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Abstract: Differentiated thyroid carcinomas (DTCs), which have papillary and follicular types, are
common endocrine malignancies worldwide. Cancer stem cells (CSCs) are a particular type of cancer
cells within bulk tumors involved in cancer initiation, drug resistance, and metastasis. Cells with high
intracellular aldehyde hydrogenase (ALDH) activity are a population of CSCs in DTCs. Disulfiram
(DSF), an ALDH inhibitor used for the treatment of alcoholism, reportedly targets CSCs in various
cancers when combined with copper. This study reported for the first time that DSF/copper can
inhibit the proliferation of papillary and follicular DTC lines. DSF/copper suppressed thyrosphere
formation, indicating the inhibition of CSC activity. Molecular mechanisms of DSF/copper involved
downregulating the expression of B lymphoma Mo-MLV insertion region 1 homolog (BMI1) and
cell cycle-related proteins, including cyclin B2, cyclin-dependent kinase (CDK) 2, and CDK4, in
a dose-dependent manner. BMI1 overexpression diminished the inhibitory effect of DSF/copper
in the thyrosphere formation of DTC cells. BMI1 knockdown by RNA interference in DTC cells
also suppressed the self-renewal capability. DSF/copper could inhibit the nuclear localization and
transcriptional activity of c-Myc and the binding of E2F1 to the BMI1 promoter. Overexpression of
c-Myc or E2F1 further abolished the inhibitory effect of DSF/copper on BMI1 expression, suggesting
that the suppression of c-Myc and E2F1 by DSF/copper was involved in the downregulation of BMI1
expression. In conclusion, DSF/copper targets CSCs in DTCs by inhibiting c-Myc- or E2F1-mediated
BMI1 expression. Therefore, DSF is a potential therapeutic agent for future therapy in DTCs.
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1. Introduction

Approximately 96% of all malignancies of endocrine glands in the United States belong
to thyroid cancer, and its increasing incidence rate is especially noted in Saudi females [1].
Thyroid cancer can be divided into papillary, follicular, medullary, and anaplastic types [2].
Differentiated thyroid carcinomas (DTCs) have two types, papillary thyroid carcinoma
(PTC) and follicular thyroid carcinoma (FTC), with incidence rates of 80–85% and 10–15%,
respectively [3].

Although PTC accounts for the majority of the incidence of thyroid cancers and
is usually benign, surveillance, epidemiology, and end-results data show a 3% increase
in the overall annual incidence of thyroid cancer and an increase in the mortality rate
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for advanced-stage PTC [4]. Advanced-stage PTC results in a one-third increase in the
mortality of patients with thyroid cancer. Although both are DTCs, FTC and PTC have
different prognostic factors. FTC presents more frequent distant metastasis compared
with the high incidence of regional lymph node and extrathyroid metastasis in PTC at
the time of diagnosis. Immobilization arising from early distant metastasis to bones
caused by FTC may account for its poorer survival rate compared to PTC [5,6]. Current
treatments for thyroid cancer include thyroidectomy, radioactive iodine treatment, and
chemotherapy [7]. Radioactive iodine treatment is commonly used in all types of thyroid
cancer but is associated with acute side effects, including ageusia, pain, and salivary gland
swelling, as well as long-term side effects, such as mouth pain, dental caries, and second
primary tumors [8]. Hence, developing new therapeutics without severe side effects for
thyroid cancer is still required.

Growing pieces of evidence for the pathogenic role of cancer stem cells (CSCs) in
thyroid cancers have been explored in the initiation phase and metastasis. Several markers,
including CD44 [9], CD133 [10], aldehyde dehydrogenase (ALDH) activity, and CD326 [11],
have been used to identify CSCs in thyroid cancers. In addition, the thyrospheres derived
from thyroid cancer cells display increased protein expression of stemness genes, such
as OCT4 [12] and SOX2 [13]. Although CSCs are a small population within cancer cells,
they participate in treatment resistance, metastasis, and immune evasion. Targeting CSCs
has been suggested as a promising strategy to achieve long-term benefits for patients with
cancer, and many clinical trials are ongoing [14]. Disulfiram (DSF), a drug for treating
alcohol abstinence, has been used clinically for a long time without major side effects [15].
The accumulation of acetaldehyde caused by DSF intake, which irreversibly inhibits all
cytosolic and mitochondrial ALDH isoforms, results in the unpleasant effects of alcohol
consumption. This effect contributes to the wide clinical use of DSF for alcohol abstinence.
High ALDH activity could maintain sufficiently low intracellular levels of reactive oxygen
species, thereby preventing CSC apoptosis due to excessive intracellular oxidative stress,
enhancing tumorigenicity, and increasing migratory capacity [16]. Moreover, the anti-
cancer effect of DSF is conferred by copper [17]. In anaplastic thyroid cancer cells, DSF
suppresses thyrosphere formation without inhibiting ALDH1A3 activity [18]. However,
whether or not DSF displays anti-CSC activity in DTCs is unknown, and its underlying
molecular mechanisms in CSC-targeting activity need to be investigated. In the present
study, we examined the anti-CSC potential of DSF/copper treatment in two DTC cell lines,
namely, K1 cells (PTC cell line) and WRO cells (FTC cell line), and we investigated the
possible underlying molecular mechanisms.

2. Results
2.1. DSF/Copper Suppresses the Cell Proliferation of DTC Cell Lines

DSF functions as an ALDH inhibitor, and ALDH activity has been used as a marker to
identify thyroid CSCs [11]. In addition, the DSF/copper complex displays anti-cancer activ-
ity with low toxicity to normal cells [19]. In the present study, we examined the cytotoxicity
of DSF/copper in K1 and WRO cells. Using MTT as an indicator of cell proliferation, we
found that DSF/copper suppressed the proliferation of the K1 (Figure 1A) and WRO cells
(Figure 1B) in a dose-dependent manner, and the half-maximal inhibitory concentrations
(IC50) of DSF for the K1 and WRO cells were 18.5 ± 7.7 and 15.3 ± 3.5 µM, respectively.
Targeting CSCs is considered key for the long-term control of cancer progression [14,20].
We next tested if DSF/copper inhibits the CSC activity of the DTC cell lines through thyro-
sphere cultivation and discovered that the suppressive effect of DSF on the thyrosphere
formation of the K1 (Figure 1C) and WRO (Figure 1D) cells could be observed at a concen-
tration of 200 nM, which was far less than the IC50 under adherent culture conditions. In
addition, the expression of CD44, one of the markers for thyroid CSCs [21], in the K1 or
WRO thyrosphere cells was obviously suppressed by DSF/copper at 200 nM (Figure 1E).
These data suggest that DSF/copper could function as a CSC-targeting drug. We next
examined cell proliferation using the NTP-transporter to deliver Atto-488-conjugated dUTP
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to the two DTC cell lines. The results showed that DSF/copper reduced Atto 488–dUTP
incorporation in the K1 (Figure 2A) and WRO cells (Figure 2B) in a dose-dependent manner.
We further examined the changes in cell cycle-related proteins in the DSF/copper-treated
DTC cells. Results showed that DSF/copper inhibited the expression levels of cyclin B2 and
cyclin-dependent kinase 6 in the K1 and WRO cells (Figure 2C). In addition, the decreased
cell population in the S phase and the increased percentage of cells in the G2/M phase were
observed in both K1 and WRO cells by propidium iodide (PI) staining and flow cytometric
analysis (Figure 2D). These data suggest that DSF/copper reduces the proliferation of DTC
cells by interrupting cell cycle progression and displays CSC-targeting activity in DTC cells.
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Figure 1. DSF/copper inhibits cell proliferation and thyrosphere formation of DTC cells. (A,B) K1
(A) or WRO (B) cells were seeded into 96-well-plates and treated with the indicated concentrations of
DSF in presence of 1 µM CuCl2 for 72 h. The cell proliferation was determined by WST-1 reagent
and the absorbance was read at 440 nm wavelength. The curves and IC50 values were drawn
and calculated with GraFit software. (C,D) K1 (C) or WRO (D) cells were seeded into ultralow
attachment culture dishes to form primary thyrospheres for 7 days under the treatment of indicated
concentrations of DSF in presence of 1 µM CuCl2. The formed thyrospheres were pictured and
counted on Day 7. *, p < 0.05; **, p < 0.01. Scale bars in (C,D) represented as 50 nm. (E) The
thyrospheres from K1 or WRO cells were dissociated into single-cell suspensions by enzyme-free
cell dissociation buffer and treated with 200 nM of DSF in presence of 1 µM CuCl2 for 24 h. The
expression of CD44 was determined by flow cytometry. Data were analyzed by FlowJo software.
The dotted arrows indicate the percentage of CD44 high expression cells that with the fluorescence
intensity greater than 104.
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Figure 2. DSF/copper inhibits cell cycle progression in DTC cells. (A,B) K1 (A) or WRO (B) cells
were seeded into 12-well-plates and treated with indicated concentrations of DSF in presence of 1 µM
CuCl2 for 48 h followed by adding Atto-488 dUTP mixing with BioTrackerTM NTP-transporter for
10 min. The uptake of Atto-488 dUTP was determined by green fluorescence capture (as indicated by
arrows) and counted with ImageJ software. **, p < 0.01. Scale bars: 20 µm. (C) K1 or WRO cells were
treated with the indicated concentrations of DSF for 48 h and the protein expressions of CDK2, CDK4,
CDK4, and cyclin B2 were determined by Western blot. Inserted numbers indicated the relative
expression levels in comparison with DSF non-treated cells. (D) K1 or WRO cells were treated with
100 nM DSF in presence of 1 µM CuCl2 for 24 h. Cells were then harvested and fixed with 70%
EtOH/PBS, stained with PI in presence of RNaseA, and the fluorescence signals were collected by
flow cytometry. The cell cycle distributions of each cell line were quantified by FlowJo software.

2.2. BMI1 Downregulation Is Responsible for the Anti-CSC Activity of DSF/Copper in DTC
Cell Lines

We extracted the total RNA from the DSF/copper-treated K1 and WRO cells and
determined the mRNA expression of several cancer stemness genes, including B Lymphoma
Mo-MLV Insertion Region 1 Homolog (BMI1), Homeobox Protein NANOG (NANOG),
Octamer-Binding Protein 4 (OCT4), and Sex Determining Region Y-Box 2 (SOX2), by using
quantitative RT-PCR to understand the molecular mechanisms through which DSF/copper
suppresses thyroid CSCs. DSF/copper downregulated the mRNA expression of BMI1
(Figure 3A) and OCT4 (Figure 3B) in K1 and WRO cells in a dose-dependent manner,
but the levels of SOX2 or NANOG mRNA did not show any change (Figure S1). The
upregulation of BMI1 mRNA level in PTC tissues has been reported recently [22] and
initiated our interest to further investigate the role of BMI1 in the anti-CSC activity of
DSF/copper. Western blot analysis was used to confirm that DSF/copper inhibited the
BMI1 protein expression in the K1 and WRO cells (Figure 3C). We next overexpressed
BMI1 in the K1 cells through the lentiviral delivery of BMI1 cDNA, which was confirmed
by Western blot (Figure 3D). The BMI1-overexpressed K1 cells were used for thyrosphere
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cultivation. The lentiviral vector contained a tRFP protein; therefore, we could trace the
BMI1-overexpressed cells with red fluorescence. Results showed that BMI1 overexpression
in the K1 cells increased the number of thyrospheres and abolished the anti-CSC effect of
DSF/copper (Figure 3E). These data suggest that the anti-CSC activity of DSF/copper
is mediated by BMI1 downregulation in DTC cells. We next used RNA interference
to investigate the role of BMI1 in the maintenance of thyroid CSCs. The knockdown
efficiencies of two BMI1-specific shRNAs or the combination of these two shRNAs were
first confirmed by qRT-PCR (Figure 4A) and Western blot (Figure 4B) after transduction
into the K1 cells. The primary thyrosphere formation of the K1 cells, which represents CSC
activity, was observed after BMI1 knockdown in the shRNA clones or the combination
of the two shRNAs (Figure 4C). We also examined the secondary thyrosphere formation
of the K1 cells, which represents the self-renewal capability. The results revealed that the
number of secondary thyrospheres decreased in the K1 cells transfected with sh-BMI1#1 or
the two shBMI1 lentivruses (Figure 4C). These data demonstrate that DSF/copper displays
anti-cancer activity in DTC cells by downregulating BMI1.
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Figure 3. DSF/copper downregulates BMI1 expression. (A,B) Total RNA of DSF/copper-treated K1 or
WRO cells was extracted and reverse-transcribed into cDNA. The mRNA expressions of BMI1 (A) or
OCT4 (B) were determined by SYBR Green-based real-time PCR. *, p < 0.05; **, p < 0.0.1. (C) The
BMI1 protein expression of K1 or WRO cells under DSF/copper treatments was determined by
Western blot analysis. Inserted numbers indicate the relative expression level in comparison with DSF
non-treated cells. (D) K1 cells were transduced with tRFP- or BMI1-carrying lentiviruses and selected
with 20 µg/mL blasticidin for 96 h. The mRNA or protein expressions of BMI1 were determined by
real-time RT-PCR or Western blot, respectively. (E) The CSC activity of tRFP or BMI1 overexpressed
K1 cells under DSF/copper treatment at 200 nM was determined by thyrosphere formation capability.
The formed thyrospheres were pictured and counted on Day 7. RF, red fluorescence; BF, bright field.
The white lines in each picture indicated a scale bar of 100 µm.
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Figure 4. Knockdown of BMI1 suppresses CSC activity in K1 cells. K1 cells were transduced with
lentiviruses carrying BMI1-specific shRNAs (shBMI1#1, shBMI1#2, or the combination #1plus #2 as a
ratio of 1:1) followed by selection with 2 µg/mL puromycin for 72 h. (A,B) The mRNA (A) or protein
(B) expressions of BMI1 were determined by real-time RT-PCR or Western blot, respectively. (C) The
shRNA-transduced K1 cells were used for primary thyrosphere cultivation and counted the sphere
numbers on Day 7. After counting, the formed primary thyrospheres were collected with 100 µm
cell strainers and dissociated into single-cell suspension after treatment with HyQTase followed by
secondary thyrosphere cultivation and counting at Day 7 post seeding. Scale bars: 50 µm. *, p < 0.05;
**, p < 0.01.

2.3. DSF/Copper Inhibits BMI1 Expression through c-Myc and E2F1 Downregulation

c-Myc regulates BMI1 expression in nasopharyngeal carcinoma [23]. In addition,
the nuclear translocation of c-Myc in breast CSCs could maintain BMI1 expression [24].
In the present study, Western blot results showed that DSF/copper downregulated the
total protein level of c-Myc in the K1 and WRO cells (Figure 5A). We further separately
extracted the cytoplasmic and nuclear proteins to detect the protein level of c-Myc using
Western blot. Results showed that DSF/copper inhibited the c-Myc level in the nuclear
fraction of K1 and WRO cells (Figure 5B). Using a luciferase-based reporter assay involving
c-Myc DNA binding elements inserted before the firefly luciferase gene, we demonstrated
that DSF/copper suppressed the transcriptional activity of c-Myc in the K1 and WRO
cells (Figure 5C). This result suggests that DSF/copper can potentially reduce c-Myc-
induced gene expression. In addition to c-Myc, E2F1 also activates BMI1 expression
in neuroblastoma [25] and gastric cancer cells [26]. Western blot analysis showed that
DSF/copper downregulated E2F1 protein expression in the K1 and WRO cells (Figure 5D).
Chromatin immunoprecipitation with the anti-E2F1 antibody in K1 cells revealed that
DSF/copper reduced the binding of E2F1 on the BMI1 promoter (Figure 5E). Regarding the
treatments of HLM-006474, an E2F1 inhibitor, or 10058-F4, a c-Myc inhibitor, suppressed
BMI1 protein expression in the K1 and WRO cells (Figure 5F). The overexpression of c-
Myc or E2F1 in WRO cells abolished the inhibitory effect of DSF/copper on BMI1 protein
expression (Figure 5G). These data strongly support that DSF/copper downregulates BMI1
expression in DTC cells by downregulating c-Myc or E2F1 expression. We further analyzed
the thyroid carcinoma (THCA) dataset of the Cancer Genome Atlas (TCGA) database,
which is a collection of 512 PTC samples, including 272 BRAF-like and 118 RAS-like PTCs.
The results revealed that the mRNA expression of c-Myc (Figure 6A) and E2F1 (Figure 6B)
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displayed a remarkably positive correlation with BMI1. Using the median BMI1 mRNA
expression level as a cutoff value to perform gene set enrichment analysis, we found that
BMI1 expression in the PTC cells was positively correlated with the gene sets of the E2F
target (Figure 6C), the G2M checkpoint (Figure 6D), and the mitotic spindle (Figure 6E) but
was negatively correlated with the gene set of oxidative phosphorylation (Figure 6F). These
data suggest that the inhibitory activity of DSF/copper in BMI1 expression is mediated
by the reduction in c-Myc and E2F1 expression, and the BMI1 expression in PTC may be
highly correlated with its malignant phenotype.
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Figure 5. DSF/copper reduces c-Myc and E2F1 activation in DTC cells. (A,B) Total cellular proteins
(A) or the cytoplasmic (Cyto)/nuclear (Nu) fractions (B) of K1 or WRO cells after DSF/copper
treatment were extracted and the c-Myc protein was determined by Western blot. Lamin B1 or tubulin
in (B) was used as the marker for nuclear or cytoplasmic proteins, respectively. (C) The E2F1 protein



Int. J. Mol. Sci. 2022, 23, 13276 8 of 14

expression in total cellular proteins from DSF/copper treated K1 or WRO cells was determined by
Western blot. (D) pMyc-Luc and pRL vectors were mixed as a ratio of 100:1 and were transfected
into K1 or WRO cells for 24 h followed by treatment of 100 nM DSF in presence of 1 µM CuCl2
for further 48 h. After harvesting the total cell lysates with passive lysis buffer, firefly luciferase or
activities were then measured, and data were normalized with Renilla luciferase activity of each
sample. ***, p < 0.001. (E) Chromatin DNA of DSF/copper treated K1 cells was extracted and
performed immunoprecipitation with anti-E2F1 antibody. The BMI1 promoter DNA fragments
within precipitated chromatins were then quantitated by real-time PCR method. The data were
presented as relative percentage of input DNA. ***, p < 0.001. (F) K1 or WRO cells were treated with
HLM006474 or 10058-F4 at 40 µM or 100 µM, respectively, for 48 h and the protein expression of BMI1
was determined by Western blot. The inserted numbers indicated relative expression levels compared
to non-treated samples. (G) WRO cells were transfected with pCMV3 (VC) or vectors carrying cDNA
of c-Myc (c-Myc-OE) or E2F1 (E2F1-OE) for 24 h followed by treatment with 100 nM DSF in presence
of 1 µM CuCl2 for further 48 h. The protein expressions of BMI1, c-Myc, or E2F1 were determined
by Western blot. For c-Myc overexpression, exogenous c-Myc was tagged with hemagglutinin (HA)
and was detected by anti-HA antibody. The inserted numbers indicated relative expression levels
compared to non-DSF treatment samples.
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Figure 6. The analysis of the enriched gene sets based on BMI1 expression level in THCA dataset
of TCGA database. (A,B) The correlations of BMI1 with c-Myc or E2F1 in THCA dataset of TCGA
database were obtained from GEPIA_2 website (http://gepia2.cancer-pku.cn, accessed on 20 June
2022). SYMPK was chosen as a housekeeping gene for normalization [27] (C–F) The gene set
enrichments of THCA dataset were analyzed by GSEA software according to the BMI1 mRNA
expression level using the median as a cut-off value.

3. Discussion

The present study has some limitations. It only included two DTC cell lines and lacked
a xenograft mouse model of DTC to examine the anti-cancer efficacy of DSF/copper in vivo.
Furthermore, the use of BMI1 non-expressing cell lines may be required to confirm the
association between BMI1 and the anti-cancer effect of DSF/copper. DTCs account for
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90% of all thyroid cancers. Although they can be well controlled by radioactive iodine,
6–20% of patients with DTC still experience recurrence, and the absorption of radioactive
iodine via the recurrence of cancer lesions becomes poor [28]. BMI1 has been demonstrated
to participate in cancer radioresistance. BMI1 participates in cancer radioresistance. For
example, BMI1 knockdown in glioblastoma multiforme cells impairs the activation of ataxia
telangiectasia-mutated kinase and sensitizes the cells to radiation [29]. The radioresistant
function of BMI1 was also observed in colorectal cancer cells, and the overexpression of
Kruppel-like factor 4 partially confers the radiosensitized phenotype in BMI1-knockdown
colorectal cancer cells [30]. In the present study, DSF/copper inhibited BMI1 expression
(Figure 3). The involvement of BMI1 in the resistance of radioactive iodine and the sensiti-
zation potential of DSF/copper in DTCs with radioactive iodine resistance is worthy of
further investigation.

In addition to radioactive iodine, several targeted anti-cancer drugs that are based
on multitargeted kinase inhibitors, such as lenvatinib or sorafenib, have been approved
for radioiodine-refractory DTCs [31]. However, drug resistance against kinase inhibitors
is frequently observed among patients with cancer. The activation of epidermal growth
factor receptor (EGFR) could limit the efficacy of lenvatinib in hepatocellular carcinoma
(HCC) [32]. Ngo et al. reported that the expression of insulin-like growth factor-1 (IGF1R)
is upregulated in sorafenib-resistant HCC cells and that IGF1R activation causes the nuclear
translocation of Yes-associated protein followed by the induction of sorafenib resistance [33].
Using the TCGA database, we further discovered that the gene set of EGFR_UP.V1_UP [34]
was enriched among patients with THCA and high BMI1 expression (Figure S2A), and a
remarkably positive correlation was found between BMI1 and EGFR in the THCA dataset
(Figure S2B). We also found the enrichment of the EGFR_UP.V1_DN gene set [34] in pa-
tients with THCA and high BMI1 expression (Figure S3A) and a considerably positive
correlation between BMI1 and IGF1R (Figure S3B). The BMI1 inhibition function sug-
gests that DSF/copper could be a combination drug for preventing the drug resistance of
multitargeted kinase inhibitors in thyroid cancers.

c-Myc is an important oncogene that contributes to carcinogenesis, and approximately
28% of human cancers have amplified MYC paralogs [35], which could be an attractive
target for drug development. However, the development of direct inhibitors for c-Myc is
challenging because of the lack of a specific active site for the binding of small molecules,
and the nuclear localization characteristics complicate the delivery of neutralization antibod-
ies [36]. E2F1 is overexpressed in many cancers, including non-small cell lung cancer [37],
gastric cancer [38], and papillary and anaplastic thyroid cancers [39]. In addition to cell
cycle regulation, E2F1 has been reported to participate in the maintenance of CSCs by
directly transcriptionally activating cancer stemness factors, including NANOG [40] and
Kruppel-Like Factor 4 [41]. The developed inhibitors for E2F1 include the disruption of
E2F1/DP1 binding by peptides or oligonucleotide decoys, but the main issue is the poor
uptake by tumor cells [42]. The present data demonstrated that DSF/copper can inhibit the
protein expression of c-Myc and E2F1, the nuclear translocation of c-Myc, and the binding
of E2F1 on the BMI1 promoter (Figure 5). Therefore, DSF/copper could be a potential drug
for cancers with c-Myc or E2F1 overexpression. O’Donnell et al. previously demonstrated
that c-Myc can modulate E2F1 expression by regulating the expression of microRNAs
that target E2F1, including miR-17-5p and miR-20a [43]. In the present study, we did not
confirm a direct association between c-Myc and E2F1 in the DTC cell lines, and this topic
warrants further examination in the future.

Skrott et al. performed a nationwide epidemiological study to investigate cancer
incidence among continuing DSF users in Denmark and found reduced overall cancer
mortality (hazard ratio = 0.66, 95% confidence interval = 0.58–0.76, p = 0) [44]. After
consumption, DSF is rapidly converted into methylated diethyldithiocarbamate ditiocarb
and could be complexed with copper, which could also be detected in the tumor tissues of
continuing DSF users [44]. DSF is an approved drug for treating alcoholism and is well
tolerated among patients without major side effects [45]. Molecular analysis in the present
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study showed that DSF/copper induces its anti-DTC effect by inhibiting BMI1 expression
and suppressing CSC activity. CSCs are important in cancer recurrence and drug resistance;
hence, DSF could be a promising repurposed drug that could be used in combination
with current managements, including radioactive iodine or targeted therapeutics, for
DTC therapy.

4. Materials and Methods
4.1. Cell Culture

K1 cell line belongs to PTC, was purchased from the European Collection of Cell
Cultures (ECACC, UK Health Security Agency, Salisbury, UK), and was maintained in
DMEM:Ham’s F12:MCDB 105 (2:1:1) medium containing 10% fetal bovine serum (FBS,
purchased from HyClone™ Laboratories, Cytiva, Marlborough, MA, USA). The WRO cell
line belongs to FTC, was also purchased from ECACC, and was maintained in DMEM
medium containing 10% FBS.

4.2. Chemicals and Reagents

DSF was purchased from Sigma-Aldrich (St. Louis, MI, USA) and dissolved in
dimethyl sulfoxide (DMSO) at a concentration of 50 mM stored at −20 ◦C. Blasticidin
S or puromycin was purchased from TOKU-E (Bellingham, WA, USA) and dissolved in PBS
at 20 mg/mL and stored at −20 ◦C. The aminoallyl-XX-dUTP-Atto-488 triethylammonium
salt solution (Atto-488 conjugated dUTP) was purchased from Sigma-Aldrich. HLM 006474,
an E2F1 inhibitor, and 10058-F4, a c-Myc inhibitor, were purchased from Tocris Biosciences
(Bristol, UK).

4.3. WST-1 Based Cell Proliferation Assay

K1 or WRO cells were seeded into wells of 96-well-plates as 1 × 104 cells/well and
treated with different concentrations of DSF in the presence of 1 µM CuCl2. The concentra-
tion referred to the report of Wang et al. [46], after culturing for 72 h. The cell proliferation
was monitored by adding the WST-1 reagent (BioVision, Inc., Waltham, MA, USA) at
10 µL/well and incubating it at 37 ◦C for 1 h followed by determination of the absorbance
at 440nm wavelength. The IC50 values were calculated by GraFit (version 5.0.6, Erithacus
Software, West Sussex, UK).

4.4. Thyrosphere Cultivation

K1 or WRO cells were seeded into wells of an ultralow attachment surface 6-well-plate
(Greiner Bio-One GmbH, Kremsmünster, Austria) at a cell number of 2 × 104 cells/well
with DMEM/F12 media containing 0.4% bovine serum albumin (Sigma-Aldrich), 1X B27
supplement (GibcoTM, Waltham, MA, USA), 10 ng/mL EGF (PeproTech, Inc., Rocky Hill,
NJ, USA), 10 ng/mL bFGF (PeproTech), 5 µg/mL Insulin (Sigma-Aldrich), 1 µg/mL
Hydrocotisone (Sigma-Aldrich), and 4 µg/mL heparin (Sigma-Alrich) at 37 ◦C for 7 days
to form primary thyrospheres. Secondary thyrosphere cultivation was performed by
collecting the primary thyrospheres and dissociating them into single-cell suspension by
HyQTase solution (Hyclone Laboratories, Inc., Logan, UT, USA).

4.5. Determination of Cell Proliferation by the Incorporation of Atto-488 Conjugated dUTP

The K1 or WRO cells were seeded into wells of 24-well plates at 1 × 105 cells/well
and cultured at 37 ◦C overnight followed by washing with Tricine buffer (Tricine 5 mM,
glucose 11 mM, NaCl 125 mM, CaCl2 1.8 mM, MgSO4 0.8 mM, KCl 5.4 mM). Then, 10 µM
of Atto-488 conjugated dUTP was mixed with 10 µM of BioTrackerTM NTP-transporter
at room temperature for 10 min and added into wells for 10 min followed by washing
with 0.4 mL PBS once. After adding 0.5 mL of the complete culture medium, the green
fluorescence signals were captured by inverted fluorescent microscopy (AE31 ELITE, Motic
Asia, Kowloon, Hong Kong). The percentage of Atto-488 dUTP+ cells was counted from
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4 random fields using the Cell Counter function of Image J software (version 1.8.0_172,
National Institutes of Health, Bethesda, MA, USA).

4.6. Flow Cytometrical Analyses of Cell Cycle Distributions or CD44 Expression

For cell-cycle analysis, cells were seeded in wells of 6-well plates at 1 × 105 cells/well
and treated with 100 nM DSF in the presence of 1 µM CuCl2 at 37 ◦C/5% in a CO2 incubator
for 24 h. After harvesting via trypsin/EDTA, cells were then fixed with 70% EtOH/PBS at
4 ◦C overnight. After washing with PBS once, they were stained with 10 µg/mL PI/PBS
solution in the presence of 10 µg/mL RNaseA (Cat. No. 550825, BD Biosciences, Franklin
Lakes, NJ, USA) at room temperature for 30 min. For CD44 detection, thyrospheres derived
from K1 or WRO cells were first dissociated into single-cell suspensions by enzyme-free cell
dissociation buffer (Cat. No. 13151014, GibcoTM, Thermo Fisher Scientific) and stained with
PE-conjugated mouse IgG anti-human CD44 antibody (Cat. No. 550989, BD Biosciences) on
ice for 30 min. The fluorescence signals of PI or PE were captured with the FACSCanto-II
flow cytometer (BD Biosciences). Finally, the cell cycle distributions or CD44 expression
were analyzed with FlowJo software (version 10.8.0, FlowJo, LLC., Ashland, OR, USA).

4.7. Quantitative RT-PCR

Total cellular RNA was extracted by the Quick-RNATM MiniPrep Kit (Cat. No. R1054,
Zymo Research Corporation, Irvine, CA, USA) and was reverse transcribed into comple-
mentary DNA (cDNA) by the RNA RevertAid First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Waltham, MA, USA). Then, 10 ng cDNA were used for gene expression
analysis using the SYBR Green Master Mix (Bio-Rad Laboratories, Hercules, CA, USA) and
an Eco 48 real-time PCR system (PCR max, Staffordshire, UK) with specific qPCR primer
pairs whose sequences are listed in Table S1.

4.8. Manipulation of BMI1 Expression Levels in K1 Cells

For the knockdown of BMI1 expression, lentiviruses carrying BMI1-specific shRNA
sequences (TRCN0000020156, which was indicated as sh-BMI1#1, and TRCN0000229416,
which was indicated as sh-BMI1#2, all obtained from the National RNAi Core Facility
at Academia Sinica, Taipei, Taiwan) were produced in 293T cells and were transduced
into K1 cells followed by the selection of 2 µg/mL puromycin according to the protocol
described in our previous report [47]. The lentiviral vector carrying BMI1 cDNA has been
established in our laboratory as in the previous report [47]. The successfully transduced K1
cells were selected by 20 µg/mL blasticidin S and were further isolated according to the
tRFP fluorescence signals by the FACS Aria-II cell sorter (BD Biosciences).

4.9. Western Blot Analysis

Cells were lysed by RIPA buffer (Thermo Fisher Scientific Inc.) and the total protein
concentrations were quantified by the Pierce™ BCA Protein Assay Kit (Thermo Fisher
Scientific Inc., Cat. No. 23227). The cytoplasmic or nuclear fractions of cells were extracted
by a Subcellular Protein Fractionation Kit (Thermo Fisher Scientific Inc., Cat. No. 78840).
Furthermore, 20 µg of extracted proteins were separated by SDS-PAGE and were transferred
onto a Polyvinylidene fluoride (PVDF) membrane (Pall Corporation, Washington, NY, USA).
After blocking with 10% skim milk in TBS-T buffer (20 mM Tris-HCl, 150 mM NaCl, 0.05%
Tween-20) at room temperature for 1 h, the PVDF membrane was then incubated with the
primary antibody at 4 ◦C overnight followed by incubation with horseradish peroxidase-
conjugated secondary antibody. The antibodies used in this study are listed in Table S2.
The signals were then developed via incubation with the Pierce™ ECL Western Blotting
Substrate (Thermo Fisher Scientific Inc.) and captured with the LAS-4000 Luminescence
Image System (GE Healthcare, Chicago, IL, USA). The band intensities were quantitated by
Image J software.
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4.10. Chromatin Immunoprecipitation

The preparation of Chromatin DNA from K1 cells was conducted according to the
protocol described in our previous report [48]. First, 75 µg of chromatin DNA was used
for incubating with 1 µg of the anti-E2F1 antibody (BD Pharmingen™) in dilution buffer
(167 mM NaCl, 16.7 mM Tris (pH8.1), 1.2 mM EDTA, 1.1% Triton X-100, 0.01% SDS) at
4 ◦C overnight. After the washing steps described in a previous report [21], the RNA and
proteins were digested by RNaseA and proteinase K followed by the extraction of DNA
using the QIAquick PCR purification kit (Cat. No. 28104, QIAGEN, Hilden, Germany).
The presence of the BMI1 promoter DNA sequence was detected by quantitative PCR with
the specific primer set listed in Table S1. Data are presented as the relative percentage of
input chromatin.

4.11. c-Myc Reporter Assay

A luciferase-based c-Myc reporter vector, pMyc-Luc, was purchased from Signosis Inc.
(Cat. No. LR-2018, Signosis Inc., Santa Clara, CA, USA) and was mixed with the pRL vector,
carrying the Renilla luciferase gene to adjust the transfection efficiency, at a ratio of 1 µg:
0.1 µg followed by complexing with Transit X2TM transfection reagent at room temperature
for 15 min. After seeding cells in wells of 12-well-plates as 1 × 105 cells/well and allowing
attachment overnight, the DNA/transfection reagent complex was inserted into cells for
24 h followed by changing to fresh culture media and adding DSF/copper for a further
48 h. Total cell lysates were harvested with passive lysis buffer (Promega Corporation,
Madison, WI, USA), and the luciferase activities of firefly and renilla were measured by a
Dual-Luciferase assay system (Promega) with a GloMax® 20/20 Luminometer (Promega).

4.12. Overexpression of c-Myc or E2F1

WRO cells were seeded into 3.5 cm dishes as 2 × 105 cells/dish and transfected with
the pCMV3 empty vector or plasmids carrying cDNA of c-Myc (Cat. No. HG11346-NY,
Sino Biological, Beijing, China) or E2F1 (Cat. No. HG17394-UT, Sino Biological) using
Transit X2 transfection reagent at 37 ◦C for 24 h. After treatment with DSF/copper for 48 h,
cells were harvested by trypsin/EDTA and lysed by the NETN buffer.

4.13. Statistical Analysis

The values of qRT-PCR, cell proliferation, and thyrospheres were expressed as the
mean ± standard deviation (SD). The significance between the two groups was calculated
by Student’s t-test and the difference between multiple groups was calculated by the
One-Way ANOVA with Tukey–Kramer’s post hoc test using Prism (version 5.0, GraphPad
Software, San Diego, CA, USA).

5. Conclusions

DSF/copper displays an anti-CSC activity in DTC cell lines by suppressing BMI1
expression. DSF/copper targets thyroid CSCs by downregulating nuclear c-Myc and
inhibiting the binding of E2F1 to the BMI1 promoter. Toxicologic and pharmacologic data
suggest that DSF/copper is a potential therapeutic agent for DTCs.
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