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A Jeffrey Fluid Model for a Porous-
walled Channel: Application to Flat 
Plate Dialyzer
M. Kahshan  1,2, D. Lu  1* & A. M. Siddiqui3

Creeping motion of a Jeffrey fluid in a small width porous-walled channel is presented with an 
application to flow in flat plate hemodialyzer. Darcy’s law is used to characterize the fluid leakage 
through channel walls. Using suitable physical approximations, approximate analytical solution of 
equations of motion is obtained by employing perturbation method. Expressions for velocity field and 
the hydrostatic pressure are obtained. Effects of filtration coefficient, the inlet pressure and Jeffrey 
fluid parameters on the flow characteristics are discussed graphically. The derived results are used to 
study the flow of filtrate in a flat plat hemodialyzer. Using the derived solutions, theoretical values of 
the filtration rate and the mean pressure difference in the hemodialyzer are calculated. On comparing 
the computed results with the available experimental data, a reasonable agreement between the two is 
found. It is concluded that the presented model can be used to study the hydrodynamical aspects of the 
fluid flow in a flat plate hemodialyzer.

The study of hydrodynamics of fluid flow in porous-walled channels and tubes have been remained a subject of 
interest for researchers since decades. This is because of the occurrence of such flows in many areas of science and 
engineering, particularly in those processes where mass transfer and filtration are encountered. Desalination pro-
cess due to reverse osmosis, transpiration cooling, ultrafiltration in the tubules of glomerulus and fluid reabsorp-
tion through permeable walls of renal proximal tubule in kidneys, and blood filtration during hemodialysis in an 
artificial kidney are examples of such flows1–6. A common characteristic of such flows is the direct inapplicability 
of the usual Poiseuille law7 in these situations because of the existence of non-zero velocity components of fluid in 
both axial and normal directions. This happens because of the fluid leakage through porous walls of the channel.

Literature survey reveals that various researchers have attempted the problem of fluid flow in porous-walled 
channels and tubes5,8–12 by assuming different forms of fluid reabsorption at the walls. Berman8, Sellars9, and 
Yuan10 have studied the laminar flow of incompressible Newtonian fluid in a uniformly porous-walled channel. 
Solutions were obtained for a uniform suction or injection case using the regular perturbation method. Kozinski 
et al.11 and Siddiqui et al.12 also studied the creeping flow of a viscous fluid in a permeable channel. Exact solutions 
were found for the case in which the leakage has exponential and linear decaying rate along the channel length. 
Flow of a viscous fluid in a porous-walled channel was also studied by Marshall et al.5 who assumed that the fluid 
leakage across the channel walls is proportional to the pressure differences across the walls. For further studies of 
fluid flows under different flow conditions authors would refer the reader to13–19.

In the literature presented above, all studies were performed for the Newtonian fluid model only. Despite 
the fact that most of the industrial and biological fluids are non-Newtonian20 and the classical Newton’s law of 
viscosity fails to describe the complex rheological properties of non-Newtonian fluids, a very little work has been 
done in order to study the non-Newtonian fluids flow in porous-walled channels and tubes. Amongst many 
non-Newtonian fluid models, one is the Jeffrey fluid model that has attracted many researchers due to its consid-
eration as a better model for physiological fluids21–23. The Jeffrey model is recognized as a generalization of the 
frequently used Newtonian fluid model because of the fact tat its constitutive equation can be reduced to that 
of the Newtonian model’s as a special case. The Jeffrey fluid model is capable of describing the stress relaxation 
property of non-Newtonian fluids, which the usual viscous fluid model cannot describe. Class of non-Newtonian 
fluids having the characteristic memory time scale, also known as the relaxation time, can be described well by 
the Jeffrey fluid model. Therefore, this article is devoted to the study of an incompressible Jeffrey fluids’ flow in 

1Faculty of Science, Jiangsu University, Zhenjiang, Jiangsu, 212013, P.R. China. 2Department of Mathematics, 
COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan. 3Pennsylvania State University, 
York Campus, Edgecomb, 1703, USA. *email: dclu@ujs.edu.cn

open

https://doi.org/10.1038/s41598-019-52346-8
http://orcid.org/0000-0001-6324-3884
http://orcid.org/0000-0001-6896-172X
mailto:dclu@ujs.edu.cn


2Scientific RepoRtS |         (2019) 9:15879  | https://doi.org/10.1038/s41598-019-52346-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

a porous-walled channel of small width. Fluid absorption at the channel wall is taken in accordance with the 
Darcy’s law. The approach of the present analysis seems better from that of 2,3,11,24. In the present approach, the 
fluid loss at the wall is taken as function of the wall permeability, the flow rate then determined can be found to 
decay linearly or exponentially along the channel wall as special case in our study. Whereas, in2,3,11,24 a flow rate 
that decays linearly or exponentially, along the channel and tube was assumed in advance.

Problem Formulation
Let us consider the steady and creeping motion of an incompressible Jeffrey fluid in a porous-walled channel 
comprising of two equidistant parallel flat plates of length L distance 2a apart. A Cartesian coordinate system 
 x y( , ) is chosen in a such that the axis of symmetry lies at y = 0 as shown in Fig. 1. It is assumed that the fluid 

moves only due to the hydrostatic pressure. Hydrostatic and osmotic pressures outside the channel are also 
assumed ot be constant. The flow is governed by the following equations
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where p  is the hydrostatic pressure of the fluid, =

 S i j x y, , ,ij  are components of the extra stress tensor, u and v  
are components of the velocity vector ∼  x yV( , ) in the axial and transverse directions, respectively.

The extra stress tensor S  for the Jeffrey fluid is given by the following equation21–23
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where μ is the dynamic viscosity of the fluid, A is the shear rate, λ2 is the retardation time, λ1 is the ratio of relax-
ation time to the retardation time, and Ä represents differentiation of A. The initial and boundary conditions 
corresponding to the prescribed flow are
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Equations (5) and (6) are the symmetry conditions at the center line of the channel. Equation (7) is the conse-
quence of the Darcy’s law at the permeable wall of the channel, where Lp is the mechanical filtration coefficient of 

Figure 1. Geometry of the flow.
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the channel wall which is usually measured in the units of cm2(Lp/μt is called the hydraulic permeability of the 
channel wall), t is the wall thickness, and pm can be visualized as the back pressure that opposes the fluid leakage 
and it is equal to the difference of hydrostatic and the osmotic pressures outside the channel wall. Equation (8) is 
the no slip condition at the wall, whereas Equations (9 and 10) are the inlet conditions. In these equations pi is the 
mean pressure and Qi is the flow rate at the inlet of the channel at =x 0.

Dimensionless Formulation
Following parameters are used to transform equations into dimensionless form:
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Using the above quantities, Eqs (1−3) take the following form

δ∂
∂

=
∂
∂

+
∂
∂

p
x x

S
y

S( ) ( ),
(12)xx xy

δ δ∂
∂

=
∂
∂

+
∂
∂( ) ( )p

y x
S

y
S ,

(13)yx yy
2

∂
∂

+
∂
∂

=
u
x

v
y

0,
(14)

where δ = a
L

 is the ratio of channel height to its length, =
μ





S a
Q
S

i

3
 is the dimensional stress tensor and 

= −
μ









p x y p x y p( , ) [ ( , ) ]a
LQ mi

4
. The initial and boundary conditions Eqs (5−10) are transformed into the follow-

ing dimensionless form
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Using Eq. (4) and the dimensionless parameters, the components of the stress tensor S can be readily obtained 
in the following dimensionless form
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Solution to the Problem
The set of Eqs (12−14) contains nonlinear coupled partial differential equations in three unknowns u, v and p and 
it is not possible to determine an exact solution of it. Since the channel is narrow and has small width as compared 
with its length, therefore the dimensionless parameter δ is very small. Thus it seems reasonable to ignore terms of 
the order δ2 and higher order. Note that this is also true for the flat plate hemodialyzer, for which the parameter δ2 
is of the order 10−8 (see the data given in Table 1 and 25–27).

Now expanding u, v and p in the power series of the dimensionless Jeffrey fluid parameter as
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we obtain the following systems of initial-boundary-value problem up-to the Order (λ2):
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Description Symbol Numerical data

Membrane length L 42 cm

Membrane thickness t 2.59 × 10−3 cm

Membrane width w 11.6 cm

Blood compartments 8

Height of the blood half channel a 9 × 10−3 cm

Entrance trans-membrane pressure difference −P PT0 150 mm Hg

Viscosity of the fluid μ 6.9 × 10−3 dynes-sec/cm2

Entrance volume flow rate 8Q0 160 ml/min

Ultrafiltration rate 8Qw 200 ml/hr

Table 1. Experimental data for the RP kidney 4,6,29.
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Zeroth order solution. The exact solution of the zeroth order system is given in the following

λ
=

+
−u x y

dp
dx

y( , ) 1
2

( 1), (44)0
1 0 2

λ
= −

+
−v x y

d p
dx

y y( , ) 1
6

( 3 ),
(45)0

1
2

0
2

3

ξ ξ
=



 +



 +



 −





ξ ξ−p x
p

AK
e

p
AK

e( )
2 4 2 4

,
(46)

i x i x
0

where ξ =
λ+

K3
1 1

.

First order solution. The exact solution of the first order system is given in the following
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where the constants C1, C2, C3 and C4 are respectively given by the following expressions
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Summing up, the approximate solution upto the order λ2 can be readily obtained as
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It is remarkable to point out that in the above velocity and pressure profiles, we get contribution of both 
parameters λ1 and λ2 of the Jeffrey fluid. For the limiting case when λ1 → 0 and λ2 → 0, the presented solutions 
reduce to the solution for Newtonian fluid flow in a permeable channel.

Expressions for Various Quantities of Interest
The dimensionless mean pressure p x( ) taken over any cross-section of the channel is defined as
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The non-dimensional wall shear stress may be obtained as

τ

λ
λ

= − |

= −
+









∂
∂

+





∂
∂ ∂

+
∂
∂














.

=

=

x S

u
y

u u
x y

v u
y

( ) ,

1
(1 )

(59)

w yx y

y

1

1
2 0

2
0

0

2
0

2
1

The dimensionless volume flow rate at any cross-section of the channel can be computed as
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The expression for leakage flux q(x) can be readily obtained as following
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The fractional re-absorption (FR) is the amount of fluid that has been reabsorbed through the channel walls. 
It can be computed using the following expression
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The streamlines can be determined by using the following relation
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Thus streamlines can be obtained up to the order λ2 by the following equation
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where C5 is an arbitrary constant.

Results and Discussion
This section describes effects of the inlet pressure pi, wall permeability parameter K and the Jeffrey fluid param-
eters λ1 and λ2 on the axial and normal velocity components u(x, y), v(x, y), the mean pressure difference Δp(x) 
and the streamline patterns.

Figures 2−5 present the variation of u(x, y) with y at the cross-section x = 0.3 of the channel for different val-
ues of K, pi, λ1 and λ2, respectively. A parabolic axial velocity is formed that has the maximum value at the center 
line of channel and is zero at the boundary. These figures reveal that the magnitude of axial velocity decreases 
rapidly as the inlet pressure and the wall permeability are increased. Similar effects are also noticed when the 
magnitudes of Jeffery fluid parameters is increased. However relatively small variations happen due to increase of 
λ1 and λ2 as compared to those due to pi and K.

Figures 6−9 present the variation of v(x, y) with y at the cross-section x = 0.3 of the channel for different 
values of K, pi, λ1 and λ2, respectively. Comparing with the axial velocity distribution, opposite effects of these 
parameters are observed on the normal velocity component. It can be seen clearly that v increases rapidly as the 
magnitudes of pi, K, λ1 and λ2 are increased. Thus, the wall seepage enhances by increasing these parameters. 
Effect of λ1 and λ2 on v are prominent as compared to those on u.

Variations of the mean pressure difference in the axial direction for different values of pi, K, λ1 and λ2 are 
shown in Figs 10−13. These figures depict that Δp decreases rapidly as the values of these parameters are 
increased. It can also be seen that variations in Δp are dominant after the middle of the channel.

Streamline pattern of the flow is presented in Figs 14−17. It is observed from the Fig. 14 that the flow is pos-
itive axial through the length of channel and no reverse flow and reverse leakage occurs for prescribed values of 
the parameters. However, as the wall permeability parameter K and (or) the inlet pressure pi increase to a certain 
value, a reverse flow phenomenon occurs. It happens due to the fact that if K or pi are increased, all the entering 
fluid is reabsorbed through seepage at the channel wall before the channel exit. Thus, a stagnation point flow can 

Figure 2. Effect of K on the axial velocity for pi = 3, λ1 = 0.1, λ2 = 0.03.

https://doi.org/10.1038/s41598-019-52346-8


8Scientific RepoRtS |         (2019) 9:15879  | https://doi.org/10.1038/s41598-019-52346-8

www.nature.com/scientificreportswww.nature.com/scientificreports/

be seen in these two figures, Figs 15 and 16. A comparison of Figs 14 and 17 show that a very nominal increase in 
the fluid seepage through channel walls happen as the value of λ1 is increased.

Application to Flat Plate Hemodialyzer
In this section, we aim to derive equations for the computation of ultrafiltration rate QA and the mean pressure 
drop ΔP in an artificial kidney (FPD) by using results of the former section. An FPD comprises of several com-
partments of blood. Every compartment involves two rectangular sheets that are composed of recovered cellulose. 
The two sheets are clipped at their edges by a couple of rectangular notched plastic sheets. The blood streams 
between the cellulose sheets whereas the dializing liquid goes in a counter-current or a cross-current stream along 
the sections in hemodialyzer board6,27–29. The volume of blood lost by the leakage through cellulose in a given 
time, from a known recycling volume is taken to be the ultrafiltration rate.

Figure 3. Effect of pi on the axial velocity for K = 0.16, λ1 = 0.1, λ2 = 0.03.

Figure 4. Effect of λ1 on the axial velocity for pi = 3, K = 0.16, λ2 = 0.03.
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Let L be the cellulose length, then we can compute the ultrafiltration rate for the presented model as following

= −  Q Q Q , (65)A L0

where sign denotes the dimensional quantity, Q0 = Q(0) and QL = Q(L). The non-dimensional expression for QA 
can be obtained using the dimensionless parameters defined earlier. Making use of (46), (49) and (60) in (65), the 
following expression for the ultrafiltration rate is determined

Figure 5. Effect of λ2 on the axial velocity for pi = 3, K = 0.16, λ1 = 0.1.

Figure 6. Effect of K on the normal velocity for pi = 3, λ1 = 0.1, λ2 = 0.03.
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Figure 7. Effect of pi on the normal velocity for K = 0.16, λ1 = 0.1, λ2 = 0.03.

Figure 8. Effect of λ1 on the normal velocity for pi = 3, K = 0.16, λ2 = 0.03.
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A similar approach can be adopted to evaluate the expression for calculation of mean pressure drop in FPD 
between x = 0 and x = L. By using Eq. (58) the following expression can be obtained for the mean pressure drop 
in a flat plate hemodialyzer
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Figure 9. Effect of λ2 on the normal velocity for pi = 3, K = 0.16, λ1 = 0.1.

Figure 10. Effect of K on the mean pressure drop for pi = 3, λ1 = 0.1, λ2 = 0.03.
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For checking the accuracy of these expressions, we are employing the experimental data provided in5,29 as 
shown in Table 1. This data corresponds to a disposable flat-plate artificial kidney and is also referred to as the 
data for an RP kidney. By substituting these parameters in Eq. (66) along with λ1 = 0.1 and λ2 = 0.0321–23 results in 
an equation with one variable K. By expanding the hyperbolic functions in this equation in the power series of K 
up to O(K3) and then solving the resulting equation we obtain a real root K = 6.23 × 10−4. The ultrafiltration coef-
ficient Lp is then computed from =K

L L

a t
p

2

3 . This results in Lp = 6.66 × 10−16 cm2 (see Table 2).
In a similar way by substituting K = 6.23 × 10−4 and the parameters given in Table 1 along with λ1 = 0.1 and 

λ2 = 0.03 in Eq. (67), mean pressure drop in an FPD can be computed. This results in the mean pressure drop 
−p p L(0) ( ) = 11.5 mm Hg (see Table 2).

In the data for membranes of hemodialyzer, filtration coefficient Lp value is usually not given. Results of 
experiments performed by Kaufmann et al.30 show that at the normal body temperature regenerated cellulose 

Figure 11. Effect of pi on the mean pressure drop for K = 0.16, λ1 = 0.1, λ2 = 0.03.

Figure 12. Effect of λ1 on the mean pressure drop for pi = 3, K = 0.16, λ2 = 0.03.
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has the hydraulic permeability equal to 2.41 × 10−11 cm3/dynes-sec when the membrane has a thickness equal 
to 7.5 × 10−3 cm. Taking the fluid viscosity equal to 6.9 × 10−3 dynes-sec/cm2 from Table 1, this results in 
Lp = 1.25 × 10−15 cm2. The ultrafiltration coefficient computed by the empirical results of Marshall et al.5 shows 
that Lp = 6.36 × 10−16 cm2. It is also revealed in the experiments discussed in5,29 that the mean pressure drop in an 
FPD is approximately 15 mm Hg. Thus a good agreement between the presented and earlier obtained experimen-
tal and empirical values of the ultrafiltration coefficient and mean pressure drop is found. This builds a confidence 
in stating that the presented model can be used to obtain theoretical results in advance to study the hydrodynam-
ical aspects of the flow in a flat plate hemodialyzer.

Graphs of the ultrafiltration rate QA versus pi, K and A are plotted in Figs 18−20, for fixed values of other 
parameters. These graphs state that QA depends linearly on pi, or alternatively the ultrafiltration rate is linearly 
dependent on the trans-membrane pressure difference −p p(0) m . It is also evident from these graphs that QA is 

Figure 13. Effect of λ2 on the mean pressure drop for pi = 3, K = 0.16, λ1 = 0.1.

Figure 14. Streamline pattern of the flow or pi = 3, K = 0.16, λ1 = 0.1, λ2 = 0.03.
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directly proportional to the dimensionless filtration coefficient K. Expressions for the dimensionless parameters 
and Fig. 19 also reveal that the ultrafiltration rate is directly proportional to the mechanical filtration coefficient 
Lp and membrane area, and is inversely proportional to the membrane thickness and channel half width. 
Dependence of the ultrafiltration rate on the dimensionless filtration coefficient is also presented in Table 3. The 
linear dependence of QA on p̄(0)−pm have been found experimentally by Malino et al.31 and Mcdonald32. A series 
of experiments performed by Brown et al.33 also highlights the dependence of QA on the mechanical filtration 
coefficient, membrane thickness and the membrane area.

For a given or desired mechanical filtration coefficient Lp, Eq. (66) can also be used to determine the magni-
tude of membrane thickness. This fact is explained in Fig. 21 which shows the behavior of dimensionless ultra-
filtration rate QA with the trans-membrane pressure difference for different values of membrane thickness. The 
experimental curve in this graph is plotted by admitting the experimental result of Kauffmann et al.30 which 

Figure 15. Streamline pattern of the flow for pi = 3, K = 0.25, λ1 = 0.1, λ2 = 0.03.

Figure 16. Streamline pattern of the flow for pi = 4, K = 0.16, λ1 = 0.1, λ2 = 0.03.
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Figure 17. Streamline pattern of the flow for pi = 3, K = 0.16, λ1 = 2, λ2 = 0.03.

Figure 18. Ultrafiltration rate versus pi, K = 0.0006, A = 1288.

Parameter Abbreviation Numerical Value

Mechanical filtration coefficient Lp 6.66 × 10−16 cm2

Dimensionless Mechanical filtration coefficient K 6.23 × 10−4

Mean pressure drop −p p L(0) ( ) 11.55 mm Hg

Table 2. Computed values for the proposed Jeffrey fluid model.
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states that Lp is 1.25 × 10−15 cm2. From this figure it can be seen that for experimental and theoretical curves 
to be in good agreement, the membrane thickness t should be approximately 1.5.0 × 10−3 cm. This thickness is 
approximately half of the estimated thickness obtained from the data of Funck-Bretano et al.29. The importance 
of membrane thickness in determining the ultrafiltration rate can also be seen from this graph. For example, it 

Figure 19. Ultrafiltration rate versus K, pi = 0.013, A = 1288.

Figure 20. Ultrafiltration rate versus A, pi = 0.013, K = 0.0006.

Wall Permeability 0.008 0.010 0.012 0.014 0.016 0.018

Ultrafiltration Rate 0.40 0.50 0.60 0.70 0.80 0.91

Table 3. Dimensionless ultrafiltration rate in a flat plate hemodialyzer.
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can be seen that magnitude of the ultrafiltration rate can be doubled if the membrane thickness is halved. In order 
to determine a desired ultrafiltration rate for variations of the dimensionless filtration coefficient K, theoretical 
values of the ultrafiltration rate are tabulated in Table 3. It can be seen that increase in K causes the higher ultra-
filtration rate.

Conclusions
The Jeffrey fluid model is a simpler model that describes well the physiological flows of non-Newtonian nature. 
In the study of fluid flow problems in porous-walled channels of small width, the presented model can serve as 
generalization of the usual Newtonian fluid model, since the obtained results can be reduced to the later one’s by 
substituting parameters λ1 and λ2 equal to zero. The derived equations for the ultrafiltration rate and the mean 
pressure difference can be confidently used in studying the flow in a flat plate hemodialyzer. In applying the cur-
rent results to study the problem of flow in flat plat hemodialyzer, one should not overlook the physical aspects of 
the flow phenomenon. It is also concluded the presented results are theoretical in their soul, therefore one should 
perform more experimental and theoretical investigation in order to have a complete understanding of the flow 
in a flat plat hemodialyzer.
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