record
data of the same novices over multiple trials, in order to ob-
serve if the same behavioral patterns that are found in experts
are developedwith increasing experience.Moreover, the com-
parison of these behaviors across different experience levels
will verify if specific tasks induce idiosyncratic gaze se-
quences. However, in most ET studies involving medical ex-
pertise, the investigated task can take years to master, which
makes repeated data recording during the stages of develop-
ment costly and, often due to time constraints of experts, un-
feasible. Therefore, it was important to find a suitably simple
stimulus which allows the training of task-native subjects and
where the development of expert behaviors should be observ-
able within few repetitions while being cognitively demand-
ing. Additionally, the learning complexity should be easily
adjustable. We decided to use the assembly of an aircraft
model, consisting of Lego-like building blocks, as the study
stimulus. In a study on learning curves, Robbins (2019) veri-
fied the suitability of such a building block assembly stimulus
to portray typical learning behavior over eight repetitions.

To show that the proposed method produces comparable
results for different complexity levels, ET data of two stimuli
were recorded. Subjects were assigned to either the easier
bicolor (NOV BC) or the more complex multicolor (NOV
MC) stimulus. Figure 1 shows the aircraft model stimuli for
each group. Figure 2a shows the study setup, with three sep-
arate task-relevant areas: In front of the subject, a building area
was separated by duct tape (A), a tray (B) containing the
building blocks was placed to the right of the building area

and a digital assembly manual with step-by-step guidance (C)
was placed behind the building area. Subjects of group NOV
BC were provided with 27 blocks in two different colors (see
Fig. 2b). To add the complexity, subjects of group NOV MC
were instead given 54 blocks in ten different colors, of which
27 were used as distracting elements (see Fig. 2c).

Study setup

The study was conducted by dividing the subjects into two
groups of 15 participants. Each group was given either the
simple bicolor (n = 15) or the more complex multicolor stim-
ulus (n = 15). Due to the absence of task-native experts, one
subject of each group was trained to expert level as a reference
for each stimulus (group EXP). The expert training was con-
ducted one day before data recording and was carried out until
subjects acquired the ability to finish the assembly repeatedly,
without the use of the manual and without making any mis-
takes. All 30 participants, 28 novices and 2 experts, completed
a set of eight successive trials, resulting in a total of 240 re-
corded assemblies with 240 individual gaze sequences. Each
set of trials took approximately 15–25 min to complete (in-
cluding instructions). The use of the manual was not strictly
required; however, all subjects were instructed to respect the
building sequence in the correct and color-sensitive order. The
arrangement of building blocks in each group was consistent
throughout all trials and, after the last building step, a new set
of building blocks was provided for the next assembly.

Recording equipment

Eye tracking data were recorded using the SMI Eye Tracking
Glasses 2 and evaluated using SMI’s BeGaze version 3.6 soft-
ware (SensoMotoric Instruments, Teltow, Germany). The mo-
bile ET glasses record data at a sampling rate of 60 Hz and
have a reported gaze position accuracy of 0.5°. The integrated
scene camera was recorded with a resolution of 1280 × 960
pixels at 30 frames per second. The audio was simultaneously
recorded with the integrated microphone. Before the start of
recording, each subject completed a three-point calibration
process. The eye tracking ratio (tracking accuracy) was 97.8
± 1.2% averaged over all participants. No participant data had
to be excluded from analysis due to insufficient data quality.
We conducted the calibration using the SMI recording unit
and a three-point calibration, where the wearer was asked to
fixate on three specific markers (top-left corner, top-right cor-
ner, and the middle of the bottom edge). During each marker
fixation, the experimenter manually confirmed these marker
locations on a live-view of the scene camera on the recording
device. Afterward, the experimenter made sure that both eyes
were clearly visible on the eye camera recordings and calibra-
tion was validated using a three-point validation of specific
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points within the task environment. If the calibration accuracy
was not sufficient, calibration and validation were repeated.

k-mer sub-pattern analysis

Figure 3 shows the analysis approach for the extraction of k-mer
gaze sequence patterns. As is the usual practice in ET analysis, the
first step is to detect eye movement “events,” particularly eye
fixations, defined as a moment in time where the eyes are rela-
tively still at a given point of the visual field. For the fixation
detection, we used SMI’s event detector algorithm with default
settings (required fixation duration of 50 ms and a peak saccade
velocity of 40°/s). Thus, we obtained a sequence of eye fixations
for each recording, each fixation characterized by its starting time
and duration. We then defined four task-related objects as AOIs
for semantic mapping of each fixation. Semantic gaze mapping
was conducted manually. Figure 2 shows the AOIs defined for
data analysis, namely building area (A), bricks (B), and manual
(C). All fixations that did not fall into theseAOIswere assigned to
white space (W). Using these specific letters, the gaze sequences
of each task were converted into string-edit representation. Here,
we chose the collapsed form of string representation, where suc-
cessive fixations on the sameAOI, also called dwell, are collapsed
into a single letter. Consequently, the number of occurrences for
each k-mer of length k = 1 is equal to the AOI dwell count,
whereas the occurrence of each k-mer of length k= 2 is equal to
the number of AOI transitions between two AOIs. Consequently,

the results for k= 1 and k= 2 were evaluated as traditional AOI
metrics dwell count and AOI transition, along with the average
fixation duration and dwell time.

The k-mer sub-pattern detection was carried out using
MATLAB R2019a. For each scanpath, we applied MATLAB’s
nmercount function to retrieve all k-mer patterns of length k= {1,
2, 3, 4} in string vector form.Next, we applied the count function,
with the k-mer vector entries as input, to count the appearance
frequencies of each pattern. The count function was used to count
the unique appearances of sequences. The appearance frequency
was calculated in each of the eight consecutive trials, allowing the
analysis of how these gaze sequences change while novice sub-
jects develop expertise in the given task.

Furthermore, we investigated the specificity of gaze se-
quences concerning a certain level of expertise by determining
the variety of k-mers that appeared throughout all trials, sepa-
rately for experts and novices. Here, we calculated the average
relative frequency of each pattern over all trials, for the ana-
lytical evaluation of predominant gaze patterns. The equation
used is shown in Eq. 1.

Relative frequency of Patterni

¼ Frequency of Patterni

∑
Number of k−mers

i¼1
Frequency of Patterni

ð1Þ

Fig. 1 Two building block aircraft models were chosen as assembly stimuli for a group NOV BC and b group NOV MC. Stimuli differed in the color
combination of the model and the number of blocks to choose from

Fig. 2 Study setup with the AOIs chosen for data analysis (a) and placement of the building blocks for groups NOVBC (b) and NOVMC (c) at the start
of each assembly. Fixations were assigned to AOIs (A) building area, (B) bricks, (C) manual, or (W) white space
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The relative frequency of a pattern was calculated by di-
viding the average appearance frequency of each pattern by
the sum of all pattern frequencies and expresses how dominant
a pattern was in the overall gaze sequences. For our analysis,
only patterns with a relative frequency of more than 1%, were
deemed to be relevant gaze patterns and further considered for
the analysis of the development throughout the trials.

Statistical analysis

For the statistical analysis, novice subjects were separated into
two groups based on the complexity of their stimulus, group
NOV BC or NOV MC. Expert subjects were not considered
for statistical analysis due to the lack of significant participant
numbers. The statistical analysis of the sequential gaze pat-
terns was conducted using IBM SPSS Statistics 26 and
RStudio 3.6.2. First, the data were tested for equal variances
using Levene’s test of equal variances, with p > 0.05 as the
threshold. Subsequently, changes in the appearance frequency
of gaze patterns throughout an increasing number of trials
were tested within groups using t-statistics of dependent var-
iables. To test whether the stimulus complexity induced dif-
ferences in pattern slopes and intercepts, an analysis of vari-
ance (ANOVA) of the aggregated summary statistics was ap-
plied between NOVBC and NOVMC. Due to the violation of
normal distribution of data and the inequality of variances of
some k-mer patterns, we used linear regression to estimate the
slope and centered intercepts of the pattern frequencies of each
participant. Differences in the slope between groups indicate
different learning rates of k-mer patterns, while different inter-
cepts indicate different pattern occurrences. The data were
analyzed statist ically, with an alpha of α = 0.05.
Additionally, summary statistics were calculated to investi-
gate the change in pattern frequencies of each expertise group.

Results

Table 1 shows the measured mean trial times and observed
use errors during the assembly for all participant groups.
Novices that learn on a more complex stimulus took

significantly longer to complete the task (p = 0.044), but show
a similar decline in the trial times with repeated assemblies
(p = 0.871). The overall use error rate was zero for experts and
below 1 for all novices.

Conventional AOI evaluation metrics

Table 2 shows the mean fixation duration along with the con-
ventional AOI evaluation metrics dwell time, dwell count (k =
1), and AOI transition (k = 2). While the fixation duration
seems to increase linearly for all participants (slope = 5.918,
p = 0.95), the standard deviation is shown to be in a similar
order of magnitude, which indicates a high variation between
individual participants in each group. The dwell count (k = 1),
which is the number of gazes per AOI per task, changes sim-
ilarly for novice subjects. This trend was shown for AOIs
building area (p = 0.081) and manual (p = 0.236), regardless
of whether the task was learned on the simpler or the more
complex stimulus, but showed significant differences for AOI
bricks (p = 0.034). Over time, novices look less at the manual
(slope(C) = −4.287), while the number of times they look at
AOIs building area (slope(A) = −2.132) and bricks
(slope(B) = −0.489) reaches a nearly constant range after the
third trial (see Table 2). Conversely, experts showed little
change in the dwell count for any of the three AOIs. A similar
trend can be observed in the dwell time on AOIs building
area, bricks, and manual.

For k = 2, novices that learned on the simpler stimulus
show lower overall pattern frequencies for the transitions
building area – manual (AC), manual – building area (CA),
and bricks –manual (BC), but higher average numbers for the
transition bricks – building area (BA), compared to those
participants that have learned on the more complex stimulus.
With an increasing number of trials, both groups show a ten-
dency to approach the constant number of AOI transitions that
is observed for the expert group. Notably, only 2-mer pattern
BA shows a marginal linear increase for novices in the ap-
pearance frequencies throughout eight trials (slope(BA) =
0.532, p = 0.937), while the other patterns have a declining
tendency for patterns AC (slope(AC) = −3.049, p = 0.481),
CA (slope(CA) = −2.665, p = 0.074), and CB (slope(CB) =
−1.576, p = 0.663).

Fig. 3 Schematic of the k-mer analysis approach
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k-mer analysis of higher gaze sequences

Next, we analyzed the k-mer sequences and the average rela-
tive frequency of each pattern for all trials. Here, the data is
presented as mean ± standard error of the mean (SEM), unless
otherwise noted.

Figure 4a and b shows the results of the evaluation of the
most frequently appearing 3-mer sequences. In the gaze se-
quences of expert subjects, 7 of 24 possible k-mer patterns
were measured with a relevant relative appearance frequency.
Patterns BAB (40.69 ± 1.12%) and ABA (40.69 ± 1.12%)
appeared most frequently. Therefore, more than 80% of the
overall expert gaze behavior can be expressed through only
two 3-mer patterns. In the gaze sequences of novice subjects,
12 of the 24 sequences appeared with a relevant relative fre-
quency. Patterns ACB (16.76 ± 0.34%), BAC (13.46 ±
0.46%), CBA (12.84 ± 0.52%), and CAC (10.74 ± 1.19%)
appeared most frequently. Consequently, more than 60% of
the novice gaze behavior can be expressed through the five
most frequently appearing 3-mer sequences. Further, more
than 90% of the gaze sequence can be explained using the
10 most frequent k-mer patterns.

Figure 4c and d shows the results for the analysis of the
most frequent 4-mer patterns. In the gaze sequences of expert
subjects, again only 7 of 108 possible patterns showed a rel-
evant relative frequency of over 1%. Sequences ABAB (38.24
± 1.46%) and BABA (41.37 ± 1.42%) appeared to be predom-
inant and showed a strong resemblance to the 3-mer patterns
ABA and BAB. Again, approximately 80% of all the visual
behavior of experts can be expressed through two k-mer gaze
sequences. In novice eye movements, the fraction of 4-mer
sequence patterns was more broadly distributed, showing 23
of 108 possible pattern appearances. The five most frequent
sequences accounted for 37.2% and the 10 most frequent se-
quences for 65.6% of the gaze sequences of novice subjects.

Semantic meaning of object-related gaze patterns

Analyzing the results of conventional ET metrics, we see that
experts mainly focused on AOIs bricks and building area,
while the visual attention of novices was shared equally be-
tween all three task-relevant AOIs. From the bar plots, it was
extracted that the predominant patterns of experts differ from
those of the novices. Additionally, the same 3-mer sequence
often appears in several 4-mer sequences, i.e. pattern ACB is
included in ACBA, BACB, and CACB. Therefore, for the
subsequent expertise development analysis, we chose to in-
vestigate k-mer patterns ACB, ACAC, BABA, and
BABABA. Given that with increasing k the probability of
the appearance of k-mer patterns due to chance is reduced,
we have included gaze sequence BABABA, a 6-mer exten-
sion of BABA, in the analysis. To illustrate the gaze sequence
in the study environment, each pattern is depicted as a gaze
path in Fig. 5.

By analyzing each k-mer sequence pattern along with the
ET recordings, we extracted the following semanticmeanings:
ACB is a triangular pattern between building area, manual,
and bricks. Subjects who repeatedly exhibited this pattern as-
sembled the brick in the area, looked at the assembly manual
for the next building step, and finally grabbed the associated
brick on the tray. Pattern sequence ACAC was observed in
moments when the subject discovered a building error,
resulting in multiple glances between the assembled piece in
the building area and the assembly manual. Finally, the 4-mer
and 6-mer patterns BABA and BABABA represent repeated
consecutive gaze transitions between AOIs bricks and build-
ing area. This behavior was shown when subjects became
increasingly familiar with the task and were able to carry out
several building steps without the use of the manual. Here,
participants’ gaze movements were followed by a reach for
one building brick and an assembly in the building area.

Table 1 Results of the task completion time and the use errors

Trial

1 2 3 4 5 6 7 8

EXP

Task completion time [s] 111.8 ± 39.3 92.6 ± 35.3 83.7 ± 27.7 85.7 ± 30.8 77.8 ± 21.3 83.4 ± 25.3 79.0 ± 24.4 84.2 ± 22.1

Use errors [-] 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0

NOV BC

Task completion time [s] 159.9 ± 42.8 110.4 ± 21.6 104.1 ± 23.5 98.3 ± 19.5 93.8 ± 14.5 89.7 ± 16.2 89.6 ± 24.4 85.9 ± 23.2

Use Errors [-] 0.4 ± 0.8 0.4 ± 0.6 0.6 ± 1.1 0.1 ± 0.4 0.2 ± 0.6 0.2 ± 0.4 0.2 ± 0.6 0.2 ± 0.4

NOV MC

Task completion time [s] 178.3 ± 40.8 131.2 ± 26.2 118.4 ± 22.6 113.2 ± 16.3 111.6 ± 17.1 108.9 ± 16.6 102.3 ± 20.3 104.8 ± 20.9

Use errors [-] 0.4 ± 0.8 0.4 ± 1.1 0 ± 0 0.2 ± 0.4 0.1 ± 0.4 0.3 ± 0.5 0.1 ± 0.4 0.1 ± 0.4
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Consequently, in the subsequent paragraphs, 3-mer pattern
ACB will be referenced as monitor assembly, 4-mer pattern
ACAC as consult manual, BABA as familiarizing steps, and
6-mer pattern BABABA as internalized steps.

Gaze pattern frequency

Next, we examined how the frequency of selected larger k-mer
gaze patterns, i.e. k= {3,4,6}, have developed over repeated as-
semblies. Figure 6 shows the average appearance frequencies per
trial for experts and novices. As expected, expert subjects did not
show a learning curve for any pattern, but rather constant pattern
appearance frequencies. Patterns monitor assembly or consult
manualwere absent for most expert trials, whereas patterns famil-
iarizing steps and internalized steps appearedwith constantly high
frequencies. For novice subjects, the curve of the pattern consult
manual resembles that of a traditional learning curve, where the
decrease of pattern frequencies between trials becomes smaller
with increasing practice. Conversely, the curves of patterns famil-
iarizing steps and internalized steps indicate linear growth, while
the curve of pattern monitor assembly indicates linear decline.
Notably, the frequency of each of the four gaze patterns converges
towards the expert reference appearance frequency count with
increasing task practice.

When comparing the k-mer frequencies of ks of different
sizes, the results for k = 1 showed a similar dwell count on
AOI bricks (B) for novice and expert subjects over eight trials.
For k = 2, a difference in gaze strategies between the two ex-
pertise levels, for example for AOI transition bricks – building
area (BA), becomes more evident. For even larger values of k,
constant appearances of expert gaze patterns such as 4-mer
pattern familiarizing steps (BABA) and 6-mer pattern inter-
nalized steps (BABABA), can be measured less and less fre-
quently during novice trials. As these pattern frequencies are
close to zero when novice subjects start their learning prog-
ress, but increase over time, learning of this specific expert
gaze strategy over time is inferred.

Table 3 shows the mean appearance frequency and SEM,
for the first and the last trial, as well as the results of a statis-
tical comparison of the pattern frequencies between the first
and last trial, using a t-test for dependent variables. All sub-
jects showed highly significant differences for all analyzed k-
mer gaze patterns. The effect sizes greatly exceed Gignac and
Szodorai (2016) reported value of r = 0.3 for large effects.
Thus, within each novice group, the sequence-pattern-based
gaze behavior changes significantly from the first to the last
assembly.

Fig. 4 Bar plots displaying k-mer patterns with a mean relative appearance frequency of >1% over all trials for k = {3, 4}

Fig. 5 Visualization of the four sequence gaze patterns, ACB (a), ACAC (b), and BABA and BABABA (c) on the study setup
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The effect of stimulus complexity on expertise
development

Finally, we investigated the effect of the stimulus complexity
on the development rate of perceptual expertise, using a sta-
tistical k-mer pattern frequency analysis. The slopes and inter-
cepts of the change in the appearance frequencies of the four

investigated patterns were compared between novices that
learned on the simple (Nov BC) and the more complex (Nov
MC) assembly stimulus (see Fig. 7). The null hypothesis con-
siders the slopes of the gaze patterns over time to be parallel,
resulting in equal development rates of patterns over time.

The results of the statistical ANOVA test are shown in
Table 4. Novices of group NOV BC not only began to focus

Fig. 6 The mean and SEM for patterns a ACB, b ACAC, c BABA, and d BABABA are shown over eight successive assembly trials

Table 3 Results of the analysis of mean pattern frequencies between the first and the eighth trial of patterns ACB, ACAC, BABA, and BABABA

k-mer Patterns Trial 1 Trial 8 t(13) p r

M SEM M SEM

ACB

Group NOV BC 14.71 0.52 5.14 1.28 8.143 < 10−3** 0.914

Group NOV MC 15.57 0.50 9.93 01.32 4.261 .001* 0.763

Group EXP 0.50 0.25 0.00 0.00 - - -

ACAC

Group NOV BC 9.21 1.63 0.79 0.21 5.282 < 10−3** 0.825

Group NOV MC 14.86 1.50 2.86 0.73 9.474 < 10−3** 0.934

Group EXP 0.00 0.00 0.00 0.00 - - -

BABA

Group NOV BC 0.93 0.37 6.00 0.85 −6.679 < 10−3** 0.879

Group NOV MC 0.21 0.11 3.07 1.05 −2.624 .021* 0.588

Group EXP 11.0 0.50 11.0 0.00 - - -

BABABA

Group NOV BC 0.07 0.07 2.86 0.64 −4.545 .001* 0.783

Group NOV MC 0.00 0.00 1.43 0.65 −2.190 .047* 0.519

Group EXP 5.50 0.25 7.00 0.00 - - -

A t-test for paired samples was applied on novice subjects separately for groups NOV BC and NOV MC

***p < 0.001, **p < 0.01, *p < 0.05
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their attention significantly faster between AOIs bricks and
building area (p = 0.0487), using the k-mer gaze pattern fa-
miliarizing steps, but this expert pattern was also observed
with a significantly higher appearance frequency (p = 0.049).
Additionally, learning on a more complex stimulus led to a
less significant decrease in gaze behavior consult manual
(p < 0.001), indicating a higher dependence on the task man-
ual during the trials. The decrease in the gaze pattern monitor
assembly indicates no difference in either stimulus (p = 0.543)
but shows that a simpler task led to fewer instances where the
assembly was monitored (p = 0.0374). Similarly, novice par-
ticipants developed the expert k-mer pattern internalized steps
at the same rate for eight trials (p = 0.119) with similar appear-
ance frequencies (p = 0.119), regardless of the complexity of
the stimulus. Overall, the difference between the complexities
of the investigated stimuli did not change the rate at which
patterns were developed during the assembly for most

patterns, but was shown to influence the average appearance
of gaze patterns depending on which stimuli the task was
learned on.

Discussion

In the context of the investigated task, our results for the quan-
titative analysis of expertise development using the k-mer ap-
proach led us to the following conclusions:

First, the use of the proposed k-mer approach allowed us to
investigate the differences in perceptual expertise, by showing
that the most common expert and novice fixation sequences
differ in their specific AOI composition. By calculating the
relative appearance frequency of these patterns, we were able
to show that the gaze behavior, in the context of this assembly
task, was dominated by only a few k-mer patterns. The greater

Fig. 7 Box plots of the mean slope of pattern frequencies over eight trials. The slopes indicate the rates at which k-mer gaze patterns develop over time,
while the intercept show the average occurrence of the pattern in each group
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variety of AOI k-mer sequences in novice patterns aligns with
findings of previous research conducted by Castner et al.
(2020), who found that novices experience a larger variety
of gaze strategies when compared to experts.

Second, the comparison with traditional AOI evaluation
methods showed that the dwell time and the dwell count
(k = 1) reveal some learning tendencies regarding the change
in novice subjects’ visual attention over time, while the anal-
ysis of the fixation duration was shown to be inconclusive.
Learning behavior was shown to be much more evident for
patterns of k ≥ 2. Through the introduction of a multi-trial
study setup, we were able to measure how the gaze behavior
of novice participants changed with increasing task familiari-
ty. Compared to studies that have used ET summary statistics
as generalizable findings for expert behavior (Jaarsma et al.,
2015; Wood et al., 2013), the proposed multi-trial k-mer ap-
proach could be used as a methodological framework, which
reveals those particular gaze strategies that are attributed to a
specific level of expertise. Furthermore, our results provide
strong evidence that a learning behavior can be measured in
the changes in k-mer pattern appearances.

Third, the extract gaze behaviors confirmed expected task-
related results, showing that experts do not use the manual,
while novices learn to use it less over time. Even though the
tendency to rely less on the AOImanual could be shown in the
dwell time, the use of larger k-mers allowed us to gain addi-
tional semantic insights, such as the use of gaze patternsmon-
itor assembly and consult manual during task-related mo-
ments of hesitancy, as well as the level of developed task
familiarity through the increased use of gaze behaviors famil-
iarizing steps and internalized steps. Admittedly, it might

make little sense to teach students to look less at the manual
during training scenarios. However, in a domain such as car-
diovascular intervention, where expert surgeons were shown
to exhibit fewer gaze transitions than novices between task-
related AOIs (Zimmermann et al., 2020), these gaze patterns
could be used to assess the current stage of expertise of each
subject.

Fourth, using the k-mer approach, we were able to quantify
both traditional ET metrics (k-mer = {1, 2}) and higher-level
gaze patterns (k-mer = {3, 4, 6}). The consistency of expert
pattern appearances resembled a learning plateau, which, as
mentioned by Khan et al. (2014), can act as a strong gaze
movement-based indicator for expert behavior. Novice sub-
jects showed either an increasing (patterns familiarizing steps
and internalized steps) or decreasing (patterns monitor
assembly and consult manual) pattern development towards
the expert plateau. This suggests that the learning of task-
specific gaze behaviors can be adequately quantified using
the presented method. We were further able to verify previous
findings, which demonstrated that gaze behaviors become
more similar after a period of learning (van der Gijp et al.,
2017), and, using the k-mer analysis, specified some of those
gaze patterns that were evoked with increased on-task
experience.

Finally, the statistical analysis of the pattern slopes sug-
gests that a simpler stimulus reduces the total amount of trials
required to reach expert skill levels, while the actual learning
rate between tasks was not influenced. This finding should be
further investigated in the future using more complex real-
world tasks.

We believe that the presented approach adds significant
value to the understanding of how expertise related to gaze
behavior is developed by contributing advancements to tradi-
tional AOI evaluation and string-edit approaches that compare
pairwise (Ben Khedher et al., 2017) or group-wise (Burch
et al., 2018) similarities of gaze sequences. While the exact
AOI composition of the analyzed sequence patterns, i.e. mon-
itor assembly or consult manual, and their appearance fre-
quencies are expected to differ for each domain of expertise,
the k-mer approach applies to eye tracking data of all domains.

Limitations

Limitations of the current work include the limited number of
expert subjects within the evaluated ET study. We are aware
that the expert data used in this study might not be represen-
tative, but the results strongly indicate the consistency of ex-
perts’ sequential gaze behavior. Furthermore, this approach
suffers from the same limitation as other sequence analysis
approaches, which is that the correct or incorrect outcome of
a task cannot be directly inferred solely using quantified gaze
data and needs to be investigated separately. Some additional

Table 4 Results of an ANOVA test of the slopes and intercepts between
novices groups for the evaluation of the influence of stimulus complexity
on gaze pattern development for k-mer patterns ACB, ACAC, BABA,
and BABABA, with α = 0.05

Pattern Global mean df Sum Sq Mean Sq F value P

ACB

Slope −0.804 1 2.313 2.3130 4.061 .0543

Intercept 8.634 1 43.13 43.13 4.812 .0374*

ACAC

Slope −0.321 1 4.626 4.626 13.7 < 10−3***

Intercept 2.161 1 86.63 86.63 14.4 < 10−3***

BABA

Slope 0.614 1 .989 .9888 4.277 .0487*

Intercept 3.607 1 17.68 17.681 4.267 .049*

BABABA

Slope 0.418 1 .347 .3474 2.599 .119

Intercept 1.509 1 2.893 2.893 2.606 .119

***p < 0.001, **p < 0.01, *p < 0.05
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uncertainties remain in regard to the optimal choice of k and
the number of AOIs to be used for the analysis, and should be
further investigated. In the future, an AOI frequency-based
approach, as introduced by Arzarello et al. (2011), could be
implemented to help filter out patterns that are considered
identical and thus help automate the choice of analyzed se-
quence patterns. Furthermore, for mobile ET, conducting se-
mantic gaze mapping manually results in increased manual
labor (Vansteenkiste et al., 2015). However, recent advance-
ments in deep convolutional neural network applications have
shown that a massive reduction in the effort spent on semantic
gaze mapping can be achieved, enabling the automated detec-
tion and mapping of looked-at objects (Wolf, Hess,
Bachmann, Lohmeyer,, & Meboldt, 2018).

Conclusion

In the present work, we introduced a novel algorithmic meth-
odological approach for the quantification of expertise devel-
opment using sequential k-mer gaze patterns. Through the
evaluation of a simplified natural handling task using a unique
multi-trial study design, we contribute to the understanding of
the acquisition of task-specific perceptual expertise. By inves-
tigating how specific behaviors develop within the same indi-
viduals over time, evidence was given that k-mer patterns can
be a suitable metric to measure and assess learning progress.
Additionally, by retaining the object-related AOI identity,
gaze sequence patterns are easily interpretable, while contain-
ing both temporal and spatial task information. Specifically,
for novice education and skill assessment, this approach could
provide an answer to the need for a measurement methodolo-
gy for operator experience and allows us to advance the un-
derstanding of task-specific gaze behavior. Consequently, an
assessment of the rate with which these patterns approach
expert thresholds could serve as a quantitative means to verify
the achievement of specific competencies.

By presenting the measurable development of gaze-based
expertise using a multi-trial study design coupled with the
algorithmic k-mer approach, researchers are provided with a
promising new methodological framework to study domain-
specific expertise and the effects of training on the develop-
ment of expert gaze strategies.

Notes The data for all experiments are available at https://doi.org/10.
6084/m9.figshare.12593657.v1. None of the experiments were
preregistered.
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