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ABSTRACT Emerging data indicate that gut dysbiosis contributes to many human
diseases, including several comorbidities that develop after traumatic spinal cord
injury (SCI). To date, all analyses of SCI-induced gut dysbiosis have used 16S rRNA
amplicon sequencing. This technique has several limitations, including being suscep-
tible to taxonomic “blind spots,” primer bias, and an inability to profile microbiota
functions or identify viruses. Here, SCI-induced gut dysbiosis was assessed by apply-
ing genome- and gene-resolved metagenomic analysis of murine stool samples col-
lected 21 days after an experimental SCI at the 4th thoracic spine (T4) or 10th tho-
racic spine (T10) spinal level. These distinct injuries partially (T10) or completely (T4)
abolish sympathetic tone in the gut. Among bacteria, 105 medium- to high-quality
metagenome-assembled genomes (MAGs) were recovered, with most (n=96) repre-
senting new bacterial species. Read mapping revealed that after SCI, the relative
abundance of beneficial commensals (Lactobacillus johnsonii and CAG-1031 spp.)
decreased, while potentially pathogenic bacteria (Weissella cibaria, Lactococcus
lactis_A, Bacteroides thetaiotaomicron) increased. Functionally, microbial genes encod-
ing proteins for tryptophan, vitamin B6, and folate biosynthesis, essential pathways
for central nervous system function, were reduced after SCI. Among viruses, 1,028
mostly novel viral populations were recovered, expanding known murine gut viral
species sequence space ;3-fold compared to that of public databases. Phages of
beneficial commensal hosts (CAG-1031, Lactobacillus, and Turicibacter) decreased,
while phages of pathogenic hosts (Weissella, Lactococcus, and class Clostridia)
increased after SCI. Although the microbiomes and viromes were changed in all SCI
mice, some of these changes varied as a function of spinal injury level, implicating
loss of sympathetic tone as a mechanism underlying gut dysbiosis.

IMPORTANCE To our knowledge, this is the first article to apply metagenomics to
characterize changes in gut microbial population dynamics caused by a clinically rel-
evant model of central nervous system (CNS) trauma. It also utilizes the most current
approaches in genome-resolved metagenomics and viromics to maximize the
biological inferences that can be made from these data. Overall, this article high-
lights the importance of autonomic nervous system regulation of a distal organ (gut)
and its microbiome inhabitants after traumatic spinal cord injury (SCI). By providing
information on taxonomy, function, and viruses, metagenomic data may better
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predict how SCI-induced gut dysbiosis influences systemic and neurological out-
comes after SCI.

KEYWORDS gut dysbiosis, metagenomics, microbiome, spinal cord injury, virome

Gut microbiota protect mammals from pathogen colonization (reviewed in refer-
ence 1), regulate gut permeability (2), stimulate the immune system (reviewed in

reference 1), synthesize essential vitamins (reviewed in reference 3), produce second-
ary bile acids (4, 5), produce short-chain fatty acids (SCFAs), and provide metabolic fuel
for colonocytes by breaking down indigestible food sources (6, 7). Gut microbes are
also key components of the “brain-gut axis,” i.e., the bidirectional system of communi-
cation between the central nervous system (CNS) and the digestive system. Gut
microbes have been shown to be essential for normal CNS development, functioning,
and recovery after injury (8–11) and for regulating host neural activity and behavior in
response to environmental cues (12). Indeed, gut-derived microbes produce various
neuroactive metabolites or precursor molecules (e.g., tryptophan), which are needed
to synthesize serotonin, dopamine, gamma-aminobutyric acid (GABA), acetylcholine,
and melatonin (13). These neuroactive metabolites signal the CNS via vagal afferents,
or they enter the circulation and pass directly into the neural parenchyma across the
blood-brain barrier (14, 15). Gut microbes are also capable of indirectly signaling
the CNS by influencing innate and adaptive immunity; and the immune system, like
the gut, exerts bidirectional communication with the CNS (reviewed in reference 16).

Homeostasis of the gastrointestinal (GI) tract, including microbial homeostasis, is
dependent on the enteric nervous system of the GI tract, which is innervated by the
parasympathetic efferents from the vagus nerve and sacral spinal cord, presympathetic
nerves originating in the brainstem, and sympathetic efferents originating exclusively
from the spinal cord (17, 18). When the spinal cord is injured, axons that normally
descend from the brain/brainstem to control spinal sympathetic neurons are lost or
damaged (17). Consequently, after spinal cord injury (SCI), normal sympathetic control
of the small bowel and colon is lost, leading to impaired gut motility, mucosal secre-
tions, vascular tone, and immune function (19). Loss or disruption of one or more of
these GI functions after SCI can disrupt the ecological balance of microorganisms in
the gut, causing dysbiosis (20, 21). Indeed, lasting changes in gut bacterial composition
have been documented in multiple clinical and preclinical studies of SCI (22–27).
Disruption of this gut microbial ecosystem has been linked to various comorbidities
that develop after SCI, such as metabolic disease, immune dysfunction, and mental
and cognitive impairment (28–31). Unfortunately, because all published reports of SCI-
induced gut dysbiosis have used 16S rRNA amplicon sequencing to characterize com-
positional changes in gut bacteria, reliable predictions about microbiota function
remain elusive, as do data describing SCI-induced compositional changes in novel mi-
crobial species, including viruses (21).

Because viruses lack universal marker genes for taxonomic assignment, the genetic
diversity of the gut virome remains largely unknown (32, 33). As the most abundant
members of the enteric virome (34), bacteriophages may affect human health and dis-
ease by dramatically shaping gut bacterial communities and their functions. This can
occur through predator-prey dynamics (reviewed in reference 35) and horizontal gene
transfer (36) or by direct interactions between viruses and the immune system (37–40),
even including a phage-mediated, non-host-derived immunity to protect against
invading pathogens (41). There may or may not be a “healthy gut virome” (34, 42–44),
but it is clear that individuals have unique, persistent viromes (42, 43). In the context of
disease, disease-specific virome changes have been observed for inflammatory bowel
disease (IBD) (45), ulcerative colitis (46), autism spectrum disorders (ASD) (47), colo-
rectal cancer (48), type 1 diabetes (49, 50), and type 2 diabetes (51). However, it is nota-
ble that rather than considering all taxa as is done in environmental studies (52–54),
most gut virome studies have limited their analyses to known taxonomy or missed the
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linkage of viruses to their hosts (55, 56). Nothing is yet known about how the gut
virome is affected by SCI.

All forms of SCI examined to date cause gut dysbiosis (19, 22–27), but what remains
unclear is whether SCI-induced changes in microbial population dynamics and the
functional implications of those changes vary as a function of spinal injury level and/or
injury severity. To expand upon current knowledge of SCI-induced gut dysbiosis, we
use metagenomics to examine ecological and functional changes in gut bacterial and
viral communities after SCI in a murine model, controlling for diet and antibiotic expo-
sure (common confounders for microbiome studies) (22, 23, 57). Ecological and func-
tional changes in the gut microbiota were compared in mice receiving SCI at the 4th
thoracic spine (T4) or 10th thoracic spine (T10) spinal levels. We show that the severity
of gut dysbiosis is affected by spinal injury level; more robust changes were noted
when SCI occurred at high spinal levels (T4), which causes greater imbalance in auto-
nomic tone in the gut. Our novel data also reveal SCI-dependent changes in the micro-
biome and virome, as well as related metabolic pathways, providing a myriad of new
hypotheses to guide future SCI studies.

RESULTS AND DISCUSSION
The composition and magnitude of change in gut microbiota caused by SCI

vary as a function of spinal injury level. We hypothesized that sympathetic nervous
system control over proximal and distal intestines will vary as a function of spinal injury
level, causing differences in intestinal function that will directly affect the composition
of the gut microbiome. The sympathetic preganglionic neurons (SPNs) controlling the
small and large intestines are located primarily in the intermediolateral cell column in
thoracic spinal segments T5 to T10 (58–60). Therefore, most brain and brainstem con-
trol over spinal autonomic networks that innervate the gut are lost when SCI occurs at
or above the T5 spinal level. When SCI occurs at lower spinal levels, some reflex control
over spinal autonomic neurons remains intact, with the magnitude of intact circuitry
varying as a function of injury level and severity. To date, there have been no con-
trolled studies to assess how the gut microbiota responds to SCI when there is some or
no preservation of executive control (from brain/brainstem) over spinal autonomic
reflexes, although data from human subject research predicts that spinal-level-depend-
ent differences do exist. Indeed, the composition of gut microbiota in individuals with
cervical SCI was found to be distinct from that in people with thoracic or lumbar SCI
(23). Here, to directly test the hypothesis that the composition and magnitude of
change in SCI-induced gut dysbiosis varies as a function of spinal injury level, three
groups of mice were prepared (n=15 mice in total; n=5/group). Sham-injured control
mice underwent laminectomy surgery at vertebral level T4 without spinal cord injury
(Lam controls). Mice in the remaining two groups received a severe crush injury of the
spinal cord at either the T10 or T4 spinal level. Based on published data, these two dis-
tinct spinal injury levels either partially preserve (T10) or abolish (T4) sympathetic
innervation of the gut (58–61). Because gut microbes are transferable among species
that share the same habitat, all mice were singly housed throughout the study, starting
2weeks before SCI. At 21 days postinjury (dpi), fecal samples were collected and then
individually prepared for microbiome analysis (Fig. 1A). The 21-dpi time period was
chosen because published data indicate that gut dysbiosis fully develops at this time
postinjury (19).

To characterize microbial community composition in each group, microbial taxa
were identified using read-based and assembly-based approaches (see Materials and
Methods and Fig. S1 in the supplemental material). A set of 14 single-copy marker
genes were directly detected from the metagenomic reads using Hidden Markov
Model (HMM) profiles, allowing for higher taxonomic (strain-level) resolution than is
achievable by 16S rRNA gene sequencing and also avoiding the copy number variation
problem that limits abundance estimation in 16S rRNA gene sequencing (62).
Abundance-based comparisons (principal-coordinate analysis [PCoA] of Bray-Curtis dis-
similarities using ribosomal protein L2 [rplB]; see Materials and Methods) of all
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FIG 1 Intestinal microbial community composition was disturbed after spinal cord injury. (A) Fifteen mice were equally divided among
three treatment groups: a sham surgery control group (Lam), an SCI group modeling injury at vertebral level T10, and an SCI group
modeling injury at vertebral level T4. At 21days postinjury, one fecal sample per mouse was collected for bulk microbiome isolation.
(B) Principal-coordinate analysis (PCoA) of Bray-Curtis distances shows that microbial communities are different between the Lam, T4,
and T10 groups (PERMANOVA, R=0.3973, P=0.002). Each data point indicates an individual mouse sample. (C) Box plot analysis
showing the Bray-Curtis dissimilarities between the control group (Lam) and T4 or T10 SCI microbial communities. Each data point
represents one Bray-Curtis dissimilarity comparison between individual samples in each of the other groups (Lam versus T4/T10; n=5
of one group were individually compared to n = 5 from another group for a total of 25 comparisons between the Lam and T4 or T10
groups, respectively). A higher score suggests a higher dissimilarity of different individuals between the Lam and SCI groups (T4/T10). **,
P, 0.01 by Wilcoxon rank sum test with a false discovery rate (FDR) of ,0.05 calculated by “fdr” in R. (D) Intestinal microbial community
composition at the phylum level. On the x axis, the numbers 1 to 15 represent individual mice within each group. (E and F) Box plots
showing the relative abundance of the phyla Firmicutes (E) and Actinobacteria (F). All box plots shown display the median and quartiles,
with each dot in the box plot representing an individual mouse sample, and each group (Lam, T4, T10) contains five samples. Read-based
estimates of relative abundances of microbial taxa (see Materials and Methods) were used for all the analyses displayed. *, P, 0.05 (by
Wilcoxon rank sum test; FDR , 0.05).
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microbial taxa present within the microbiome of each mouse revealed that the SCI
groups cluster separately from those of Lam controls (permutational multivariate anal-
ysis of variance [PERMANOVA] R=0.3973, P= 0.002), indicating that SCI, regardless of
injury level, disrupts microbial community structure (Fig. 1B). When we compared the
between-group Bray-Curtis dissimilarity of each SCI group (T4 or T10) to healthy con-
trols (Lam), we found that gut dysbiosis is exacerbated in mice with high-level T4 SCI
(Fig. 1C). While 27.6% of the microbial operational taxonomic units (OTUs) (clustered at
97% nucleotide identity using the ribosomal protein L2) were shared between the dif-
ferent experimental groups (Fig. S2A), most (81.3%) of the unshared OTUs were rare
species (,0.01% relative abundance), which limits how confidently we can ascribe
their presence/absence (Data Set S1, tab 1). There was no difference in Shannon’s H
between treatments (Fig. S2B).

Focusing in from the overall community comparisons, we next looked at changes
that occurred at the phylum level. Among comparisons of 6 phyla (.0.1% relative
abundance), the relative abundances of only two phyla changed significantly. By fol-
lowing the most recent Genome Taxonomy Database (GTDB) classification (63) (see
Materials and Methods), these phyla were the Firmicutes, which was less abundant in
the T10 SCI group (Fig. 1D and E), and the Actinobacteria, which was more abundant in
both T10 and T4 SCI groups (Fig. 1D and F) than in our control group. We note that
GTDB taxonomy separates the Firmicutes, Firmicutes_A, and Firmicutes_B into three sep-
arate phyla, which may be confusing but is phylogenomically well supported.
Increased Actinobacteria may be associated with intestinal inflammation after SCI, as it
has been in other inflammatory conditions like IBD (64), obesity (65), and rheumatoid
arthritis (RA) (66).

While relatively few phyla changed significantly between groups, there were many
more changes at the genus level: 11 bacterial genera were differentially abundant
(Wilcoxon rank sum test, P, 0.05, false discovery rate [FDR], 0.05) (Data Set S1, tab 2)
between control and SCI groups (Fig. S2C, red text). Hierarchical clustering of these 11
bacterial genera identified three distinct clusters (Fig. 2A). Cluster 1 comprised genera
that were less abundant in both SCI groups than in the Lam controls. Clusters 2 and 3
were composed of genera that had greater abundance in the T4 and T10 SCI groups,
respectively, highlighting injury level-dependent effects on a subset of genera. Of

FIG 2 Genus-level bacterial abundances are altered after SCI. (A) Hierarchical clustering of differentially abundant bacterial genera (P, 0.05 by Wilcoxon
rank sum test with a false discovery rate [FDR] of ,0.05) shows three distinct clusters. Box plot analysis of select bacterial genera (with at least 0.5%
relative abundance in any experimental group) indicates that Lactobacillus, CAG-1031, and Turicibacter (B to D) decreased after SCI, while Bacteroides,
Eubacterium_F, and Eubacterium_R (E to G) increased after SCI in one injury level, compared to Lam controls. All box plots shown display the median and
quartiles, with each dot in the box plot representing an individual mouse sample. Five individual mouse samples were used in each group. Read-based
estimates of relative abundances of bacterial taxa (see Materials and Methods) were used for all the analyses displayed. **, P, 0.01; *, P, 0.05 (by
Wilcoxon rank sum test). Analyses were done with an FDR of ,0.05.
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these, one highly abundant taxon (.20% relative abundances in Lam), CAG-1031, was
consistently less abundant in the T4 SCI group (Wilcoxon rank sum test, P, 0.05,
FDR, 0.05) (Fig. 2B). Two other abundant taxa (.1% relative abundance in Lam),
Lactobacillus and Turicibacter, were less abundant in the T4 or T10 SCI groups
(Wilcoxon rank sum test, P, 0.05, FDR, 0.05) (Fig. 2C and D). Turicibacter spp. have
been shown to promote host serotonin biosynthesis (67), while members of the
Lactobacillus and CAG-1031 genera are involved in key metabolic transformations in
the gut (discussed below). A decrease in abundant commensals and probionts also
could open niches for antagonistic commensals and pathobionts. Notably, seven taxa
were more abundant in the T10 (Eubacterium_R and Lachnospira) or T4 (Bacteroides,
Weissella, Eubacterium_F, UBA9475, and Neglecta) SCI groups than in controls (Fig. 2E to
G; Fig. S2D). Most of these taxa, Eubacterium_R, Lachnospira, Eubacterium_F, UBA9475,
and Neglecta, fall within the class Clostridia (Fig. 2F and G). Previously, using 16S RNA
gene sequencing, we found that the Clostridiales, members of the class Clostridia,
increase after SCI and that their relative abundance inversely correlated with recovery
of motor function, suggesting that these microbes may adversely affect neurological
function (19, 68).

Collectively, the above data suggest that gut dysbiosis is a consistent phenomenon
after SCI but that greater disruption of sympathetic control over the colon, such as af-
ter high-level (T4) SCI, may drive distinct changes in the gut microbiota.

Genome-centric view of SCI-induced changes of gut microbiota. The above
read-based analyses rely upon mapping to single-copy marker genes. At the commu-
nity level, read-based analysis provides information for any microbes that have refer-
ence genomes available, and so read-based analyses are best used for assessing diver-
sity patterns. However, metagenome-assembled genomes (MAGs) provide population
genomes for the specific variants occurring in these samples as well as lineage-specific
pathway- and gene-level information that can then be used to develop novel hypothe-
ses regarding the functional capabilities and ecological niches for these microbes.
Therefore, to further assess changing taxonomic patterns and infer microbial functions,
we assembled the shotgun sequence data from each sample and then binned contigs
to create de novo draft microbial genomes, i.e., MAGs. MAGs enable robust, genome-
informed taxonomic classification within a sample and rather than predicting function
from slow-evolving taxonomic marker genes, MAGs provide maps of ecologically rele-
vant functional potential for known taxa (69). Using this approach, we recovered 112
MAGs (.60% complete, ,10% contamination), including 105 MAGs of medium
(n=35; .70% complete, ,10% contamination) to high (n=70; .90% complete, ,5%
contamination) quality (see Materials and Methods) that recruited, on average, 54.7%
of the quality-controlled sequencing reads (Data Set S1, tab 3). Most (n=96) of these
105 MAGs represent previously unknown bacterial species as assessed against the
GTDB-Tk v0.1.3 (63), the largest curated genomic taxonomy database available (69)
(see Materials and Methods; Data Set S1, tab 4). Across the data set, 25 MAGs were dif-
ferentially abundant between the Lam and SCI groups (Wilcoxon rank sum test,
P, 0.05, FDR, 0.05) (Fig. 3A; Fig. S3 and Data Set S1, tab 5).

Similar to what our analysis with single-copy marker genes showed at the genus
level, hierarchical clustering of the 25 differentially abundant MAGS revealed 3 distinct
clusters (Fig. 3A). Cluster 1 identifies bacterial species that were less abundant in SCI
groups than in Lam controls, regardless of injury level. Cluster 2 species were of greater
abundance only in the T4 high-level SCI group, and cluster 3 species were of greater
abundance in both T4 and T10 SCI groups (Fig. 3A). These data again show that there
are both injury-level-dependent and -independent changes in gut microbiota after SCI.
Only one previously known species, Lactobacillus johnsonii, was significantly less abun-
dant after both T4 and T10 SCI (Wilcoxon rank sum test, P, 0.05, FDR, 0.05) (Fig. 3B).
This species has widely been considered beneficial due to its anti-inflammatory effects
(70–73) and its ability to metabolize inulin into a prebiotic that is further metabolized
to short-chain fatty acids (SCFAs) like butyrate and propionate (74–77). Analysis of our
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L. johnsonii MAG revealed that it harbors the gene encoding the anti-inflammatory
enzyme lactocepin (Fig. 4D; Data Set S1, tab 6) but not inulin metabolism genes, such
as those coding for fructosyltransferases and fructansucrase (74–77). Since this MAG is
only ;85% complete, we cannot rule out that inulin metabolism genes are present in
the native population, as others have reported (74–77), even though we did not detect
it. Assuming that this MAG is functionally analogous, we hypothesize that after SCI, the
dramatic difference in abundance (.8-fold) (Fig. 3B) of gut L. johnsonii markedly
reduces beneficial SCFAs and impairs the immune regulatory properties of the gut
microbiome. In support of this hypothesis, we previously reported that postinjury oral
supplementation with a probiotic mixture of Lactobacillus and Bifidobacterium boosted
T regulatory cells in the gut-associated lymphoid tissue (GALT) of SCI mice and that
these changes were associated with improved locomotor recovery (19). In addition,
fecal microbiota transplants restore SCFA levels after SCI and improve recovery (78).

Additionally, of the novel species that decreased, two belonged to the genus CAG-
1031 (family Muribaculaceae) and were represented by two high-quality (.90% com-
pleteness, ,5% contamination) MAGs (Wilcoxon rank sum test, P, 0.05, FDR, 0.05)
(Fig. 3C and D). CAG-1031 spp. decreased significantly with great magnitude (.5-fold)
in T4 SCI mice, and though they decreased (.4-fold) in T10 mice, an outlier caused
these changes to be not significant (Fig. 3C and D). Though there are no published
CAG-1031 functions, as a newly classified taxon under the latest GTDB update (69),
members of the Muribaculaceae are known to synthesize folate and use diverse glyco-
side hydrolases to degrade complex polysaccharides (79). Indeed, the CAG-1031 MAGs
detected in our samples have the functional capacity to synthesize folate, break down
complex polysaccharides, and synthesize vitamin B6 (Fig. 4D). The significant reduction
in such abundant species after SCI suggests marked disruption in the gut microbiome’s
capacity to metabolize complex carbohydrates and synthesize essential vitamins that
cannot be made by mammalian host cells. Given their abundance, strong response,
and plausible beneficial roles, we hypothesize that CAG-1031 spp. are valuable pro-
bionts that, provided they can be grown in culture, might represent a novel probiotic
therapy after SCI.

FIG 3 Species-level bacterial abundances are altered after SCI. (A) Hierarchical clustering of differentially abundant bacterial species (P, 0.05 by Wilcoxon
rank sum test with a false discovery rate [FDR] of ,0.05) shows three distinct clusters. Box plot analysis of select bacterial species shows that Lactobacillus
johnsonii and two CAG-1031 MAGs decreased after SCI (B to D), while Weissella cibaria, Lactococcus lactis_A, and Bacteroides thetaiotaomicron MAGs
increased after SCI (E to G). All box plots shown display the median and quartiles, with each dot in the box plot representing an individual mouse sample.
Five individual mouse samples are used in each group. All relative abundances shown here are represented as reads per kilobase per million mapped reads
(RPKM; see Materials and Methods) of differentially abundant species-level MAGs. **, P, 0.01; *, P, 0.05 (by Wilcoxon rank sum test with an FDR of ,0.05).
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FIG 4 Predicted metabolic pathways are different between healthy and spinal cord injury animals. (A) Principal-coordinate analysis (PCoA) using Bray-Curtis
distances shows that predicted protein clusters are different between the control group Lam and disease groups T4 and T10 (PERMANOVA, R= 0.4151,
P# 0.001). Each data point indicates an individual mouse sample. (B) Box plot analysis showing the Bray-Curtis dissimilarities of predicted protein clusters
between the control groups (Lam) and T4 or T10 SCI groups. Each data point represents one Bray-Curtis dissimilarity comparison between individual
samples in each of the other groups (Lam versus T4/T10; n= 5 of one group were individually compared to n = 5 from another group for a total of 25
comparisons between the Lam and T4 or T10 groups, respectively). (C) Selected functions that are differentially abundant between groups (P, 0.05, by
Wilcoxon rank sum test with a false discovery rate [FDR] of ,0.05 calculated by “fdr” in R used for analysis). (D) MAG-resolved functional analysis for
differentially abundant MAGs (P, 0.05 by Wilcoxon rank sum test, FDR, 0.05). The x axis shows the names of MAGs which are enriched in the Lam or
T10/T4 groups, and the y axis shows the microbial functions from panel C and their predicted pathways. Only the MAGs with at least 80% completeness
and less than 10% contamination are displayed here. The mean relative abundances (represented by reads per kilobase per million mapped reads [RPKM])
of KEGG functions of the differentially abundant MAGs were plotted (Morpheus; https://software.broadinstitute.org/morpheus/). A relative color scheme was
used based on the minimum and maximum values in each row to convert values to colors.
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On the other hand, the relative abundances of three previously known bacterial
species increased after SCI. Weissella cibaria and Lactococcus lactis_A MAGs were signif-
icantly enriched only in samples from T4 SCI mice (Wilcoxon rank sum test, P, 0.05,
FDR, 0.05) (Fig. 3E and F). Like L. johnsonii (above), W. cibaria and Lactococcus lactis_A
are lactic acid producers (80, 81), and their expansion in the gut of T4 SCI mice may
indicate the opportunistic growth of a species that was previously outcompeted by L.
johnsonii and/or CAG-1031 spp. In fact, both W. cibaria and Lactococcus lactis_A can act
as opportunistic pathogens (80, 82), due to virulence factors such as hemolysins (80),
which were found in our W. cibaria and Lactococcus lactis_A MAGs (Data Set S1, tab 7).
B. thetaiotaomicron MAG also increased after SCI (Fig. 3G). B. thetaiotaomicron is the
second most common agent in anaerobic Gram-negative infections in humans (83, 84)
and is known to infect immune cells in a sulfatase-dependent manner and express
proinflammatory lipooligosaccharides (LOS), which are analogous to the lipopolysac-
charides (LPS) found in other Gram-negative bacterial families (85, 86). An analysis of
our B. thetaiotaomicron MAG predicts that these bacteria carry lipopolysaccharide
(LPS), polysaccharide, O-antigen biosynthesis genes, and multiple antibiotic resistance
and sulfatase genes (Data Set S1, tab 7). Thus, an increase in B. thetaiotaomicron after
SCI is expected to increase inflammation locally in the gut and also systemically via
translocation.

Collectively, these data suggest that SCI decreases commensal abundances, which
may open niches for antagonistic commensals and opportunistic pathogens that can
increase inflammation and impair recovery after SCI. However, since most (.90%) of
these MAGs represent novel species, the metagenomic approach provides an opportunity
to establish baseline hypotheses beyond taxonomy about metabolic versatility—such as
the vitamin B6, virulence factors, and LPS genes identified and described here—that could
contribute to pathological comorbidities common in SCI individuals.

SCI-induced gut dysbiosis is associated with loss of beneficial microbial
functions. Beyond the MAG-constrained analyses, we next sought to more broadly
evaluate functional changes in the microbiome, since functions often vary more than
taxonomy, both in human (87) and environmental systems (88). Previous work using
16S sequencing to characterize gut dysbiosis in a rat model of cervical SCI predicted
differences in microbial functions between healthy and SCI rats using the PICRUSt algo-
rithm (27). Although tools (i.e., PICRUSt) to infer microbial function from taxonomic
profiling can be useful, they do not always correlate with results obtained using meta-
genomic sequencing (89), and critically, where correlations fail, these are likely to be
niche-defining, ecologically relevant genes whose evolutionary histories (i.e., gene
flow) are out of sync with slowly evolving ribosomal genes (89). Here, we translated
predicted genes from assembled contigs (.500 bp in size) into amino acid sequences
and then “organized” sequences into protein clusters. This eliminates bias against ana-
lyzing only proteins of known function (see Materials and Methods). As observed
before at the taxon level (Fig. 1B), principal coordinate analysis (PCoA) revealed signifi-
cant clustering of samples from the same group (PERMANOVA, R=0.4151, P# 0.001)
(Fig. 4A), with the largest separation occurring between the Lam and SCI groups. When
the between-group Bray-Curtis dissimilarity of each SCI group (T4/T10) was compared
with that of healthy controls (Lam), protein cluster changes were exacerbated in mice
with high-level T4 SCI (Fig. 4B). Although several metabolic genes were differentially
abundant between the T4 and T10 SCI groups (Fig. S4B and Data set S1, tabs 8 and 9),
Shannon’s diversity index was not different between the SCI groups (Fig. S4A). These
data indicate that SCI-induced disruption of gut microbial composition is accompanied
by a corresponding change in microbial function and that these changes are exacer-
bated in mice with high-level T4 SCI.

To test the hypothesis that SCI impairs beneficial, microbially encoded metabolic
functions in the gut, we performed both gene-based abundance comparisons on the
whole microbial community (from the assembled contigs) and genome-based meta-
bolic reconstructions (from the recovered MAGs). For gene-based analyses, all pre-
dicted functions in Lam controls were compared to those in SCI groups using the
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KEGG hierarchy to organize these functions into metabolic modules. Genes that were
differentially abundant between the Lam and SCI groups (see Materials and Methods)
fell into eight major metabolic pathways—carbohydrate, amino acid, lipid, vitamin,
energy, glycan biosynthesis, enzymes involved in metabolism and other metabolisms,
including biosynthesis of secondary metabolites, and xenobiotics biodegradation and
metabolism (Wilcoxon rank sum test, P, 0.05, FDR, 0.05) (Fig. S4 and Data Set S1, tab
8 and 9). After SCI, especially T4 SCI, we found significant derangement of gut micro-
bial function, including lower abundance of many genes encoding components of the
phosphotransferase system (PTS) and glycosyl hydrolases (GHs) (Fig. 4C; Fig. S4B). The
PTS system controls sugar uptake by microbes; a reduction in PTS genes can impair mi-
crobial sugar utilization and their physiological functions. Many PTS genes, including
those that encode the transport proteins specific for maltose, galactose, mannose, and
lactose, were significantly reduced after SCI (compared to Lam). Conversely, mannitol
PTS genes were significantly increased after T4 SCI (Fig. 4C; Fig. S4B). Utilization of fruc-
tose and glucose can decrease the abundance of beneficial commensals (90) and pro-
mote inflammation throughout the body (91). Conversely, utilization of lactose and
mannose can decrease inflammation (92). Sugar alcohols like mannitol and sorbitol are
more abundant in the mouse gut after antibiotic treatment, and enrichment of these
sugar alcohols can promote the growth of the pathogen Clostridium difficile (93).
Microbial GHs can break down indigestible food sources (e.g., fibers), producing neuro-
active metabolites like short-chain fatty acids (94). In our study, genes encoding GHs
that degrade xylan, arabinan, and maltose were significantly reduced after SCI com-
pared to Lam (Fig. 4C; Fig. S4B).

Other microbial genes involved in regulating the biosynthesis of folate, vitamin B6,
and amino acids (e.g., tryptophan, phenylalanine, tyrosine) also were reduced by SCI
(Fig. 4C; Fig. S4B). In mammals, folate is essential for de novo pyrimidine synthesis, a
prerequisite for making DNA. Folate also is critical for the maintenance of gastrointesti-
nal health and neurological function (95, 96). In the context of SCI, recent data indicate
that folate augments CNS repair and regeneration (97, 98). Vitamin B6 also plays a sig-
nificant role in CNS, as it is required for the synthesis of key neurotransmitters, includ-
ing epinephrine, dopamine, and serotonin (99, 100). Microbial synthesis of amino acids,
notably tryptophan, supports gut barrier integrity and stimulates epithelial renewal.
Tryptophan synthesized by microbes is converted to 5-hydroxytryptophan (5-HTP) by
enterochromaffin cells in the gut and, when further metabolized to serotonin, influen-
ces gut motility (101, 102). 5-HTP also enters the circulation, where it can cross the
blood-brain barrier and fuel serotonin synthesis in the brain and spinal cord (101–103).
Decreased serotonin production has been linked to many disorders, including depres-
sion, anxiety, and irritable bowel syndrome (IBS), indicating that loss or a reduction in
microbe-dependent tryptophan metabolism after SCI could be an undiagnosed cause
or contributor to the higher-than-normal incidence of depression, fatigue, and anxiety
in SCI individuals (104–107).

Finally, the microbial gene encoding lactocepin, an anti-inflammatory bacterial pro-
tease, was reduced after SCI. Lactocepin selectively degrades inflammatory chemo-
kines, thereby reducing inflammation. Thus, a reduction in lactocepin would favor gut
inflammation. In fact, in a murine colitis model, replenishing gut microbes that pro-
duce lactocepin effectively reduces gut pathology (108). After SCI, inflammatory cas-
cades are initiated in the gut, and these can impair function of the enteric nervous sys-
tem, which when combined with loss of normal autonomic tone to the gastrointestinal
tract might exacerbate the consequences of a neurogenic bowel (19, 26, 109).

Next, using our de novo synthesized microbial reference genomes (MAGs), we
mapped the functional changes shown in Fig. 4C (Data Set S1, tabs 9 and 10) to spe-
cific microbial species that were enriched significantly in Lam or SCI groups (Fig. 4D;
Fig. S3). After these functional changes were mapped to specific MAGs, the mean rela-
tive abundance was plotted using a relative color scheme, showing that the cumula-
tive effect of SCI is a reduction in many of these genes in comparison to Lam controls
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(Fig. 4D). Many MAGs, in Lam and SCI groups, contain genes controlling functions
related to amino acids and secondary metabolite biosynthesis (chorismate synthase,
indole-3-glycerol phosphate synthase, and anthranilate synthase component II). The
consistency with which these genes were detected in most MAGs is not surprising,
given that these genes are essential for building bacterial biomass, antibiotic produc-
tion, and microbial community communication through quorum sensing (110–112).
However, after SCI, some microbial functions were lost, mainly due to a loss or
decrease in specific bacterial lineages (Fig. 4D; Data Set S1, tab 10). For example, the
reduction in L. johnsonii after SCI leads to a decrease in lactocepin, PTS glucitol/sorbi-
tol-specific components, galactitol-specific components, and lactose-specific compo-
nents. Notably, the enzyme lactocepin is considered to be specific to Lactobacillus
(108), and the abundance of lactocepin in our L. johnsonii MAG constitutes about
61.1% of the total lactocepin in the whole microbial community. In our analysis, lacto-
cepin was also present in the less abundant ASF356 MAG (Data Set S1, tab 11), reveal-
ing another candidate probiotic that could be mixed with L. johnsonii and our two
novel CAG-1031 spp. to collectively cover a large spectrum of microbial functions that
are markedly reduced in the gut after SCI. Indeed, the consistent reduction in each of
these bacterial species in the gut of SCI mice might enhance gut inflammation and
reduce the ability of the microbiota to contribute to the metabolism and biosynthesis
of key molecules required throughout the body. These results expand upon published
data showing predicted functional changes caused by gut dysbiosis in SCI rats (27).
Although SCI-induced changes were predicted in carbohydrate metabolism, bile acid
biosynthesis, metabolism of cofactors and vitamins, and lipid biosynthesis in both
mouse and rat SCI models, the metagenomic sequencing data in the current report
provided additional insight. Specifically, we could map specific gene changes to MAGs
that were differentially abundant between Lam and SCI groups (Fig. 4D). As a result, it
is now possible to develop novel hypotheses about mechanisms ascribed to particular
taxa that may be responsible for any observed functional changes. Such MAG-enabled
hypotheses are ideal fodder for designing future interventional studies.

Taken together, these functional data support the hypothesis that SCI-induced gut
dysbiosis promotes an inflammatory environment in the gut which could adversely
affect gut motility and epithelial barrier integrity. This, in turn, has the potential to
enhance bacterial translocation and systemic inflammation, exacerbating neuroinflam-
mation and impairing neurological recovery after SCI. Recovery from SCI may be
impaired further due to a reduction in the production and release of precursors
needed for neurotransmitter synthesis and also vitamins and cofactors needed for opti-
mal neurological function and CNS repair.

SCI alters the gut virome. Given the lack of marker genes for viruses (55), we used
de novo assembly and population-based approaches to characterize the gut virome.
These techniques are well established for characterizing viruses in the oceans and soils
(53, 54, 113). In total, we recovered 2,675 viruses above 5 kb and 1,028 viral viruses
above 10 kb from the bulk metagenomes. Specifically, population- or species-level taxa
above 10 kb were discerned by clustering genomes at .95% average nucleotide iden-
tity genome-wide, and genus-level taxa were assigned using gene sharing networks. In
total, this revealed 1,028 viral populations (approximately species-level taxonomy [54,
114, 115]; $10 kb) (see Materials and Methods), of which virtually all (n=1,016; 98.8%
of the 1,028) are novel species (Data Set S1, tab 12; see Materials and Methods).
Indeed, exhaustive comparisons were made to public databases, including NCBI
RefSeq v88 (4,061 complete genomes; .10 kb) (116) and the Human Gut Virome
Database (6,360 viral populations; .10 kb) (34), or an additional 502 mouse gut virus
genomes were curated (dereplicated into populations) from the IMG/VR database
(117) and a published murine viral particle metagenome (118) (see Materials and
Methods). Based on these comparisons, these murine gut viral species, which were pre-
viously unknown, expand the known murine gut viral sequence space ;3-fold (Data
Set S1, tab 13; see Materials and Methods).
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At the genus level, gene-sharing network analyses (119) confidently placed 401 of
the 1,028 SCI viral populations in the network as part of 163 viral clusters (VCs; equiva-
lent to genus-level characterization). Of these, 89 VCs (containing 219 viral popula-
tions) were exclusive to our data set, whereas 74 VCs (containing 182 viral populations)
included reference sequences that derive from human gut viruses and/or the NCBI
RefSeq database (Data Set S1, tab 14, and Fig. S5A and B). Among these, only 58 mu-
rine gut viral populations could be assigned taxonomy (Fig. S5B), within the order
Caudovirales, and the relative abundance of these phages was higher in the T4 SCI
group (Fig. S5C). Previous studies in murine colitis models and human IBD patients
also revealed a disease-dependent increase in Caudovirales (45, 118). These findings
show that many of our murine gut viruses are unique at both the species and genus
level and that murine gut viruses clustered more closely with human gut viral genomes
than non-gut-derived viruses (Fig. S6A). Together, this is promising for preclinical SCI
murine applicability toward human disease.

With this reference data set in-hand, we next assessed the relative abundance of vi-
ral populations via nonredundant read mapping. As with the bacterial component of
the gut microbiome, principal coordinate analysis (PCoA) of the gut virome (viral
contigs$ 5 kb) revealed marked separation between the Lam and SCI groups
(PERMANOVA, R=0.3769, P# 0.002) (Fig. 5A). Moreover, gut viral within-group com-
munity dissimilarity was greater in SCI groups (Wilcoxon rank sum test, P, 0.05,
FDR, 0.05) (Fig. 5B), and viral species diversity was significantly increased in a spinal
level-dependent manner with greater diversity in the T4 SCI group (Wilcoxon rank sum
test, P, 0.05, FDR, 0.05) (Fig. 5C). Viral diversity also increases in obesity and inflam-
matory bowel disease (45, 120, 121), indicating that SCI-induced changes in the gut
virome may be associated with an inflammatory disease state. Further analyses of
changes in viral population abundances among the groups revealed a relationship
between SCI level and the number of viral populations (.5 kb) affected by SCI, as sig-
nificant changes were noted in 21 and 57 viral populations in T10 and T4 SCI samples,
respectively (t test adjusted, FDR P, 0.05) (Fig. 5D; Data Set S1, tab 15).

We next sought to assign infection types (lytic versus temperate) to the fuller data
set of 2,675 viruses (.5 kb). To do this, we analyzed the contigs for prophage-bacte-
rium junctions (attachment sites) (122) and signatures (integrase/site-specific recombi-
nase, excisionase, repressor/antirepressor, and parA/parB) (123–126) of temperate
phages (see Materials and Methods). This suggested that at least 516 contigs (;19.3%)
contained such signatures and so might be considered candidate temperate phages;
49 of these were more confidently temperate phages, as they contained identifiable
putative attachment sites and integrase genes (Fig. S6B and Data Set S1, tab 16). These
findings are similar to previous studies that established that temperate phages consti-
tute about 20 to 50% of phages in the human gut (42, 127, 128). If we restricted these
analyses to the 70 viral populations (.5 kb) that were differentially affected by SCI
(Fig. 5D and E), 17 were identified as candidate temperate phages, with 3 confident
temperate phages containing both identifiable attachment sites and integrases (Data
Set S1, tab 17). Prior to these analyses, the effects of SCI on the virome had not been
considered. These novel data indicate that SCI alters the gut virome, with the magni-
tude of effect being more severe after high-level SCI, impacting both temperate and
lytic phages.

To develop hypotheses about how SCI-induced virome changes might impact the
microbiome, we next sought to link viral contigs to microbial hosts (MAGs) via com-
monly used in silico approaches (similarity to host k-mer signatures [129], prophages
[113], tRNAs [118, 130], and CRISPR spacers [130, 131]) (see Materials and Methods).
These analyses predicted hosts for 35.5% of the viral contigs (Fig. S7 and Data Set S1,
tab 18), which is three times higher than a previous murine gut virome analysis where
only reference microbial genome databases were available (118) but on par with find-
ings in soils where cosampled MAGs were also available (113). Using these prediction
models, specific phages were significantly altered by SCI (Fig. 6; Fig. S6, Wilcoxon rank
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sum test, P, 0.05, FDR, 0.05, and Data Set S1, tab 19). Hierarchical clustering of the
differentially abundant phages again revealed 3 distinct clusters (Fig. 6A). Cluster 1
identified phages that were less abundant in both SCI groups compared to Lam con-
trols. Phages in clusters 2 and 3 were more abundant in all SCI samples and T4 SCI sam-
ples, respectively, than in Lam controls (Fig. 6A). As with their bacterial hosts (Fig. 3),
the relative abundances of phages that infect Lactobacillus, CAG-1031, and Turicibacter
were reduced after SCI (Wilcoxon rank sum test, P, 0.05, FDR, 0.05) (Fig. 6B to D;
Fig. S6), whereas those predicted to infect Weissella, Lactococcus (Wilcoxon rank sum
test, P, 0.05, FDR, 0.05) (Fig. 6E and F) and class Clostridia increased after SCI
(Wilcoxon rank sum test, P, 0.05, FDR, 0.05) (Fig. 6G). These data illustrate the value
of using cosampled microbial reference genomes (i.e., from the same bulk metage-
nomes) to make predictions about virus-host interactions. The fact that phage abun-
dance patterns after SCI correspond with changes in microbial host abundance (Fig. 3)
indicates that phages may also serve as biomarkers of systemic disease or neurological
recovery after SCI and possibly in other disease states.

Though the study of viruses in complex communities and viral ecogenomic
approaches are in their infancy, particularly for inferring phage lifestyle (e.g., lytic or

FIG 5 Viral communities are altered after SCI. (A) Principal-coordinate analysis (PCoA) of Bray-Curtis distances showing that viral communities are different
between the Lam, T10, and T4 groups (analysis of similarity [ANOSIM], P= 0.003). Each data point represents an individual mouse sample (n= 15). (B) Box
plot analysis showing the within-group Bray-Curtis dissimilarities in Lam, T4, and T10 viral communities. A higher score suggests higher dissimilarity of
different samples in the same group. ***, P, 0.001; **, P, 0.01 (by Wilcoxon rank sum test with a false discovery rate [FDR] of ,0.05 calculated by “fdr” in
R). (C) Box plot analysis showing Shannon’s H of the viral communities between the Lam, T4, and T10 groups. Shannon’s H is an index of diversity, and a
higher Shannon’s H suggests higher diversity of viral populations in the communities. All box plots shown display the median and quartiles, with each dot
in the box plot representing an individual mouse sample, and each group (Lam, T4, T10) contains five samples. *, P, 0.05 (by Wilcoxon rank sum test with
an FDR of ,0.05). (D to F) Volcano plots of t tests corrected by the Benjamini and Hochberg method for changes to viral population abundances after SCI.
An FDR cutoff of 0.05 was used. Data points highlighted in red indicate viral populations that were significantly enriched in T10 or T4 mice, while data
points highlighted in blue indicate viral populations that were significantly enriched in the Lam mice.
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temperate), understanding phage-host dynamics is likely essential for us to reveal any
causal roles played by the gut virome in disease (132). Lytic phages metabolically
reprogram their bacterial hosts during infection in ways that alter that host’s output
into the ecosystem (133) and ultimately kill their hosts to modulate host abundance
and diversity through predator-prey dynamics (reviewed in reference 35). Temperate
phages integrate themselves into host genomes and can regulate host gene function
(reviewed in reference 134) and/or provide their hosts with new functions, like antibi-
otic resistance, toxin production, and other functions that may promote the virulence
of commensals or confer fitness and competitive advantages to the hosts (123, 135).
However, stressors, like antibiotics, hydrogen peroxide, and changes in nutrients and
pH, which activate the bacterial host's SOS response, can induce temperate prophages,
causing them to become lytic and ultimately kill host cells (123, 136, 137). Dietary fruc-
tose and short-chain fatty acids (SCFAs) were shown to induce Lactobacillus reuteri
temperate phages (138), and bile salts were shown to induce some Salmonella temper-
ate phages (139). Gut inflammation can also increase temperate phage induction in
mice (140). Thus, a change in gut phage ecology after SCI, due to actions by both tem-
perate and lytic phages, could dramatically influence how individuals respond to die-
tary changes and repeated regimens of antibiotics or drug therapies. In turn, these
changes could have significant implications for recovery of function and the develop-
ment of various comorbidities after SCI.

Conclusions. The gut microbiome has emerged as an essential component of
human development, metabolism, and health, and growing evidence from gene
marker data for microbes (1–4, 15) and metagenomic data for microbes and viruses
(this study) suggest that this is also true for SCI. It is now clear that key probiotic bacte-
rial populations and genes controlling their physiological functions are lost after SCI,
suggesting that repopulating the gut with distinct bacterial taxa, such as Lactobacillus
johnsonii and CAG-1031 spp., may help to improve a range of functional outcomes after
SCI. Also, SCI-induced changes in the gut microbiota may be influenced by correspond-
ing changes in the gut virome, a previously uncharacterized mechanism associated
with gut dysbiosis after SCI. These novel phage-host interactions could influence clini-
cal outcomes and also serve as therapeutic targets. For example, the century-old idea
of “phage therapy,” whereby bacterial viruses (or phages) are used to selectively target
host pathogens, could represent a novel approach to treat bacterial infections, thereby

FIG 6 Viral host prediction reveals that phage abundances vary with their hosts. (A) Hierarchical clustering of these differently abundant phages (P, 0.05
by Wilcoxon rank sum test, FDR, 0.05) shows three distinct clusters. (B to D) Box plot analyses of select groups of phages are shown. Phages that were
predicted to infect CAG-1031, Lactobacillus, and Turicibacter genera decreased after spinal cord injury. (E to F) Phages that were predicted to infect Weissella
and Lactococcus increased after spinal cord injury. All box plots shown display the median and quartiles, with each dot in the box plot representing an
individual mouse sample. Five individual mouse samples were used in each group. (G) Selected genus-specific phages constituting lower taxonomic ranks
of the class Clostridia. **, P, 0.01; *, P, 0.05 (by Wilcoxon rank sum test). An FDR of ,0.05 calculated by “fdr” in R was used here.
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reducing the need for antibiotics (141), which are variably effective and also harm com-
mensal bacteria. By leveraging the expanding array of microbiome capabilities and
resources (142–144) and the partnered viral ecogenomic toolkits for capture (145, 146)
and characterization (52–54), it is now possible to establish novel metagenome-
enabled hypotheses regarding the effects of SCI on gut microbial ecology and how
those changes can functionally influence mammalian physiology.

MATERIALS ANDMETHODS
Animals and spinal cord injury. All surgical and postoperative care procedures were performed in

accordance with the Ohio State University Institutional Animal Care and Use Committee. Fifteen female
C57BL/6 mice from Jackson Laboratories (Bar Harbor, Maine) were used in this study. To minimize exter-
nal/environmental effects on the microbiota, we were meticulous in our efforts to establish controlled
conditions, as follows. All animals were ordered together and arrived in the same cohort from Jackson
Laboratories. To prevent gut microbial cross-contamination due to cohabitation, all mice were singly
housed upon arrival at our animal facility and for the duration of the study in a vivarium room that con-
tained no other animals. All mice remained in this same room for the duration of the study. No mice
received antibiotics or dietary supplements at any point throughout the study. Quantity of food intake
was not measured, but all mice received the same standard rodent chow for the duration of the study.
Our data show that the effects of SCI are consistent (only one outlier was noted using multivariate statis-
tics; see Fig. 1B as an example) and robust. Moreover, there are clear spinal level-dependent differences.

Mice were anesthetized with an intraperitoneal cocktail of ketamine (80mg/kg)-xylazine (10mg/kg),
after which a partial laminectomy was performed at the 4th thoracic spine (T4) or the 10th thoracic spine
(T10). To create consistent severe SCI in each mouse, the spinal cord located between the T3 and T4 or
T10 and T11 vertebrae was crushed by inserting modified no. 5 Dumont forceps (Fine Science Tools;
with a tip of 0.4 to 0.2mm) 2mm ventrally into the vertebral column on both sides of the spinal cord
and then laterally compressing the spinal cord by bringing the forceps tips together completely, so they
are touching for 3 s. This lesion leaves the dura intact but creates a severe lesion with minimal sparing of
ascending or descending axons in the white matter (147). Postoperatively, animals were hydrated with
2ml Ringer’s solution (subcutaneous) for 5 days. Bladders were voided manually at least twice daily for
the duration of the study. No prophylactic antibiotics were used during or after surgery. Fecal samples
were collected 21days postinjury (dpi). Mice were removed from their home cage and placed into a ven-
tilated, aseptic polystyrene compartment, and fresh fecal samples were collected from each mouse into
sterile tubes and immediately frozen in liquid nitrogen. Mice were returned to their home cage after
sample collection. In total, five mice received a complete crush at T4, five mice received a complete
crush at T10, and five mice did not receive any crush after laminectomy (Lam group). In our previous
work (19), we collected serial samples from the same Lam mice and showed that laminectomy alone
(control for both anesthesia and surgery) did not cause differences in gut microbiota when analyzed
using 16S rRNA gene sequencing.

Ethics approval and consent to participate. The Institutional Animal Care and Use Committee of
the Office of Responsible Research Practices at The Ohio State University approved all animal protocols.
All experiments were performed in accordance with the guidelines and regulations of The Ohio State
University and are outlined in the Guide for the Care and Use of Laboratory Animals from the National
Institutes of Health.

Metagenomic sequencing, read quality control, and contigs assembly. Bulk DNA was recovered
from the 15 fecal samples separately using a ZymoBIOMICS extraction kit. Metagenomic library prepara-
tion and shotgun sequencing were conducted at CosmosID using an IonTorrent Ion S5 next-generation
sequencing system. On average, 23.5 million single-end reads were generated per sample (range, 15.2
million to 36.2 million reads), with an average read length of 180 bp. Reads were quality trimmed using
bbduk (https://jgi.doe.gov/data-and-tools/bbtools/) from both ends to remove bases with low-quality
scores (qtrim = rl, trimq= 10) and positions with high compositional bias (ftl = 10, ftr = range from 204 to
229 depending on the sample). Reads shorter than 30 bp (minlength = 30), with Ns (maxns = 0) or with
an average quality below 10 (maq= 10) were discarded. Mouse reads were removed from all the samples
using bbmap (https://jgi.doe.gov/data-and-tools/bbtools/) by mapping against the genome of our
model mouse strain C57BL/6NJ (downloaded from the NCBI assembly database; GCA_001632555.1) and
removing reads with a minimum identity of 95% (minid = 0.95). After quality control, all the clean single-
end reads were cross-assembled using SPAdes (v3.11.1) (148) in the “read-error correction and assem-
bling” mode and using the (-iontorrent) flag. The full k-mer size list (-k 21, 33, 55, 77, 99, 127) was used
in the assembly. All bioinformatic analyses were performed within the Ohio Supercomputer Center
(149). For a visual overview of the bioinformatic analyses, see Fig. S1A in the supplemental material.

Read-based estimation of microbial diversity and community structure. Reads from each sample
were piped through SingleM (singlem pipe; https://github.com/wwood/singlem) to estimate the abun-
dance of discrete taxa down to the strain level (Sensu [150]). Relative abundances of taxa, which were
used for all phylum- and genus-level comparisons, were calculated from the mean coverage of 14
single-copy marker genes to avoid copy number variations associated with 16S-based estimates of
abundance and to increase taxonomic resolution. Abundances of taxa inferred from the coverage of ri-
bosomal protein L2 (rplB), which is widely used for microbial community analysis (151), were used for
principal-coordinate analysis of Bray-Curtis dissimilarity. Within- and between-group Bray-Curtis dissimi-
larity analyses were performed using vegan in R. Principal-coordinate analysis (function capscale with no
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constraints applied) was carried out on the Bray-Curtis dissimilarity matrix (function vegdist; method
“bray”) after a log2 transformation on the relative abundance matrix. A pseudo count of 1 was added to
all the cells before this transformation to avoid negative numbers. The three groups that emerged in the
ordination plot were tested using a PERMANOVA test (function “anosim”) and were defined on the plot
using function “ordihull.” For a visual overview of the bioinformatic analyses, see Fig. S1B.

Construction of MAGs, estimation of abundance, and taxonomic classification. Microbial meta-
genome-assembled genomes (MAGs) were recovered using the coassembly-optimized tool MaxBin 2.0
(v2.2.4) (152), which depends on the tetranucleotide frequencies of the contigs, a phylogenetic marker
gene set, and differential coverage binning. First, all reads from each sample were mapped to the coas-
sembled contigs using Bowtie2 (v2.3.4.1) (148). The number of mapped bases (for average coverage cal-
culation) and reads (for calculation of normalized reads per kilobase per million mapped reads [RPKM])
were counted using BEDTools (v2.23.0) (153) in “mapbamsamples.pl” of SqueezeMeta (May 2018 distri-
bution) (154). The MAGs were then binned by MaxBin 2.0 using each sample’s contigs’ coverage
(-abund_list) and the full marker gene set. CheckM (v1.0.12) (155) was then used to assess the quality
(completeness and contamination) of the genome bins using the “lineage_wf” pipeline, and genome
bins were filtered at a completeness of $60% and a contamination of #10%. dRep (v2.2.3) (156) was
used then to dereplicate the MAGs at 97% average nucleotide identity (dRep_97 -comp 60 -con 10 -sa
0.97). After the dereplication, 112 MAGs were recovered (.60% complete,,10% contamination), includ-
ing 70 high-quality MAGs (.90% complete, ,5% contamination) and 35 medium-quality MAGs (.70%
complete, ,10% contamination) that were recovered from our 15 samples. After the recovery of the
MAGs, GTDB-Tk (v0.1.3) (63) was used to assign taxonomic classifications for the 112 MAGs in the “classi-
fy_wf” mode. In total, 9 MAGs can be confidently resolved into bacterial species. In addition, among the
rest of the MAGs, 73 MAGs can be assigned to bacterial genera. The coverm (https://github.com/
wwood/CoverM) was conducted for mapping the reads in different samples to the reference genome
(MAGs) in “genome” mode and “single” parameter. Data Set S1 describes the characteristics of the dere-
plicated MAGs and the predicted taxon of each MAG. For a visual overview of the bioinformatic analyses,
see Fig. S1B.

Identification of viral contigs and establishing viral populations from the bulk metagenomes.
With a high sequencing depth (average of 23.5 million reads/sample compared to ;5 to 10 million in
more typical gut microbiomes [157]) in the bulk metagenomes, we were able to identify putative viral
contigs, including a mix of actively infecting lytic viruses and prophages, from the bulk metagenomes
following assembly. An ensemble approach was used where, first, all contigs were analyzed using
VirSorter (v1.0.5) (158), DeepVirFinder (v1.0) (159), MARVEL (v0.1) (160), and CAT (https://github.com/
dutilh/CAT). This approach combines homology-based identification (CAT and VirSorter), sequence com-
position in deep learning (DeepVirFinder), and genomic features in probabilistic models (VirSorter and
MARVEL). VirSorter was used in the “bulk metagenome” mode and with selection of the virome data-
base, while DeepVirFinder was allowed to predict contigs down to 300 bp in length. Next, linear
contigs of $5 kb and circular contigs of $1.5 kb that were sorted as VirSorter categories 1 to 6, by a
DeepVirFinder score of $0.7 (P value, 0.05), and/or by a MARVEL random forest probability of $70%
were kept for further investigation. Of these contigs, those that were sorted as VirSorter categories 1, 2,
4, and 5, by a DeepVirFinder score of $0.9, or by a MARVEL probability of $90% were considered viral.
For the rest of the kept contigs, they were considered viral only if they were identified by at least two
tools, VirSorter (categories 3 or 6), DeepVirFinder (score of $0.7 and ,0.9), MARVEL (probability of
$70% and ,90%), and/or CAT (annotated as viral or ,40% of the genes were classified nonviral). In
total, 29,143 viral contigs were identified, with 2,675 viral contigs of $5 kb and 1,030 viral contigs
of $10 kb. Then, the identified putative viral contigs were clustered into viral populations using
Clustergenomes (v1.1.0; https://bitbucket.org/MAVERICLab/stampede-clustergenomes/src/master/) at$95%
nucleotide identity across$80% of the shorter genome length (55). This resulted in 2,658 viral populations
of $5 kb and 1,028 viral populations of $10 kb (see Data Set S1, tab 20, for VirSorter, Deep VirFinder,
MARVEL, and CAT results). Notably, the number of viral populations of$5 kb recovered from the 15 samples
in this study significantly exceeds the global average of 1,581 viral populations per study at the same contig
length cutoff (34). Clustergenomes analysis was also conducted using a combination of our 1,028 viral popu-
lations with viral populations (.10 kb) in public databases, including NCBI RefSeq v88 (116), the Human Gut
Virome Database (34), and the murine gut virome from the IMG/VR database (117), and one murine viral par-
ticle metagenome (118) to determine the novelty of our viral species. For a visual overview of the bioinfor-
matic analyses, see Fig. S1C.

Viral taxonomy and virus-host predictions. Viral genus-level taxonomy was assigned using
vConTACT 2.0 (v2-0.9.9) (119) by clustering (–rel-mode BLASTP –pcs-mode MCL –vcs-mode ClusterONE)
our 1,028 viral populations (.10 kb) with both the RefSeq viral genome database (v88) (4,061 complete
genomes; .10 kb) (116) and the Human Gut Virome Database (6,360 viral populations; .10 kb) (34).
The viral populations that can be clustered with a viral genome from RefSeq were likely to be assigned
to a known viral taxonomic genus, family, or order classified by the International Committee on
Taxonomy of Viruses (ICTV) taxonomy. Data Set S1, tab 14, summarizes the viral clusters using
vConTACT 2.0. Four different computational methods were used to predict putative hosts for the viral
populations, prophage-BLAST, CRISPR spacer matches, tRNA exact matches, and k-mer-based sequence
similarity. For prophage-BLAST, the viral genome nucleotide sequences were compared to the MAGs
using BLASTn based on a method described previously (161). To improve prediction accuracy, only hits
with 100% identity over 100% of the length of viral contigs were used for further prediction. Only pro-
phage-BLAST predictions that can be identified using PHASTER (162) were considered. For CRISPR link-
ages, MinCED (v0.2.0; https://github.com/ctSkennerton/minced) was used to search for prokaryotic
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CRISPR spacers (with a minimum of 2 repeats that a CRISPR must contain) from our set of MAGs. Then,
the prokaryotic CRISPR spacers were matched to viral contigs using BLASTn. Only hits with at least 95%
identity over the whole spacer length were considered. For tRNA linkages, tRNAscan-SE (v1.23) (163)
was conducted to identify tRNAs from viral contigs (using the general model -G) and MAGs (using the
bacterial model -B). Then, tRNA secondary structure sequences from viral contigs were compared to
those from MAGs using BLASTn. Only hits with 100% identity over 100% of the length, and at least one
hit in each MAG that was consistent with prophage-BLAST prediction, were considered. For k-mer fre-
quency linkages, host-virus connections were predicted using WIsH (v1.0) (129). To assign P values to
individual virus-host predictions, we built a null model using all the sequences in the RefSeq viral
genomes database. Only WIsH prediction with a P of 0 and the consistent predictions from both WIsH
with a P of ,0.05 and prophage-BLAST were considered. Figure S7 and Data Set S1, tab 18, show the
results from viral host prediction using different methods.

Annotating genes and making protein clusters.We annotated genes on all of the assembled con-
tigs by first predicting the open reading frames (ORFs) using Prodigal (v2.6.3) (164) in the metagenomic
mode (-p) and ignoring any masked non-protein-coding sequences (-m) produced by “barrnap.pl” of
SqueezeMeta. Next, the ORFs were annotated using a pipeline described previously (165). Briefly, anno-
tations were conducted by running a combination of reciprocal best blast hit searches against the KEGG
(Kyoto Encyclopedia of Genes and Genomes) (166) and UniRef90 (167) databases in tandem with HMM
searches against Pfams (168). About half of ORFs can be annotated using KEGG, and KEGG annotations
were then used for downstream analyses. MMseqs2 (version 4eb5e14267f64f2fb337995bd824e-
f279e04f266) (169) was used for clustering of all the protein sequence (cluster –min-seq-id 0.3 –cov-
mode 1 -c 0.7 -e 0.00001), and the abundances of all the proteins within each cluster were summed to
represent the total abundance of each unique protein clusters (PCs). In total, 335,087 protein clusters
were identified for PCoA analyses.

Identification of candidate temperate phages. To infer phage lifestyle, prophage-bacterium junc-
tions (attachment sites) (122) and lysogeny signatures were searched to identify candidate temperate
phages. Candidate identifiable prophages were first identified with PHASTER (162), followed by manual
inspection of the annotations for the presence of the attL and attR attachment sites (att). Then, lysogeny
signatures (123–126), including integrase(s)/site-specific recombinase, excisionase, phage repressor/anti-
repressor, and ParA/B genes, were searched by annotating genes of the 2,675 viral genomes (.5 kb)
against the KEGG (166) and UniRef90 (167) databases in tandem with HMM searches against Pfams
(168). A prophage usually inserts into the host genome by integrases, which mediate site-specific recom-
bination between the phage attachment site (attP) and the bacterial attachment site (attB) (170, 171).
This results in an inserted prophage flanked by two hybrid sites (attL and attR), also needed for the
reverse reaction (excision of the phage from the chromosome) along with excisionases (170, 171). Thus,
a viral contig can be considered a typical prophage region if it has an integrase HMM match and attach-
ments sites (attL and attR). Figure S6A is a clear example of a “confident” temperate phage, with putative
“att” sites next to an integrase gene in the noncoding region. A viral contig containing only lysogeny
markers is considered a “candidate” temperate phage. Figure S6B and Data Set S1, tabs 16 and 17, sum-
marize the results from PHASTER and lysogeny markers.

Statistical analyses. All the statistical analyses were conducted using RStudio. The Wilcoxon rank
sum test was conducted using the function “wilcox.test” in R, and “pairwise.wilcox.test” with adjusted
method “fdr” was used to calculate the false discovery rate (FDR). “edgeR” and “limma” in R were used
for differential analysis for viral populations (.5 kb) in different treatments. The “ggplot2” R package
was used for box plots and bar plots. The R package “VennDiagram” was used for Venn diagram plot-
ting, and “pheatmap” was used for heat maps.

Data availability. Scripts used in this manuscript are available on the Sullivan laboratory bitbucket
under SCI (https://bitbucket.org/MAVERICLab/spinal-cord-injury-ion-torrent-project/src/master/). Raw
reads and processed data are available through CyVerse under iVirus folder, including all assembled con-
tigs, microbial MAGs, and viral populations.
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