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Abstract

It is becoming evident that holistic perspectives toward cancer are crucial in deciphering the overwhelming complexity of
tumors. Single-layer analysis of genome-wide data has greatly contributed to our understanding of cellular systems and
their perturbations. However, fundamental gaps in our knowledge persist and hamper the design of effective interventions.
It is becoming more apparent than ever, that cancer should not only be viewed as a disease of the genome but as a disease
of the cellular system. Integrative multilayer approaches are emerging as vigorous assets in our endeavors to achieve
systemic views on cancer biology. Herein, we provide a comprehensive review of the approaches, methods and technologies
that can serve to achieve systemic perspectives of cancer. We start with genome-wide single-layer approaches of omics
analyses of cellular systems and move on to multilayer integrative approaches in which in-depth descriptions of
proteogenomics and network-based data analysis are provided. Proteogenomics is a remarkable example of how the
integration of multiple levels of information can reduce our blind spots and increase the accuracy and reliability of our
interpretations and network-based data analysis is a major approach for data interpretation and a robust scaffold for data
integration and modeling. Overall, this review aims to increase cross-field awareness of the approaches and challenges
regarding the omics-based study of cancer and to facilitate the necessary shift toward holistic approaches.
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Introduction
According to the world health organization, an estimated
number of 10 million patients worldwide succumbed to
different types of cancer in 2020 alone. Despite considerable
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advancements in diagnostics and novel therapeutic approaches
following the distilled outcomes of millions of cancer-related
studies, many clinical trials do not result in major success [1–3].
This, among other reasons (e.g. implementation issues and
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Figure 1. A timeline of some of the major contributions to the field of systems biology.

technical limitations), can be attributed to the lack of a systemic
view toward cancer and its underlying mechanisms. Indeed, the
results of the recent WINTHER trial demonstrate the utility of
multiomics approaches for the improvement of cancer therapy
recommendations [4]. A deeper and holistic perspective of the
underlying systemic perturbations during tumor initiation and
progression is a prerequisite for designing more targeted a.k.a.
personalized interventions.

In cancer investigations, we are facing aberrations in
extremely complex systems with enigmatic interplays between
altered pathways and extensive multilevel cross-talk. The
heterogeneity of subpopulations of malignant cells further
contributes to the obscurity of this picture. Contrasting with
conventional reductionist approaches, the field of systems biol-
ogy has emerged and laid foundations for holistic investigation
of biological units and mathematical modeling of molecular and
cellular interplays for comprehensible exploration of biological
systems [5] (refer to Figure 1 for a timeline of some of the
major contributions to the field of systems biology). Fueled by
genome-wide technologies and bioinformatics advancements,
systems biology is establishing itself as the only reasonable
approach for dissecting the complexity of tumors, identifying
core components of these perturbed systems and recognizing
the vulnerabilities of specific tumors for effective patient
stratification and precise interventions.

Achieving a holistic picture of cancer demands cooperation
between multiple areas of research, magnification of the links
between layers of information and robust approaches for effec-
tive integration of the heterogeneous data. Hence, there is an
increasing need for the research community to move beyond
single-layer omics analysis of cancer and take advantage of

the value added by integrating multiple omics layers. Here, we
review current approaches, methods and technologies that can
serve to achieve a systemic perspective of cancer. We start with
genome-wide single-layer approaches and move on to multi-
layer integrative approaches with a focus on a systems biology
perspective throughout the work. In each section, an overview of
the importance of each respective approach in cancer research is
presented. Then, a general framework, based on the current best
practices of the field or novel and promising methods, is pro-
vided. In that context, we highlight methods that require mini-
mal computational skill and discuss outstanding challenges and
future perspectives. It should be noted that while the approaches
and technologies discussed in this review are presented in the
context of cancer research, many of them are also applicable to
fields other than oncology. The review is concluded with mul-
tiple representative examples of what these approaches have
already contributed to the field of oncology. Overall, we aim to
increase cross-field awareness of the approaches and challenges
regarding the omics-based study of cancer for both research and
medical communities in order to facilitate the necessary shift
toward more holistic approaches.

Single-layer approaches
High-throughput technologies capable of generating compre-
hensive data that encompass all the molecular components
at a particular level are the main arteries of systems-level
studies in cancer. Genomics, transcriptomics, proteomics
and metabolomics are the four major approaches currently
implemented using various technologies and comprehensive
data analysis methods (Figure 2). These approaches and related
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Figure 2. General workflows for different omics studies. The wet lab and computational procedures are distinguished by different background colors.

technologies as well as analysis pipelines are discussed in
further sections. Importantly, single-layer data analysis has
greatly enhanced our understanding of cellular mechanisms
and their perturbations and fundamentally contributed to
our knowledge of biological systems. However, the purposive
study of biological systems requires multilevel approaches
that integrate the generated data from different single-layer
approaches to achieve a holistic view of cells under normal
and disturbed conditions [6] (for a list of relevant researches
and their contributions to the field of systems oncology, refer
to Supplementary Table S1, see Supplementary Data available
online at http://bib.oxfordjournals.org/).

Genomics: elucidating the genomic landscape
of tumors

The process of tumorigenesis begins (and usually progresses)
with the occurrence of specific somatic driver mutations, i.e.

mutations that confer survival and proliferative advantages to
a specific cell lineage [7]. These mutations are accompanied by
a higher number of passenger mutations that do not directly
contribute to tumorigenesis and cancer progression. Moreover,
germline mutations can contribute to cancer predisposition [8].
The main complexity of cancer, however, arises from the lack
of a consensus genomic landscape across different cancer types
and even among patients stratified under certain criteria. Case-
specific combinations of genomic alterations result in a wide
variety of perturbations to the cellular system with the overall
similar result of tumorigenesis and cancer progression. Indeed,
attempts to discover mutational patterns also known as ‘muta-
tional signatures’ across and within tumor types have signifi-
cantly contributed to our understanding of the etiology of cancer
and led to the identification of cellular processes causative
for specific cancer types that can serve as targets for ther-
apeutic interventions [9–11]. Hence, it is evident that achiev-
ing an appropriate and encompassing perspective toward this
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complex disorder necessitates the implementation of genomics
technologies.

Whole-exome sequencing (WES) is currently the most
widely applied technology both in research projects [12, 13]
and in second-tier clinical diagnosis (implemented when gene
panels are unable to pinpoint the cause of the defect) [14].
WES was developed to specifically capture and sequence all
exonic regions of the genome. However, in the last decade,
we have learned that large parts of the human genome that
were previously referred to as ‘junk DNA’ are biologically
active, i.e. translated into functional noncoding RNA [15]. Point
mutations and structural variations in noncoding regions can
also be cancer drivers, although less frequently compared to
coding regions [16]. These findings, and the downwards trend
in costs for sequencing, have already ignited the transition from
using WES to whole-genome sequencing (WGS) technologies.
WGS has the advantage that it can also identify mutations in
intergenic regulatory regions and mitochondrial DNA, mutations
in promoters, structural variations and viral infections, all of
which are associated with different types of cancer. Moreover,
the detection of copy number alterations is more effective
with WGS [17]. Interestingly, WGS has been shown to be more
effective than WES even when targeting coding regions [14].

Overall, current genomic technologies provide a potent van-
tage point for studying cancer etiology [10], biomarker discovery
[18], the prediction of patients’ drug response [19] and more.
Recent years have witnessed the emergence of multiple inter-
national efforts such as the Pan-Cancer Analysis of Whole-
Genomes (PCAWG) [16] where a considerable number of samples
across different tumor types have been sequenced and analyzed.
Such efforts provide unprecedented opportunities for the iden-
tification of mutational patterns across tumor types and the
development of diagnostic and therapeutic approaches that are
applicable to a wide range of patients.

Experimental workflow and data analysis pipeline

The genomics workflow generally starts with random fragmen-
tation of the purified DNA by sonication or enzymatic digestion.
Next, these fragments are enriched for target regions (genes
of interest for gene panels or exonic regions when performing
WES) [20]. The WGS workflow does not include this step. The
acquired fragments are then ligated by oligonucleotide adapters
that are complementary to the anchors on the flow cell [21].
This is commonly followed by a size selection step where ligated
fragments with suitable sizes are purified [22]. Size selection can
increase the sensitivity of circulating tumor DNA detection [23].
Nevertheless, selecting for specific size ranges might result in
information loss and, therefore, may be skipped depending on
the goal of the study. Depending on the utilized method, a PCR
amplification step might be required. However, considering that
this step is prone to produce biased results, the utilization of a
PCR-free method as a cost-efficient and more effective approach
is highly recommended [24, 25]. The next step is the sequencing
of the prepared library. Illumina short-read technologies are cur-
rently the dominant sequencing platforms (for a comprehensive
review of different sequencing technologies, refer to [26]). The
NovaSeq 6000 sequencing platform is the most recent Illumina
whole-genome sequencing technology. With overall results of
similar quality for NovaSeq 6000 in comparison to the older
Illumina whole-genome sequencing platform (HiSeq X Ten) and
considering the substantial reduction in experiment costs [27],
NovaSeq 6000 can be considered as the current state-of-the-art
technology for whole-genome sequencing.

WGS data preprocessing begins with demultiplexing the
sequencing reads using Illumina’s Consensus Assessment
of Sequence And Variation (CASAVA) software. Then, the
raw reads are aligned against the human reference genome
using an aligner tool, some of the most popular of which
are BWAmem [28], Bowtie2 [29] and Novoalign (www.novocra
ft.com/products/novoalign/). Since duplicate reads can occur
during sequence amplification and sequencing procedure, a
duplicate marking step using tools such as Picard (broadinsti
tute.github.io/picard), Sambamba [30] or SAMBLASTER [31] is
required.

In the next step, variant calling is performed. The most pop-
ular variant callers for somatic variant identification that have
been specifically developed for the analysis of tumor samples
include Mutect2 [32], VarScan [33], Strelka2 [34] and Somatic-
Sniper [35]. A comparative study evaluating the somatic sin-
gle nucleotide variant calling performance of these tools [36]
reported a poor consensus among the results of variant callers.
Mutect2 was identified as the best performing tool, followed
closely by Strelka. Combining the high-confidence results of
these methods is also a recommended approach. The study by
Cai et al. [36] reported that while this approach increases the
specificity of the variant calling, it results in a massive reduction
of sensitivity. Thus, a combinatory approach should be opted for
if higher reliability is desired while if achieving encompassing
results is the goal of the study, utilizing Mutect2 or Strelka is
a reasonable approach. In addition, the results of a study com-
paring the somatic variant calling performance of Mutect2 and
Strelka2 [37] suggest that while these tools have similar overall
performance, Mutect2 performs better when dealing with lower
mutation frequencies while Strelka2 is the better choice in the
opposite scenario. Germline variant calling requires a different
type of algorithm because the study is confined to the sequenc-
ing of normal genome [17]. This is most commonly performed
using the Genome Analysis Toolkit (GATK) HaplotypeCaller (so
ftware.broadinstitute.org/gatk/). Studies indicate inconsistency
among the results of different combinations of aligners and
variant callers, and hence, considering the intersection of the
results of different pipelines is recommended to reduce false
positives [24, 38]. However, a recent study suggests that some
popular pipelines can produce results comparable to those of a
combination of pipelines [39].

The detected variants are next subjected to annotation
procedures. Annotations of previously reported alterations can
be obtained from data repositories such as COSMIC [40], ClinVar
[41] and OMIM [42]. The impact of novel variants with unknown
significance can be predicted in silico using bioinformatics tools
such as MutationTaster [43], SIFT [44], Polyphen [45] and VEP
[46]. This is common practice in clinical diagnosis to predict the
impact of novel variants before co-segregation and functional
confirmation [47]. Moreover, there are algorithms such as
CHASM [48] and PrimateAI [49] that are specifically developed to
predict functional effects of mutations in the cancer context and
distinguish driver mutations from passengers. The results of a
recent comprehensive comparative study [50] that assessed 33
algorithms for their performance in predicting functional effects
of mutations in cancer reported that cancer-specific algorithms
significantly outperformed algorithms developed for general
purposes. Furthermore, this study identified CHASM [48], CTAT-
cancer [51], DEOGEN2 [52] and PrimateAI [49] as consistently
well-performing algorithms. Notably, it was also proposed that
incorporation of pathway and network information of the
mutated genes in the prediction algorithm contributed to the
outstanding performance of DEOGEN2 and thus, this should
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be considered in future algorithm developments. Anyhow,
insignificant variants are filtered out in this step, while
significant variants are reported for downstream analysis and
interpretation [53].

It is important to mention that there are numerous pipelines
using different combinations of tools and computational
approaches that attempt to address different challenges
encountered in the various steps of this generalized workflow
[27, 54]. There are also convenient and comprehensive tools that
facilitate the entire computational procedure, requiring minimal
computational expertise. An example is the recently developed
portable workflow named Sarek [55].

Challenges and perspectives

The variant allele frequency (VAF) is used to determine whether
variants are heterozygous (variants with ∼50% frequency) or
homozygous (variants with ∼100% frequency). In the cancer
context, however, VAF analysis is not as precise because intratu-
moral heterogeneity and impurity of tumor DNA cause confus-
ing deviations from expected VAFs [21, 27, 56]. The result of these
ambiguities is the inability to acquire a picture of intratumoral
heterogeneity that is representative of the actual biological phe-
nomenon. Increasing the sequencing depth toward 100x cover-
age can ameliorate this inconvenience [24]. However, in some
cases, achieving a fully representative picture of intratumoral
heterogeneity requires impractical coverages of at least one
order of magnitude higher than this [57]. A promising approach
to tackle this problem, among others, is single-cell sequencing.
Single-cell technologies provide researchers with a more accu-
rate and less complex picture of the perturbed system both in
the genomics and transcriptomics context [58]. However, single-
cell technologies are still under development and a number of
critical challenges both in wet lab [59] and dry lab [60] processes
remain to be addressed.

The potential of tumor-specific somatic mutation profiling
in guiding the administration of therapeutic interventions with
precision is enormous [61]. This attracted a lot of attention
toward the assessment of mutational landscapes of individuals
through minimally invasive approaches such as cell-free DNA
(cfDNA) sequencing. Circulating tumor DNA (ctDNA), presum-
ably derived from necrotic and apoptotic tumor cells, comprises
a portion of cfDNA in cancer patients, distinguishing them from
healthy individuals [62]. Although the clinical efficacy of cfDNA
monitoring in the cancer context is yet to be validated through
large-scale clinical trials, potential applications of cfDNA screen-
ing make it an attractive subject for researchers. These poten-
tial applications include postsurgical monitoring for stratifica-
tion of patients for adjuvant therapy, systemic monitoring of
the heterogeneity of the subclones in a metastatic tumor (as
opposed to a single-site needle biopsy) for early detection of
resistance to therapeutic agents, and early detection of neo-
plasms in asymptomatic individuals that can result in more
effective interventions [63]. A major challenge for ctDNA anal-
ysis is that ctDNA VAFs are usually significantly below the
detectable threshold of conventional high-throughput technolo-
gies. Ultrasensitive high-throughput technologies dedicated to
ctDNA analysis such as iDES-enhanced CAPP-Seq have been
introduced to ameliorate this shortcoming [64]. However, various
challenges persist. These include increased risk of false positives
due to clonal hematopoiesis of indeterminate potential (CHIP) or
other diseases and introduction of errors during library prepa-
ration (e.g. cfDNA degradation, contamination with normal cell
lysates, etc.) and sequencing. Therefore, accurate identification

of somatic mutations from cfDNA samples remains a daunting
task [65]. Digital PCR approaches for ctDNA monitoring with
higher sensitivities and lower costs address some of the chal-
lenges associated with high-throughput methods but require
a priori knowledge of the targets and are particularly low in
throughput [65]. Altogether, despite the remaining challenges,
the analysis of ctDNA as a complement or surrogate to solid
tissue specimens remains a valuable option, especially in cases
where solid tumor samples are not accessible or sampling is
associated with high risks.

Despite the tremendous progress made in recent years, there
are still many unresolved questions in cancer genomics. The
fact that no driver mutation could be identified for 5% of tumor
samples [16] underscores that despite the extensive study of
tumor driver genes and mutations, there are still shortcomings
in our knowledge bases and/or models of cancer-initiating per-
turbations. Indeed, after decades of intensive research in cancer
biology, the fundamentals of this complex dysfunction are still
ambiguous in some areas. For example, the extent to which
additional genomic/epigenomic alterations fuel the transition of
a benign tumor to a malignant state is still a matter of debate
[66]. Furthermore, the study of the genetic risk modifiers despite
their potential to enhance our understanding of cancer is lim-
ited due to their small effect size [20]. Another important chal-
lenge is pinpointing the genomics alterations in high-complexity
regions such as centromeres. Long-read sequencing technolo-
gies hold the promise of adequately addressing this problem [67].
However, certain drawbacks such as the high rate of errors in
sequencing need to be tackled before these technologies would
be able to effectively benefit the field.

Transcriptomics: approaches to decipher
the posttranscriptional complexity of tumors

The central dogma of biology describes the transition of infor-
mation to function [68], from a semistatic genome to the highly
dynamic cell. Going from genome to proteome, the complexity
increases as additional regulatory layers are introduced, from
epigenetic [69] to posttranscriptional [70] and epitranscriptomic
regulations [71], to posttranslational modifications [72]. Hence,
efforts to understand the complex mechanisms of the cellu-
lar system and its perturbations exclusively from a genomic
viewpoint would be futile. A widely appreciated approach to
enhance our understanding of this complexity is studying the
transcriptome [73].

The qualitative and quantitative analysis of transcriptomic
information can yield insights into the posttranscriptional
dynamics resulting from genetic events, epigenetic regulation
as well as regulation within the transcriptome and provide
means to predict the proteomics landscape. In cancer, deviations
from normal transcriptomes undergo clonal evolution, which
in turn results in converged gene expression patterns referred
to as the tumor gene signatures [74] that can be utilized
in cancer subtyping [75], biomarker discovery [76], etc. The
most broadly utilized functional study of the transcriptome
is the comparison of expression profiles under different
conditions (e.g. normal versus cancer) known as differential
gene expression (DGE) analysis [77], e.g. by means of RNA-
sequencing. Differential analysis of mRNA profiles can provide
valuable information about perturbed signaling cascades and
malfunctioning members of the cell system that gave rise to
the phenotype under investigation [78]. The study of alternative
splicing and novel splicing events [79, 80], variant calling [81,
82] and fusion transcript detection [83] are some of the other
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applications of RNA-sequencing with particular importance in
cancer.

mRNAs, however, do not constitute the only RNA entities
with relevance to cancer [84]. It is now evident that a great
portion of noncoding DNA is translated to functional noncod-
ing RNAs (ncRNAs) that are involved in almost all the aspects
of cellular processes [85]. There are two general categories of
ncRNAs: small noncoding RNAs (sncRNAs) that are less than 200
nucleotides in length and long noncoding RNAs (lncRNAs; >200
nucleotides) [86]. sncRNAs are further categorized into a num-
ber of RNA types including microRNAs (miRNAs), small nuclear
RNAs and piwi-interacting RNAs. MiRNAs are probably the most
widely studied form of ncRNAs [87, 88]. With their recognized
role as important regulators of many cellular processes, miRNAs
are firmly established as essential players in tumorigenesis and
cancer progression and have been widely studied as potential
biomarkers and therapeutic targets [89–92]. The role of lncRNAs
in cancer, however, is a more recent emerging view [93, 94]. LncR-
NAs exert a variety of biological functions through interaction
with a plethora of different types of macromolecules. LncRNAs’
roles in gene expression regulation through interactions with
chromatin, protein complex assembly or disassembly and their
interplay with mRNAs have been widely studied [95]. Several
lines of evidence attribute a role to lncRNAs in the regulation of
virtually all of the cancer hallmarks [96, 97]. The vast number of
tissue- and cell-specific lncRNAs along with their importance in
the regulation of cellular functions underscores their potential
for annotated biomarker discovery in cancer diagnosis, progno-
sis and treatment [98] as well as their potential employment as
therapeutic targets [99].

Experimental workflow and data analysis pipeline

Illumina short-read sequencing is currently the dominant plat-
form for transcriptomics studies [100]. The process starts with
RNA extraction and target RNA enrichment to remove unwanted
rRNAs or specifically select for polyadenylated RNAs through
oligo-dT incorporation [101]. However, since other RNA types
might be of interest, rRNA depletion can provide more encom-
passing results [102]. In any case, in the next step, the extracted
RNA is subjected to fragmentation in order to become com-
patible with the short-read sequencing technologies. This is
usually done through enzymatic digestion or by using divalent
cation-containing solutions [102]. Next, reverse transcription is
performed. The second strand of the synthesized cDNA is usu-
ally tagged with the incorporation of dUTPs. After the adaptor
ligation, the tagged cDNAs are subjected to digestion in order to
achieve a strand-specific library [103]. The remaining strands are
amplified through PCR and are finally sequenced. The required
sequencing depth (total number of reads) is determined by the
goal of the study and the nature and condition of the sample
[104]. While 15 million reads are considered a saturation point for
gene expression profiling [77], a minimum of 70 million reads are
required for the accurate quantification of alternative splicing
events [105]. This general framework can be modified based on
the experimental goals and the RNA type under investigation
[106]. The use of single-end or paired-end sequencing or enrich-
ing for unique reads restricted to the 3′ end for each transcript in
order to analyze DGE are examples of such modifications [102].
Another example is to take advantage of unique molecular iden-
tifiers (UMIs) to account for the misrepresentation of biological
expression differences due to PCR amplification [107].

The next steps are quality control and preprocessing of
the acquired reads [104]. To perform DGE analysis, the level

of expression for each gene should be measured from RNA-seq
reads. For that purpose, the acquired reads are mapped to an
annotated genome or transcriptome using tools such as STAR
[108], BWA [109] and TopHat2 [110]. Gene expression is then
quantified based on the number of reads that have been aligned
to each gene using tools such as HTseq-count [111]. Alternatives
include methods such as Sailfish [112], Salmon [113] and
Kallisto [114], which implement k-mer counts, quasimapping
and pseudomapping, respectively. After batch effect correction
[115, 116] and data normalization [117], the last step is the
actual differential gene expression analysis. While almost all
of the popular methods for transcript quantification have been
shown to perform equally well [118], the utilized tool to assess
differential gene/transcript expression is an influencing factor
in this process. Multiple tools (e.g. NOIseq [119], limma+voom
[120] and DESeq2 [121]) are known to perform a high-quality DGE
analysis and are accepted as standard tools for DGE assessment
[122]. Moreover, the usage of a combination of these tools
has been suggested as an effective approach [118]. Quality
control in multiple steps of the process (RNA quality, raw reads,
alignment and quantification) is also highly recommended [123].
Comprehensive quality control tools such as the NGS QC toolkit
[124], RSeQC [125] and Qualimap2 [126] are widely applied to
fulfill this purpose.

Multiple tools and web services such as IDEAMEX [127] facil-
itate an integrated DGE analysis for researchers with a min-
imal computational background. BP4RNAseq [128] is another
user-friendly tool that has been recently introduced and can be
utilized for a highly facilitated gene expression quantification.
There are also multiple tools and pipelines that are not restricted
to DGE analysis and can be implemented for a variety of RNA-seq
data analysis purposes. RNACocktail [129] is a comprehensive
RNA-seq analysis pipeline incorporating a variety of powerful
tools for a variety of purposes including RNA variant-calling,
RNA editing and RNA fusion detection.

RNA-sequencing is at the forefront of single-cell sequencing
technologies [130, 131]. Sensitive full-length transcript sequenc-
ing platforms such as MATQ-seq [132] with the ability to cap-
ture and sequence ncRNAs herald the arrival of a new level
of sequencing capacity. The general workflow for single-cell
sequencing is similar to the bulk RNA-sequencing workflow
described above [133]. It is indeed possible to perform most of the
computational processing steps with the bulk RNA-sequencing
methods. However, low levels of starting material coupled with
additional technical requirements (such as cell-specific barcod-
ing to be able to demultiplex the resulting data from multiplexed
sequencing) and other challenges (such as the possibility of
capturing damaged, dead or multiple cells) necessitate the devel-
opment of computational methods tuned for single-cell analysis
[134, 135] (see Table 1 for a list of single-cell RNA-sequencing
tools). It should be noted that large-scale comparative studies
are required for the assessment of the utility of these tools
in comparison with one another and with the tools designed
for bulk-RNA sequencing analysis. Indeed, bulk-RNA sequencing
analysis tools have been shown to be capable of producing
satisfying and, in some cases, superior results compared to that
of the tools specifically designed for single-cell RNA-seq [136].

Challenges and perspectives

A current challenge in RNA-sequencing is that the reconstruc-
tion of full-length RNA molecules from short reads is error-
prone [104]. This results in incorrect assignment of reads and
misrepresentation of isoform abundances and also makes
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Table 1. A list of tools dedicated to single-cell RNA-seq data manipulation and analysis

Name Implementation Description Reference

Alona Web-based A comprehensive and user-friendly tool that supports quality
control, normalization, batch-effect correction, cell type
identification, DGE analysis and visualization

[367]

Census R An algorithm that performs gene expression quantification and
differential analysis

[368]

CMF-Imputation MATLAB A tool that performs the imputation of the dropout events in the
expression matrix

[369]

DoubletFinder R A tool that identifies and removes doublet events using gene
expression data

[370]

DrImpute R An algorithm that sequentially imputes the dropout events [371]
MNN R An algorithm that accounts for batch effect noise through detection

of mutual nearest neighbors
[372]

SAVER R A tool for quantification of gene expression in single-cell RNA-seq
studies that incorporated unique molecular identifiers

[373]

Seurat R A comprehensive and highly powerful toolkit designed for
single-cell data manipulation and integration

[374]

Scater R A comprehensive R package capable of performing gene expression
quantification, quality control, normalization and visualization

[375]

SCDE R A Bayesian approach for DGE analysis [376]
SCENIC R An algorithm for the identification and analysis of cellular

regulatory networks
[377]

scGEAToolbox MATLAB A user-friendly and comprehensive toolkit that supports batch
effect correction, normalization, imputation, feature selection,
clustering, trajectory analysis and network construction and can
readily be incorporated in customized workflows

[378]

isoform discovery a challenging task. Long-read technologies,
as well as synthetic long-read methods, hold the promise of
solving this inconvenience [100]. However, various challenges
remain to be addressed. Long-read technologies are particularly
low in throughput. This problem in turn would result in a
reduced experiment size and low sensitivity of differential
expression [100]. Hence, using a long-read technology is not
currently recommended for DGE analysis, particularly when
the study involves low expression levels. The high error rates
and additional costs are prohibitive elements regarding long-
read technologies. Moreover, the rigorous requirement to avoid
RNA degradation and shearing during sample handling makes
the achievement of high-quality samples laborious. However,
the combination of short-read with long-read sequencing
methods enhances the quality and accuracy of transcript
isoform expression analysis. For instance, by combining these
technologies and using algorithms for hybrid assembly of short
and long reads (hybridSPAdes; [137]), enhanced results for de
novo transcriptome assembly (e.g. with rnaSPAdes; [138]) can be
achieved.

Proteomics: studying the frontline of phenotype
manifestation

Virtually all the regulatory mechanisms governing the central
dogma of biology eventually serve to determine the set of
expressed proteins, their expression levels and the manner
in which they function; the deviations of which from normal
status can result in a malfunctioning system and give rise
to various disorders such as cancer [139]. Proteins can be
considered as frontline agents of phenotype manifestation,
and hence, studying proteome-level regulatory mechanisms,
such as posttranslational modifications (PTMs), the inher-
ent properties of proteins (e.g. their 3D structures) and

protein–protein interaction (PPI) networks, is essential if
representative views of the normal and perturbed cellular
system are to be achieved. Moreover, the validity of inferring
protein abundance from mRNA expression has been questioned
due to the lack of consistently strong correlations between
mRNA and protein abundance [140], suggesting that the direct
assessment of protein abundance is a more reliable source.

All of the categorized hallmarks of cancer are either directly
regulated by proteins or are highly affected by them [141]. Pro-
teins function in protein assemblies and highly complex net-
works. In this context, malfunction in any member of these
networks can potentially result in the disruption of the activity
of other members of the same network. Therefore, an important
goal of proteomics studies, in addition to assessing genome-
wide protein expression under various conditions, is to achieve
comprehensive and functional models of all the physical pro-
tein interactions both in normal and perturbed conditions [142].
Equally important is the study of PTMs. With more than 450
types of PTMs, these modifications regulate protein expres-
sion levels and almost all cellular processes, such as immune
response, apoptosis, tumorigenesis and cancer progression [143–
146]. Exploration of these and other aspects of cell biology from
omics data of other levels is either impractical or impossible.
Collectively, current proteomics technologies and approaches
provide researchers with powerful assets in the quest of achiev-
ing a functional view of the cellular system and addressing
fundamental questions regarding the biology of cancer as well
as discovering biomarkers and actionable therapeutic targets
[147, 148].

Experimental workflow and data analysis pipeline

Multiple methods have been developed to assess the proteomic
landscape of cells and tissues. Targeted and top-down pro-
teomics [149, 150] are two of the established branches of such
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methods with dedicated software tools and platforms [151–153].
However, data-dependent bottom-up or ‘shotgun’ proteomics
through liquid chromatography–tandem mass spectrometry
(LC–MS/MS) is currently the de facto standard approach for
genome-wide proteomics analysis [154]. The workflow for
shotgun proteomics is variable and context-dependent. A
general workflow based on the current best practices can
be presented as follows: after the lysis of the samples, the
disulfide bridges of the extracted proteins are disrupted through
reduction and alkylation of the cysteine residues. Next, the
proteins are subjected to enzymatic digestion through the
addition of proteinases (most commonly Lys-C followed by
trypsin). One- or two-dimensional chromatography is next
applied; the latter is recommended to increase the dynamic
range (i.e. to provide the possibility for low-abundance proteins
to be identified) [155]. Currently, the most effective approach is
to subject the samples to basic reversed-phase chromatography
followed by acidic reversed-phase chromatography as the
second dimension [156]. There is also the choice between
label-free and isobaric labeling [using iTRAQ [157] or tandem
mass tags (TMTs, [158])]. Isobaric labeling approaches are
recommended due to the provided capacity for multiplexation
and the reduction of errors from manual sample handling as well
as higher precision in quantification, especially when PTMs are
the target of the study [155]. The wet lab procedure is concluded
by the acquisition of MS spectra from MS/MS. Orbitrap-based
MS/MS is the current standard. It is also possible to add a third
stage (MS3) by combining Orbitrap and Ion Trap methods and
it has been shown to be effective when facing highly complex
samples [159]. For comprehensive and step-by-step workflows
for the wet lab procedure, refer to [155, 159].

Although methods exist for de novo identification of peptide
sequences [160], current approaches still suffer from high error
rates. The preferred method is to first prepare a database of all
the known protein sequences (comprehensive databases such
as UniProt [161] can be exploited for this purpose) and subject
them to in silico digestion according to the properties of the
proteinase enzymes that were utilized during sample prepara-
tion. The resulting in silico–produced peptides are then assigned
theoretical spectra and the experimentally acquired spectra are
searched against this database. Each match is scored based on
the similarity and the highest-scoring match reveals the identity
of each peptide with a certain false discovery rate (FDR). A
stringent FDR of 1% is recommended [162]. The recommended
approach to control for this FDR is the target-decoy search strat-
egy [163]: a parallel database of incorrect peptides is constructed
(usually through reversion of the peptide sequences of the main
database). Matches to this database are obviously false positives
and, hence, can reveal the FDR based on the utilized filters. Using
this method, one can tune the applied filters to achieve a suitable
FDR. The identified peptides are then assigned to their respective
proteins. Peptides with less than seven residues are usually
nonunique and are prone to erroneous protein assignment and,
thus, are recommended to be excluded [162].

Proteomics data need to be preprocessed (including normal-
ization, filtering, etc.) before they can be interpreted in a biolog-
ical context. After preprocessing, the data can be manipulated
to yield functional information through a variety of approaches.
Differential expression analysis is a common approach with sub-
sequent context-specific analyses such as expression signature
discovery and co-expression network analysis.

The general workflow provided here can also be modified
in order to customize the study for the analysis of PTMs [164],
PPIs and subcellular localization [142]. For the analysis of PPIs,

target protein complexes should be isolated from the cell lysate.
Co-immunoprecipitation (Co-IP) is a common approach for this
purpose [165]. Co-IP involves the attachment of specific anti-
bodies to bait proteins (proteins whose interacting partners
are under investigation). These antibody–protein complexes are
captured by agarose beads attached to A/G proteins and are
‘pulled-down’ by means of centrifugation. Proteins in tight inter-
action with the bait proteins are also precipitated in this step
and the unbound components of the lysate are discarded. The
captured proteins can then be subjected to MS to identify PPIs.
Tandem affinity purification (TAP) is a similar approach with
enhanced purification that involves tagging the bait protein at its
N-terminus by a TAP tag (usually a calmodulin-binding domain
followed by a highly specific protease cleavage site followed by
an IgG-binding fragment) prior to two steps of purification by
centrifugation [166]. The major problem associated with these
approaches is their restriction to identify highly stable PPIs.
For the identification of more transient interactions in com-
plex biological samples, another method termed cross-linking-
MS (XL-MS), which also has the advantage of providing spatial
information, is favored [167]. This method is based on covalently
binding residues in two proteins through two reactive groups
(usually amine-groups due to the prevalence of lysin residues
in protein structures) that are connected via a spacer with a
finite distance. This limited distance confers a spatial constraint
on the residues that can be linked; making the cross-linking
possible only between proteins in close proximity (i.e. interacting
proteins). As for the PTMs, the mass shift in the peptides due
to these modifications is identifiable by LC–MS. However, an
additional enrichment step for the peptides with the modifica-
tion under investigation is required [168]. Various strategies for
this enrichment including implementation of immunoaffinity
precipitation (using antibodies highly precise for specific types
of modification) and chromatography-based approaches (e.g.
immobilized metal ion affinity chromatography, metal oxide
affinity chromatography, etc.) have been devised. The most suit-
able approach, however, is dependent on the type of modifica-
tion under study and the specific physical/chemical properties
it confers to the peptides (refer to [168, 169]).

MaxQuant [170] is a popular comprehensive platform that
along with Perseus [171] facilitates the entire procedure of shot-
gun proteomics data analysis. Moreover, dedicated platforms
for computational analysis of PTMs and PPIs exist [172, 173].
In addition, a recently developed comprehensive toolkit named
‘Philosopher’ [174] demonstrates a movement toward making
these computationally sophisticated methods accessible to a
broader community.

The prospective results of the ‘discovery’ shotgun proteomics
can be channeled into ‘hypothesis-driven’ targeted proteomics
for validation in order to extract actionable and clinically rele-
vant directions from the plethora of information resulted from
shotgun proteomics [175]. Targeted proteomics approaches are
higher in sensitivity and dynamic range and tackle the problem
of irreproducibility associated with shotgun proteomics, which
is due to the stochastic nature of precursor ion selection in
shotgun approaches. Targeted proteomics is developed based on
prior knowledge about the proteins of interest and the selection
of signature peptides that specifically represent those proteins.
Selected reaction monitoring (SRM) is a widely-used targeted
approach. A triple quadrupole instrument is used to filter the tar-
get peptides based on their predetermined mass-to-charge ratio,
which combined with their elution time can be sufficiently spe-
cific. The filtered peptides are subsequently fragmented using
collision-induced dissociation and the resulting fragment ions
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are once more filtered for specific fragments based on a prede-
termined mass-to-charge ratio. This process is repeated for mul-
tiple different fragment ions of each filtered peptide and, hence,
peptides are identified and quantified utilizing MS spectra [176].
Parallel reaction monitoring (PRM) is a similar approach, which
through the implementation of an Orbitrap or time-of-flight
instrument removes the second filtering step by analyzing all
the fragment ions simultaneously and provides more accurate
results [176].

Challenges and perspectives

In spite of the remarkable progress made in proteomics methods
in the last decade [147], drawbacks such as the cofragmentation
problem [177] still exist and experiment design approaches, as
well as computational strategies, are being constantly revised
to compensate for these [178]. Overall, reduction in costs and a
further increase in the sensitivity of mass spectrometers can be
considered as major factors that can enhance the efficiency and
accessibility of proteomics analyses [179]. Specific to targeted
proteomics, a major drawback of SRM and PRM approaches is
that the analysis is restricted to the preselected target pro-
teins. Recent advances in data-independent acquisition meth-
ods (particularly SWATH-MS) circumvent the need for repeated
measurements for each target protein by allowing posterior
querying of the data for the desired peptides while providing
multiplexing capacities comparable to shotgun proteomics [180].
However, data-independent acquisition methods lack the sen-
sitivity of SRM and PRM and are therefore inferior to these
approaches when dealing with very low-abundant proteins. In
addition, SWATH-MS is still facing challenges regarding ease of
data analysis [180].

From the clinical perspective, minimally invasive sample
collection is critical. Body fluids (e.g. blood, saliva, urine, tears,
etc.) are readily available rich sources of biomolecules (e.g. over
12 000 proteins only in plasma) with altering compositions dur-
ing tumor development, which can be used as tumor and/or
stage-specific biomarkers [181]. Proteomics approaches were
generally successful in discovering such biomarkers [182, 183].
A major pitfall associated with body fluid biomarker discovery,
however, is the massive dynamic range: a handful of enor-
mously abundant proteins mask the presence of lowly abundant
molecules of interest. Strategies such as immunodepletion of
high-abundance proteins have been devised, which nevertheless
face the caveat of information loss due to unspecific bindings
to affinity ligands [184]. Nonetheless, the achievements of mul-
tiple efforts in recent years underline the possible widespread
utilization of these sample types in clinical practice in the future
[185, 186].

Single-cell proteomics is a promising prospective approach
that is still in its infancy. For single-cell technologies to become
a feasible practice in proteomics, advances in both technologi-
cal and computational aspects are required [187]. Considerable
increase in MS sensitivity and the development of specialized
tools for the analysis of such data are prerequisites of making
single-cell proteomics practical. Nevertheless, various multidis-
ciplinary efforts are already turning the dream of single-cell
proteomics into reality [188].

Metabolomics: exploring the survival strategies
of cancer cells

During cancer initiation and progression, cellular systems are
reprogrammed to grow and proliferate at exceptionally high

rates and to acquire an enhanced capacity for survival under
extreme conditions [141]. Clearly, a considerable portion of
this reprogramming is dedicated to shaping an altered form
of metabolism that is able to meet the massive energy needs
and to provide required anabolic precursors for these highly
demanding self-centered systems. Indeed, almost every aspect
of cellular metabolism is affected during cancer progression
[189] and since the metabolic status of a sample can be
considered as the ultimate downstream manifestation of
the effects of both intrinsic (e.g. genetic) and extrinsic (i.e.
environment) factors on the biological system [190], valuable
insights can be gathered from the study of the metabolome.

Two core metabolites with altered metabolic pathways in
cancer are glucose and glutamine [191]. Excessive glucose
fermentation, overexpression of the rate-limiting enzymes of
the glycolysis branch pathways, constitutive glucose influx, as
well as an increased expression rate of glutamine synthesis
are examples of such alterations that cancer cells exploit to
provide themselves with modified sources of energy and a large
collection of biosynthetic precursors [189]. In addition, cancer
cells develop scavenging strategies in order to survive under
the commonly encountered nutrient-poor microenvironment.
These strategies include autophagy [192], consumption of extra-
cellular proteins through macropinocytosis and subsequent
lysosomal degradation of these molecules [193], entosis [194] and
phagocytosis [195], as well as induction of fatty acid release from
neighboring cells [196]. Cancer cells also highly influence the
condition of their microenvironment. The high rate of glucose
fermentation results in the accumulation of considerably high
levels of extracellular lactate and H+, which in turn contribute
to angiogenesis, immune response suppression and tumor
invasiveness [189]. Since the survival of cancerous cells is highly
dependent on this altered metabolic status, the metabolome is
an active area of research for the discovery of cancer biomarkers
as well as the identification of potential therapeutic targets
[197, 198].

The contribution of metabolites to the initiation of signaling
cascades and their effect on the epigenetic landscape as well as
PTMs are other topics of investigation. Through these investiga-
tions, the role of metabolites not only as molecules with altered
behavior downstream of cancer initiation and progression but
also as etiological agents (i.e. oncometabolites) that contribute to
system perturbations is being rapidly established [199]. Further
studies of the metabolome in this context have the potential to
shed light on novel aspects of cancer biology.

Experimental workflow and data analysis pipeline

Due to the inherent chemical homogeneity of the polymers of
genome, transcriptome and proteome, it is possible for a single
platform to capture a holistic snapshot of each respective layer.
However, this does not hold in metabolomics owing to the chem-
ical heterogeneity of different classes of metabolites [200]. Proton
nuclear magnetic resonance (1H NMR) and MS-based methods
are the most common approaches for metabolomics data acqui-
sition; all of which are associated with various advantages and
disadvantages [190].

NMR is highly reproducible, is conveniently quantifiable,
requires minimal sample preparation and unlike MS-based
approaches is nondestructive [190, 201, 202]. Moreover, it is
considered the gold standard method for the elucidation of
the metabolite structures [203]. Nevertheless, NMR suffers
from low sensitivity and it is only capable of detecting 20–
50 metabolites per sample, which is an inadequate number
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for systems-level analyses [190]. MS-based approaches, on the
other hand, possess the advantage of high sensitivity and are
widely adopted for untargeted and system-level metabolomics
analyses due to their capability to detect 100–1000 metabolites
per sample [200, 203]. Gas chromatography-MS (GC–MS) and LC–
MS (or LC–MS/MS) are the most commonly used methods for
MS-based metabolomics [204]. GC–MS is cost-effective and has
the advantage of a virtually automated metabolite identification
process. However, it is only applicable to volatile and thermally
stable metabolites or those that can be adapted for the process
with chemical derivatization [203]. This limits the versatility
of GC–MS. In addition, the derivatization process can introduce
artifacts and might result in erroneous quantification because of
incomplete derivatization [205]. Unlike GC–MS, LC–MS does not
require derivatization and with the ability to capture molecules
in a wider weight range, it is highly versatile and efficient [190,
203, 204, 206]. While these advantages make LC–MS the most
widely applied method in the field, researchers are encouraged
to opt for a combination of these approaches to achieve a more
comprehensive representation of the metabolic status of the
sample [201]. The workflows for all of the above-mentioned
approaches are somewhat similar, with nuances and differences
in the steps and applied algorithms. However, due to the
extensive utility of the LC–MS and LC–MS/MS, these approaches
are the main focus of this section.

Unlike NMR, MS-based analysis needs a sample prepara-
tion step consisting of protein precipitation and liquid-phase
extraction [207]. The higher susceptibility of the metabolome
to alter under different conditions in comparison to the other
omics layers [208] means that careful experimental design is a
requirement to minimize confounding factors. The instruments
with high mass-resolving power such as LTQ-Orbitrap and Q-
TOF are instruments of choice for systems-level metabolomics.
Electrospray ionization (ESI) is the most widely applied ionizing
method in order to make the metabolites detectable in LC–MS
metabolomics [204, 209]. Of note, the validation of the results
of untargeted studies through targeted approaches can increase
the reliability of the acquired data [206].

The general computational workflow consists of prepro-
cessing, peak detection or annotation, postprocessing and
statistical analysis of the resulting data [210]: after the data
are obtained, they should be subjected to the preprocessing
procedure in order to enhance comparability and management
[190]. Preprocessing usually starts with peak picking, which is
the process of detecting the actual informative regions of spectra
and removing the background noise. For MS-derived data, a
deconvolution step is required to reduce redundancy. Another
requirement is the alignment of matching peaks between
different samples [211, 212]. A practical and popular approach
for peak annotation (i.e. the assignment of the observed
peaks to actual metabolites) is to search the data against the
existing spectral libraries in a process similar to what has been
described in the proteomics section. The desired information
for metabolites is acquired by inquiring metabolome databases
such as the Human Metabolome Database (HMDB) [213], METLIN
[214] and MassBank [215]. It is also possible to implement a
target-decoy strategy to control for the FDR. An innovative
approach regarding the construction of a decoy database for
metabolome studies has been proposed by Wang et al. [216],
which is performed by violating the octet rule through the
addition of extra hydrogen atoms to the molecular structures.
A postprocessing procedure is performed prior to downstream
analysis and interpretation of the data. Postprocessing includes
data filtering, imputation to account for the missing data and

normalization [210]. Data filtering is an important step in order
to remove uninformative data while avoiding the loss of biolog-
ically meaningful information [217]. Recently, Schiffman et al.
proposed a data-adaptive pipeline for data filtering procedure
[218]. A variety of normalization methods both sample-based
and metabolite-based exist. Among these, Variance Stabilization
Normalization (VSN), which accounts for sample-to-sample
variations and metabolite-to-metabolite variances, has proven
to be a suitable and versatile method [219]. However, a recent
study recognized 21 different normalization strategies based
on the combination of sample-based and metabolite-based
methods as consistently well-performing [220]. For an in-depth
review of the computational process of the metabolomics
studies, we refer the readers to [221].

There are multiple robust tools for each step of the compu-
tational workflow (refer to [210, 222] for comprehensive lists of
available tools). Metabolomics researchers also enjoy the ben-
efits of existing versatile and comprehensive workflows that
cover multiple steps or even the entirety of the metabolomics
computational aspects. Examples of highly popular such work-
flows are XCMS online [223], Galaxy-M [224] and MetaboAn-
alyst [225]. For a complete step-by-step guide to how to use
MetaboAnalyst, we refer the readers to [226]. Moreover, novel
approaches and platforms are being rapidly produced. MetaX
[227] and JumpM [228] are examples of such novel and potent
approaches.

Challenges and perspectives

The metabolomics field is rapidly growing with the emergence
of innovative technologies such as iKnife [229]. iKnife is able to
perform in situ MS analysis with applications such as discrimina-
tion between normal and malignant tissues with 100% accuracy
[230]. Single-cell metabolomics still struggles with challenges
such as low throughput and sensitivity as well as computational
inefficiencies. Nevertheless, efforts are being made to address
such shortcomings [231]. The study of the metabolome is not
restricted to the methods discussed in this section. There are
also alternative approaches such as isotope tracing fluxomics
with the goal of delineation of the distribution of the metabolites
in the samples of interest, and matrix-assisted laser desorp-
tion ionization-based MS imaging (MALDI-MSI) [232]. Moreover,
the diverse advantages of NMR technologies attracted efforts
for its synchronization for the current needs of metabolomics
studies [233]. These alternative technologies, while providing the
research community with improved analytical capacity, bring
about their own challenges and inconveniences. Future years
are expected to witness increased sensitivity of analytical plat-
forms, improvement of interoperability among computational
tools [210], as well as elevated specificity of metabolite biomark-
ers of cancer and enhancement of pharmacometabolomics (i.e.
prediction of drug response through metabolomics) [234].

Multilayer approaches
Although isolated analysis of each of the individual omics lay-
ers has substantially contributed to our understanding of a
diverse range of biological phenomena, this type of analysis
has an inherently limited capacity for characterizing the inte-
grated nature of biological units. When studying the cellular
system, its complexity with intertwined and highly convoluted
networks of interactions and regulations necessitates a multi-
faceted approach where different layers of data, generated either
through single-layer omics approaches or other means of data
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Figure 3. Integrative study of biological phenomena. The first fundamental decision for modern large-scale studies is the choice between hypothesis-driven or data-

driven study design. While both types of study designs are applicable, complementary approaches are recommended since hypothesis-driven studies are vulnerable

to bias, while data-driven studies are highly prone to false positives [365]. The extracted omics data can be subjected to integration through multiple approaches. The

resulting functional data will improve our knowledge base and can serve as a starting point for future studies. Already emerging pipelines demonstrate the clinical

utility of the integrative approaches [366]. The integration approaches provided in this figure are based on the categorization in [240]. Sequential analysis: the integration

of datasets subsequent to independent analysis. Latent variable analysis: partitioning of samples into functional groups through unsupervised clustering for example

by implementation of an expectation–maximization algorithm. Penalized likelihood analysis: outcome prediction through penalized regression. Pairwise correlation

analysis: association estimation for related molecule pairs across datasets. Gene set analysis: homogenization of multiple datasets by replacing every molecule with its

respective gene and subsequent enrichment of the resulting datasets. Network analysis: using prior knowledge of molecular interactions to provide an environment

for integration. Bayesian analysis: utilization of the information in an omics layer as the prior information for the analysis of another through Bayesian approaches.

acquisition (e.g. studies of molecular interactions, imaging, etc.),
are simultaneously analyzed in an integrated manner [235]. Can-
cer is a systemic disease, and thus, achieving an accurate picture
of this perturbation requires homogenization of all the different
types of single-layer data through integrative approaches. This
is indeed the goal of large-scale efforts such as the Cancer
Genome Atlas (TCGA; [13]), which by providing publicly available
multilayer data from various tumor types, empower researchers
across the globe with an unprecedented capacity for systems-
level analysis of cancer (Figure 3).

Integrative approaches have three main advantages. (i) With
observations validated across multiple layers of information,
they allow for more reliable and representative interpretations;
(ii) they can substantially contribute to the delineation of
the interplay among molecular levels and shed light on
the hierarchy of causation; and (iii) they reduce our blind
spots by circumventing our limitations through combined
utilization of the technological and computational power in each
level.

Notably, omics data are not the only possible source of infor-
mation that can be purposefully integrated in cancer studies;
other types of data such as histopathological information can
provide an extended panorama of tumor biology. Reportedly, the
integration of histopathological features with molecular data
outperforms predictions based on omics data or histopatholog-
ical information in isolation in various types of cancer [236]. In
one such study, an integrative, machine learning-based analysis
of histopathological, molecular and clinical data of 538 lung
adenocarcinoma patients from TCGA cohorts resulted in an inte-
grated model with more accurate prognostic power for survival
outcomes of stage I lung adenocarcinoma patients [237].

The heterogeneity of the generated data across different
layers is a major challenge in integrative studies [238]. However,

the undeniable advantages of data integration have prompted
numerous efforts to overcome its challenges. See [239, 240] for
comprehensive explorations of integrative methods, databases
and tools. In addition, Supplementary Table S2, see Supple-
mentary Data available online at http://bib.oxfordjournals.o
rg/, describes some of the prominent tools and methods for
the integration of multimodal data and their comparative
performance. Here, we provide an in-depth description of
proteogenomics and network-based data analysis. The former
is a remarkable example of how the integration of multiple
levels of information can reduce our blind spots and increase
the accuracy and reliability of our interpretations and the latter
is a major approach for data interpretation and a robust scaffold
for data integration and modeling.

Proteogenomics: vertical integration of genomics,
transcriptomics and proteomics data

Since genomic alterations are regarded as the molecular cause of
tumorigenesis [7], the emergence of next-generation sequencing
(NGS) technologies held the promise to greatly accelerate the
identification of pathogenic alterations and thereby facilitate
the design of highly effective therapeutic interventions, and
indeed, a variety of candidate treatments such as personalized
immunotherapy, cancer vaccines and gene therapy are being
introduced [241]. However, not all of the patients stratified based
on their genomic data benefit equally from the applied ther-
apeutic interventions and the levels of response within each
group of patients are diverse [242]. This has been attributed
to the fact that most of the currently used treatments target
specific proteins rather than genomic alterations and a great
number of confounding elements are out of grasp due to the lack
of proteomic information [243].

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab343#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/


12 Karimi et al.

Figure 4. General workflow for the integration of genomics and tandem mass spectrometry data in proteogenomics. The MS/MS spectra of the sample are searched

against the theoretical spectra inferred from the NGS data (most commonly RNA-seq) obtained from the same sample. The identified novel peptides should be validated

(using PepQuery). The resulting data can be utilized for the study of posttranslational modifications, identification of neoantigens and biomarkers and mutation

prioritization in the downstream interpretation. Network-based analysis of these data can provide a critical vantage point for functional study of system perturbations.

Despite recent attempts to predict specific types of PTMs
[244], genomics data analysis cannot account for the numerous
protein-level adaptation events in the cellular environment
[243]. On the other hand, there is a considerable load of somatic
mutations in cancer cells that in turn give rise to previously
unidentified peptide sequences. Since proteomic analysis relies
on previously identified protein sequences (to avoid false
peptide sequences in de novo sequencing experiments), single-
layer analysis of proteomic data is highly limiting in the cancer
context. These and other challenges, which will be discussed
here, can be addressed through vertical integration of genomics,
transcriptomics and proteomics data, which are collectively
termed proteogenomics (Figure 4) [245, 246].

Experimental workflow and data analysis pipeline

The backbone of proteogenomics studies is the construction
of customized protein sequence databases [245]. As previously
stated in the proteomics section, the identification of peptides
in samples subjected to shotgun proteomics experiments is
achieved by matching the spectra against a protein sequence
database [247]. However, public protein databases (e.g. UniProt
and PDB) do not contain previously unidentified protein
sequences such as novel altered proteins that are frequently
encountered in tumor-derived samples [248]. To overcome this
obstacle, NGS data acquired from the same sample (e.g. via WES,
WGS and RNA-seq) can be exploited to construct a customized
protein sequence database that contains all the hypothetical
protein sequences that can be inferred from the genomics or
transcriptomics data and then, match the MS/MS spectra against
this sample-specific database [249, 250].

The complexity of the expression system in eukaryotes
makes the matching of the proteomics spectra against a
customized database predicted from genomics data compu-
tationally ineffective and error-prone because the size of such
databases will exceed any acceptable threshold [251]. However,

customized databases from transcriptomics data are more
effective and accurate since they consider only expressed
transcripts. To construct a customized protein database from
transcriptomics data, raw nucleotide sequences should be
assembled into full-length transcripts. There are two approaches
for full-length transcript assembly: genome-guided and de
novo transcriptome assembly. Genome-guided approaches are
routinely used for cancer studies. However, coupling these
approaches with de novo transcriptome assembly approaches
is advised [252]. De novo transcriptome assembly methods have
the advantage of being capable of identifying novel transcripts
that can’t be identified through reference-guided methods
either due to errors in the reference genome or because they
are completely missing (i.e. tumor viruses) [253]. A recent
comparative study [252] suggested that the performance of
the various existing de novo assembly tools is dependent on
the study design and the species under study. In the cancer
context, where we are usually dealing with human samples,
Trinity [254], Trans-ABySS [255], SOAPdenovo-Trans [256] and
SPAdes [257] are generally well-performing tools [252]. Merging
the results obtained from multiple assembly tools with posterior
quality control evaluation is currently considered best practice.
Notably, long-read sequencing technologies have the potential
to circumvent challenges of de novo transcriptome assembly.
With PacBio and Nanopore technologies, read lengths of >10 kb
are routinely achieved, capturing full-length transcripts.

Multiple tools are available for customized database con-
struction including Galaxy-p [258], QUILTS [249], customProDB
[259] and PGA [260]. Importantly, the PGA pipeline is not limited
to MS/MS data searching. It incorporates database construc-
tion steps that can be done using a genome-guided approach
or via a de novo transcriptome assembly approach and also
includes postprocessing steps including FDR calculation, protein
inference and spectrum annotation. In addition, the capacities
of Galaxy-p for custom workflow construction prompted the
development of comprehensive workflows [261] that encompass
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Table 2. A list of resources for proteogenomics computational analysis

Tool Implementation Description Reference

customProDB R Customized database construction from RNA-seq data. [259]
FusionPro Python & Perl Identification and annotation of chimeric transcripts. [379]
JUMPg Perl & R Customized database construction, database search,

filtering and visualization.
[293]

PepQuery Web-based Validation of novel variants independent of customized
database. Also available as a stand-alone tool.

[265]

PGA R Customized database construction and novel peptide
identification.

[260]

PGTools Perl & Python Customized database construction, FDR estimation, protein
identification and annotation, visualization.

[380]

ProGeo-neo Python Neoantigen identification, classification and prioritization. [381]
PROTEOFORMER
2.0

Python & Perl Proteoform identification through proteogenomic analysis
of ribosome profiling and MS/MS data.

[382]

QUILTS Web-based Customized database construction. [249]
SAAVpedia Web-based &

Python
User-friendly single amino acid variant prioritization. [383]

Spritz Windows User-friendly customized database construction.
Importantly, it accepts raw RNA-seq data as input and
automatically performs preprocessing through utilization
of 23 tools.

[384]

the entire computational process of proteogenomics. For a list of
available tools and resources for proteogenomics studies, refer to
Table 2.

The process of matching MS/MS spectra against a customized
database is achieved by utilizing database search engines such
as X!Tandem, MS-GF+ [262] and Comet [263]. Among these, the
widely used X!Tandem software has been shown to have the
highest false negative rate, and hence, it is not recommended to
exclusively use this engine [264]. Since effective quality control
methods for novel peptide identification can be utilized down-
stream of the matching process, a high level of false positive
can be tolerated. Hence, the best approach in this step is to
combine the results of multiple search engines to gain a more
comprehensive collection of putative novel peptides. Novel pep-
tides that have been identified through the matching step can
then be further validated. PepQuery [265] is a freely available
tool that can be applied as an optional quality control step and
can significantly reduce false positives. The definitive validation
of identified novel peptides, however, can be achieved through
targeted proteomics assays [243].

Applications

There is a variety of molecular events that can potentially give
rise to a wide range of protein alterations such as chimeric
proteins or single amino-acid variants in cancerous cells.
However, not all of these events result in expressed proteins
and even if expressed, the resulting proteins might be unstable
and subjects to early degradation. Proteogenomics is an ideal
approach for protein-level validation of the stable expression of
these molecular events [246]. Moreover, protein-level analysis of
current gene models and their somatic variations by means
of proteogenomics enables the validation or correction of
previous predictions of the sequence, structure and ultimately
the function of the respective proteins [246, 266]. Additionally,
deregulation of alternative splicing in cancer under the influ-
ence of perturbed splicing factors and altered signaling cascades
is a known phenomenon [267, 268]. Alternatively spliced
isoforms can not only serve as tumor-specific biomarkers

but can also provide stage-specific signatures and putative
therapeutic targets [80]. Empowered with the capacities of both
transcriptomics and proteomics, proteogenomics proves to be
a competent approach for studying oncogenic splice variants
and specific pipelines toward this purpose have already been
developed [269].

PTMs are known to play essential roles in the biology of
cancer cells [143, 144]. Genomic alterations in cancer can have
profound effects on protein modifications (e.g. through the
addition or disruption of modification sites or alteration of PTM
regulator proteins) and in turn on the signaling cascades and
regulatory networks of cancer cells [251, 270]. Since PTMs cannot
be accurately predicted from genomics data, proteogenomics
can become the tool of choice for exploring the effects of
aberrations in the genome on the downstream PTM alterations
[271]. In addition, it is now widely accepted that quantitative
mRNA expression data are not an ideal indicator of protein
expression levels and the extent to which they biologically
correlate is a matter of debate [272]. Since protein expression
levels are of importance both for functional inferences and
therapeutic interventions, accurate measurement of protein
expression levels is crucial [243]. Proteogenomics studies can
not only provide us with protein expression data, but they also
have the potential to deepen our understanding of the biology
of this difference in expression levels.

The host immune system is known to be effective in the
elimination of cancer cells [273]. For the host immune sys-
tem to be able to confront cancer cells, neoantigens, which
are predominantly results of the processing of altered proteins
by the antigen processing pathways, should be presented as
human leukocyte antigen (HLA) ligands at the cell surface and
be identified by T-cell surveillance [268, 274]. The process of
immune response to cancer cells is being studied with the goal
of designing therapeutic interventions known as cancer vaccina-
tions that attempt to elicit the T-cell immune response against
cancer cells [275–277]. Proteogenomics can greatly accelerate the
pace of neoantigen discovery and by providing candidate clonal
neoantigens result in a more efficient vaccination process [278,
279]. Moreover, proteogenomics studies can help delineate the
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underlying mechanisms of immune system evasion by cancer
cells [280].

The above-mentioned applications can be used to filter
more important genomic alterations, distinguish between
driver and passenger mutations [281] and make for more
efficient biomarker discovery [282–284]. A recent study [266]
showcased the massive potential of proteogenomics studies
from unraveling uncharted aspects of cancer biology to opening
new avenues toward precision oncology. From PTM analysis of
proteins to prioritization of somatic copy-number alterations,
they exploited the full potential of current proteogenomics
technologies. Importantly, they demonstrated that proteoge-
nomics studies can result in more efficient unified multiomics
cancer subtypes that can serve to acquire an enhanced ability
for prognosis, diagnosis and precision interventions.

Challenges and perspectives

A long-standing challenge in the field of proteogenomics is the
appropriate FDR estimation for matched peptides after database
search [246]. As discussed in the proteomics section, a widely
used approach is the target-decoy search strategy [163]. Since
assuming the same FDR for both novel and previously identified
peptide sequences is an underestimation of the FDR value for
novel peptides, the efficacy of this method in proteogenomics
studies has been questioned and substitute approaches such
as separate FDR estimations for novel and previously identified
peptides have been suggested by Nesvizhskii et al. [246]. Wen
et al. [264], however, in a comparative study of FDR estimation
methods utilized the prediction of retention time for peptides
in comparison with the actual observed values as an evaluation
metric for different quality control strategies and identified
global FDR estimation by target-decoy search (in order to attain
a high level of sensitivity) with a posterior filtering step to
restrict false positives (using PepQuery) as the best approach for
neoantigen discovery.

Although targeted MS-based assays hold great promise for
the clinical translation of the discovered biomarkers through
proteogenomics studies, there are still challenges that should be
addressed [243]. Targeted multiple reaction monitoring assays
can be used not only to validate the results of proteogenomics
analyses but can also provide clinicians with a cost-effective
multiplexed platform that can analyze a high number of target
proteins from a variety of sample types (e.g. urine, secretions,
etc.) with satisfying sensitivity and specificity. However, there is
still room for improvement since the sensitivity is not enough
for dilute samples and single-cell analysis [285].

Recent advancements in proteomics technologies [286, 287]
and clinically valuable demonstrations such as the possibility
of a microscaled proteogenomics study of tissues as small as
25 μg [288] are setting the stage for the emergence of a more
precise and cost-/time-effective landscape for proteogenomics.
Moreover, single-cell proteogenomics is evolving and has the
potential to considerably increase our understanding of intra-
tumoral heterogeneity [289–291]. It is expected that a greater
number of researchers will join this field in the years to come.
However, the high number of existing tools that provide com-
plementary results and should be utilized in combination with
one another in multiple steps of the study [264, 284, 292] is
probably a prohibitive element in attracting new researchers
to the field. Other prohibitive elements are the required com-
putational expertise and the lack of unified and comprehen-
sive databases with user-friendly interfaces that are specifically
tuned for proteogenomics studies. Although efforts have been

made to provide comprehensive workflows for different study
goals [293, 294], international collaborations are required to over-
come existing challenges and provide gold standard workflows
for proteogenomics studies.

Network-based data integration

A huge amount of information regarding the interactions among
molecules and biological pathways is stored in public data
repositories such as STRING [295], BioGRID [296], InnateDB [297],
KEGG [298], Reactome [299], VMH [300], WikiPathways [301],
etc. These data are generated either from in vivo and in vitro
experiments or from in silico predictions [302] and are essential
in providing a system-based context for omics data. Biological
systems in the form of interaction networks and pathways
can serve as frameworks on which omics-driven data can be
integrated, analyzed and interpreted [303, 304].

Combining the prior knowledge of interactions in the form
of networks and pathways with genome-wide data generated
through single-layer omics approaches is used to overcome
issues in the interpretation of omics data by providing a larger
context. On the one hand, omics data on their own are merely a
representation of existing molecules and their abundances at a
particular point in time. Extracting patterns and understanding
the underlying mechanisms of a condition from an omics
dataset in isolation is challenging [305]. On the other hand,
molecular interaction networks and pathways, although highly
informative, do not account for the dynamics of the cell in
different states and phases. The integration of interaction
networks and pathways with omics datasets facilitates pattern
detection and allows the study of the dynamic nature of the
cell [306]. This is of particular importance for understanding
the mechanisms of complex multistage diseases such as cancer.
This integrative approach has been shown to be superior to the
isolated analysis of either networks or omics data [307].

An important advantage of this integrative approach is the
provided capacity for topological analysis of the identified signif-
icant molecules (e.g. downstream/upstream position in a given
pathway, centrality parameters [308], etc.). It is widely accepted
that the upstream position of a molecule in a pathway can
be considered as a predictive measure for biological signifi-
cance [309]. In addition, the centrality of a node in a given
network, measured by various parameters (e.g. degree, between-
ness, etc.), is a validated implication for distinct importance.
Indeed, aberrations in central nodes have been shown to play
vital roles in tumor development [310]. Thus, alterations in struc-
ture or function (e.g. differential expression/abundance) of a
given molecule under certain conditions combined with its topo-
logical features can help prioritize candidate molecules (e.g.
possible driver molecules) for further studies [306]. Identifica-
tion of patterns that are unlikely to occur randomly is another
important theme in network biology. These patterns include
motifs and modules. Motifs are recurring small subgraphs whose
interactions form the overall behavior of the complex network.
Alterations in these motifs are central to cancer biology and
the search for core motifs in cancer-related pathways is valu-
able for biomarker, therapeutic target and subtype discovery
[311]. Modules are larger subgraphs that are highly connected
internally and are involved in specific processes. Modules are
extensively investigated for the identification of cancer driver
pathways and genes and are explained in more detail in further
sections.

Guilt-by-association is another concept widely used for bio-
logical inference of topological properties of molecular networks
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Figure 5. General workflow for the network-based analysis of omics data. The constructed subnetworks from the integration of the omics-driven data and prior

knowledge of molecular interactions can be subjected to module identification or enrichment analysis. The identified modules can also be enriched to yield functional

information. Note that it is possible to enrich the omics data independent of the subnetwork construction process. An example of downstream interpretation is to

demonstrate multiomics data in multilayered networks for computational and/or visual pattern detection. Going from either raw omics data or interactome databases to

subnetwork modules and enriched data, the complexity decreases, and the data are constantly narrowed down to yield functional information. ORA, overrepresentation

analysis; FCS, functional class scoring.

in cancer biology [312]. This notion posits that molecules in
topological proximity of each other are potentially functionally
related. This is utilized in multiple ways in cancer investigations.
For example, proteins of unknown significance in close topolog-
ical proximity of known drivers of cancer can be investigated
as candidate infrequently mutated proteins of functional impor-
tance in cancer. Alternatively, proximity as a proxy for overlap
in function can be exploited to avoid utilization of redundant
molecules for survival analysis, leading to higher efficacy of
prognostic biomarkers [312].

Biomarkers and gene signatures identified from network-
based approaches have been shown to be more reproducible
[313]. In addition, network-based approaches allow the study
of perturbations in specific interactions among molecules (e.g.
allosteric regulations, posttranslational processing, etc.) [307,
314]. Deviation of these interactions from normal status is
an essential factor in tumorigenesis and cancer progression
[141]. Collectively, network-based analysis of cancer has been
successfully implemented in cancer driver pathway identifi-
cation, driver gene discovery, somatic mutation prioritization,
biomarker and therapeutic target discovery, cancer subtyping
and patient stratification [312].

The first step of the network-based analysis of omics data
is to construct a context-specific subnetwork from generic data
repositories of molecular interactions and pathways [311, 315].
These subnetworks represent the parts of the system that are
being studied and are constructed based on the experimentally
acquired omics datasets. Depending on the goal of the study,
different types of networks can be constructed including gene–
gene and gene–protein interaction networks, signaling pathways
or a combination of these for a more comprehensive analysis.
The most widely used networks are PPI networks [316] and

genome-scale metabolic models [317]. The constructed subnet-
works can then be amended with the results of a pathway
enrichment analysis or can be mined for active module iden-
tification (Figure 5). These steps along with the visualization
approaches are discussed in more detail below.

Subnetwork construction

Generic databases of biological interactions and pathways are
still far from complete [318, 319]. However, the goal of these
repositories is to capture the entire repertoire of molecular
and/or cellular interactions. Meanwhile, depending on the
significant molecules identified in the omics dataset under
analysis, only a minor subset of these interactions is relevant.
Hence, the first step for network-based analysis of datasets
is to construct a context-specific subnetwork. In addition to
the significant molecules, identified via omics data analysis,
subnetworks commonly incorporate all the known molecules
that are in direct interaction with them [315]. These extra
nodes provide new perspectives for a more comprehensive and
accurate network interpretation.

Network-based approaches can greatly facilitate multiomics
data integration and analysis [303]. Multiple levels of omics
data produced from different single-layer techniques can be
layered upon a single network to achieve a more holistic view
of the perturbed system [307]. Alternatively, it is possible to
construct multiple networks from different levels of omics data.
The comparison of these networks can provide a deeper and
more accurate view of the system under investigation and
result in more reliable conclusions [320]. Several algorithms
such as AMARETTO [321] and iOmicsPASS [322] facilitate
network-based data integration. Interestingly, AMARETTO is
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able to integrate phenotypic information such as radiography
data with multiomics data. This practical approach has been
shown to be effective in identifying candidate cancer driver
genes [314].

Module identification

The constructed subnetworks are usually very complex and
often referred to as hairballs. While almost impossible to man-
ually identify functional patterns in these subnetworks, graph
mining algorithms can be applied to identify functional units
of the large subnetwork known as modules [323]. Modules can
be regarded as sets of densely connected nodes with an overall
limited connection to the rest of the network [324, 325]. An
important property of biological systems is that molecules with
similar functions closely interact with one another and tend to
cluster together in biological networks [325]. Hence, each module
can be assigned a specific biological function. If a subnetwork
is constructed based on differential expression/abundance of
molecules under a certain condition, modules in this subnet-
work are expected to represent perturbed parts of the system
that gave rise to the condition under investigation.

Since the disruption of certain pathways (e.g. apoptosis, pro-
liferation, etc.) is common to almost all cancer types [141], it
is logical to consider that genes that harbor driver mutations
should at least to some extent cluster together in modules
[326, 327]. It is expected that modules containing genes that
are known to be involved in tumorigenesis and cancer pro-
gression can be utilized to predict novel cancer driver genes.
Moreover, module identification can facilitate the identification
of co-occurring cancer driver mutations [328].

The analysis of network modules facilitates the discovery of
common disease mechanisms, disease subtypes or the mechan-
ics of response to drugs [329]. Interestingly, biological networks
are often hierarchically organized, where for example a group
of small, interconnected modules can be clustered together to
form larger modules. Researchers can use these hierarchies to
adjust the magnification of the analysis for a more biologically
relevant interpretation [330]. Methods such as hierarchical Hot-
net are specifically developed for cancer studies to identify these
module hierarchies and predict cancer driver genes [331].

Commonly used methods for module identification [332–334]
first score nodes and edges based on criteria such as differen-
tial expression and experimentally validated PPIs, respectively.
Then, a scoring system based on the aggregated scores of all the
members of a hypothetical module is formulated. An algorithm
is used to identify optimal modules (those with the highest
scores). In the final step, the identified modules are queried
for their statistical significance in relation to the investigated
hypothesis [329].

Multiple classes of algorithms have been implemented for
module identification, including diffusion-based algorithms
and algorithms based on the prize-collecting Steiner tree
problem [312]. Briefly, diffusion algorithms consider significant
molecules as sources of a phenomenon such as heat diffusion
that spreads through the edges of the network until equilibrium
is achieved. Here, the goal is to find regions of the network
with the most influence over them (i.e. hot regions) as these
regions represent highly active modules. Prize-collecting Steiner
tree algorithms seek to find modules optimized to contain the
highest number of prizes (significant nodes) while minimizing
the number of edges. Some algorithms [335] also exploit
specific properties of tumors such as mutual exclusivity (i.e.
activation/inactivation of a second driver molecule functionally

related to an already perturbed molecule is obsolete and rarely
observed in a single tumor).

jActiveModules [332] is a widely used plug-in for network
visualization software Cytoscape [336]. It can be used for module
identification and can determine whether modules are com-
mon in multiple states. jActiveModules scores all the nodes
in a network based on the P-values from a differential gene
expression analysis and has a scoring function to determine the
statistical significance of any given module. First, it assigns an
active or inactive state to each node in a subnetwork (with a 0.5
probability). Then, for a defined number of iterations, it selects a
random node, toggles its state (active/inactive) and recomputes
the module’s score. If the aggregated score of the module has
increased, it keeps the node in its new state. Otherwise, it keeps
or changes its state with a defined probability. The process con-
tinues until a local optimum is achieved. The identified module
might not be the module with the global maximum score, but
regardless it is of biological interest.

Approaches for module identification are not limited to what
has just been described. For example, in [337], the authors pro-
posed a novel module-identification pipeline. In this method,
gene–gene correlation networks are constructed from omics
data from two conditions under comparison. Then, the networks
are separately integrated with a priori knowledge of interactions
to identify modules. Thereafter, enriched modules (e.g. those
significantly associated with upregulated genes in a certain con-
dition) can be identified and potentially be used for predictive
or diagnostic purposes. A few outstanding challenges regarding
the existing methods and the overall approach should be con-
sidered. There is a lack of a strong correlation between mRNA
and protein abundance [338]. As a consequence, utilizing the
mRNA profile on its own as the source for subnetwork construc-
tion would result in an inaccurate representation of the actual
system. iOmicsPASS [322] is a recently developed algorithm that
takes this issue into account by integrating transcriptomics and
proteomics data. iOmicsPass predicts phenotypic groups based
on the joint expression pattern of the nodes within densely
connected modules. The algorithm has been shown to be effec-
tive for predictive module identification especially when dealing
with smaller datasets. Another major problem is that it is possi-
ble for a single molecule to be shared among multiple biological
modules. Current methods, however, are not computationally
effective in identifying overlapping modules [327]. Furthermore,
despite a considerable rate of development of novel methods,
there is a lack of standard benchmarks for validation and com-
parison of suggested methods [329]. In addition, it should be
noted that the assumption that disease-related molecules clus-
ter together in interaction networks does not always hold for a
complex condition such as cancer [327].

Pathway enrichment analysis

Pathway enrichment analysis is a common approach for identi-
fying disrupted molecular processes and pathways underlying a
certain condition [339]. The central idea is to identify common
pathways that a set of molecules (e.g. differentially expressed
genes) is associated with. This reduces the contextual complex-
ity of the system and simplifies the interpretation of omics
datasets by taking advantage of prior knowledge about biological
processes [340].

Three generations of pathway enrichment methods have
been developed [340]. The first generation was termed over-
representation analysis (ORA). In this generation of methods, a
list of significantly differentially expressed molecules, based on
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P-value and/or fold change filters, is compared against previ-
ously compiled functional lists of molecular processes to iden-
tify overrepresented pathways. DAVID [341] and WebGestalt [342]
are among the widely used tools that exploit ORA algorithms.
A major drawback of ORA is that by defining filters, we risk
the omission of important molecules [343]. Moreover, ORA algo-
rithms treat all the molecules that passed the defined filters as
equally significant [304].

The second generation of pathway enrichment methods is
known as functional class scoring (FCS). Instead of using pre-
defined filters, FCS algorithms require an input list of all the
evaluated molecules, along with values corresponding to their
level of differential expression (e.g. fold-change or P-value) [340].
In these methods, all the input molecules are statistically ranked
and the overrepresentation of pathways is analyzed with the
impact of each molecule in consideration [304]. A pitfall in this
approach is that the analysis can become biased toward a few
molecules that have been identified as very significant. Gene
set enrichment analysis (GSEA) [344] is a widely used algorithm
belonging to the second generation of pathway enrichment anal-
ysis methods. GeneTrail [345] is a popular and freely accessi-
ble web service that provides users with both ORA and FCS
algorithms for pathway enrichment analysis.

The most recent generation of pathway enrichment methods
was developed with the goal to maximize the utilization of
prior biological knowledge [346]. This generation of pathway
enrichment algorithms incorporates the topological features of
nodes in biological networks (e.g. upstream or downstream posi-
tion in the pathway, degree and betweenness) as additional
weighting factors in the enrichment process [309, 315]. In addi-
tion, in topology-based methods, the analysis is not limited to
input molecules but other molecules with close connections to
input molecules can be incorporated to identify relevant path-
ways. Studies indicate that topology-based methods outperform
conventional methods (ORA and FCS) both in genomics and
metabolomics enrichment analyses [324, 347]. This generation of
algorithms provides better capacity for the analysis of molecular
interactions and understanding the underlying mechanisms of a
condition. In general, there is no single best-performing tool for
topology-based enrichment analysis. However, a recent compar-
ative study [324] identified DEGraph [348] as the superior method
among the nine algorithms investigated.

Overall, some major challenges remain for pathway enrich-
ment analysis. In a recent study [347], Nguyen and co-authors
found that all of the tested pathway enrichment methods with
the exception of GSEA are prone to report false positives. GSEA,
on the other hand, suffers from low sensitivity. Furthermore, the
Fisher’s exact test, while a highly utilized method, performed
poorly in this study and produced a significant number of false
positive results. Hence, highly popular platforms such as DAVID,
which use this method, should be treated with extra care.

Most comparative studies focus on gene expression data
and the results of these studies are not necessarily applicable
to other data types (for a list of methods and tools utilized
in enrichment analyses and their comparative performance
derived from comparative studies, refer to Supplementary Table
S3, see Supplementary Data available online at http://bib.oxfo
rdjournals.org/). Considering the importance of other layers
of information in cancer studies, this should be considered
in future developments. One tool that already supports other
layers of information, including genomics, transcriptomics,
proteomics, miRNAomics, epigenomics, etc., is GeneTrail
[345]. In addition, although studies indicate the superiority of
topology-based enrichment methods, it is still not sufficiently

recognized. It would be ideal if popular and user-friendly
portals of enrichment analysis would incorporate topology-
based approaches in order to make these methods accessible
to a wider range of researchers.

The current lack of gold standard methods for pathway
enrichment analysis coupled with the plethora of existing
approaches makes the selection of a suitable method a
challenging task. This is especially burdensome for researchers
with limited computational expertise. With that being said,
there are a number of user-friendly web-based platforms such
as MetaboAnalyst [225] and Metascape [349] that offer users
a comprehensive pipeline for pathway enrichment analysis.
Metascape (https://metascape.org/) takes advantage of multiple
databases as its resource for systems-level analysis of datasets. It
provides powerful computational abilities with a simplified and
user-friendly interface designed for researchers with minimal
computational expertise. Since outdated data can severely
impact the quality of analysis results [350], an important feature
of Metascape is the monthly data synchronization with the
updated information in data repositories. The workflow of
Metascape can also be modified by users with more advanced
computational skills to meet the requirements of individual
studies. Moreover, it can be utilized for cross-omics comparisons
of multiple gene lists and integrated analyses. Similar to DAVID,
the resulting enriched terms in Metascape are clustered and
nonredundant. The results can also be exported to Cytoscape
for further analysis.

Network visualization

Through visualization, large amounts of data can be made more
accessible for convenient pattern detection and interpretation
[351]. Whether it is in the form of processed networks or catego-
rized and functional tables, the goal of the visualization process
is to reduce the overwhelming complexity of large datasets
and make them more readily interpretable. Many tools such
as Cytoscape [336], PaintOmics [352] and Omicsnet [353] are
developed with the objective of simplifying the visualization
process and offering users a wide array of options to modify how
their data are represented.

Cytoscape is a widely used freely accessible platform that
provides users with an interactive interface and powerful tools
for network visualization and analysis. Cytoscape’s feature set
can be expanded by adding plug-ins developed by the commu-
nity for specific computational tasks. Omicsnet [353] is a recently
developed web-based visualization tool (www.omicsnet.ca/) that
provides users with a 3D structure for visualization and analysis
of large networks. It can incorporate multiple heterogeneous
datasets in a single subnetwork. Moreover, by taking advantage
of various structural layouts such as spherical and multilayer
layouts, it facilitates network analysis and reduces the over-
whelming complexity of large networks. In addition, it pro-
vides users with a variety of functional and topological analysis
tools including module identification and pathway enrichment
analysis.

Challenges and perspectives

Although there are numerous methods and tools developed to
tackle the variety of problems associated with the network-
based analysis of omics data, this approach to data analysis is
still in its infancy. Whether it is a matter of reliability of the anal-
ysis or a matter of providing equilibrium between the amount of
lost data and precision, a number of challenges remain for the
community to address.

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbab343#supplementary-data
http://bib.oxfordjournals.org/
http://bib.oxfordjournals.org/
https://metascape.org/
www.omicsnet.ca/
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The quality of network analysis results can only be as good
as the quality of the input data. Besides the quality of omics
data, a major challenge in this field is incomplete or inaccurate
information in network and pathway databases that has been
shown to greatly affect the analysis process [350]. Hence, efforts
to validate and expand the information in these databases are
of essential importance. In addition, analysis tools need to regu-
larly update their knowledge base to keep up with the expan-
sion pace of the source databases. Moreover, limited overlap
among interactome databases means that they should be used
in combination for more comprehensive results [347].

A simple widespread approach for subnetwork construction
is the inference of relevant nodes based on significantly differ-
entially expressed/abundant mRNAs or proteins. However, two
caveats should be considered when opting for such approaches.
First, since there is evidence against a strong correlation between
mRNA and protein levels [272], the accuracy of utilizing mRNA
expression levels for subnetwork construction is questionable.
Second, phenomena such as somatic mutations, PTMs and alter-
ations in cellular localization can functionally affect PPIs. These
alterations might be overlooked when PPI subnetworks are con-
structed solely based on mRNA expression or protein abun-
dance. When this is coupled with inaccuracies and incomplete-
ness of current PPI databases, it becomes clear that constructed
subnetworks based on differential mRNA expression or pro-
tein abundance do not necessarily provide accurate represen-
tations of the altered cellular interaction networks. Integra-
tive approaches can ameliorate this flaw to a great extent. For
instance, using integrative analysis approaches prior to subnet-
work construction, one can establish a list of candidate sig-
nificant molecules (e.g. genes with both somatic mutation and
differential expression, overexpressed genes with hypomethy-
lation, etc.) and subsequently create a subnetwork by mapping
these molecules to the human interactome [354]. Alternatives
include more sophisticated methods where a list of candidate
molecules is not determined a priori. For example, in the very
recently introduced EMOGI method specifically developed for
cancer data exploration [355], novel candidate cancer genes
are predicted through a machine-learning approach that uses
a generic PPI network with a multiomics feature vector for
each node along with lists of high-confidence cancer/noncancer
genes as input. However, only a limited number of user-friendly
tools allow for a network-based multiomics data analysis. More-
over, current tools that provide the capacity for this type of
analysis are not comprehensive with regards to the types of
integration they can carry out.

Recently, efforts have been made to systematically compare
the plethora of existing methods. These studies analyzed current
popular methods from different perspectives, deducing different
existing challenges in the field, from the lack of a uniform
distribution of P-values under the null condition for enrichment
analyses to the absence of a perfect method for all the study
goals [324, 347].

An exciting future awaits the network-biology approaches.
Single-cell multiomics technologies provide a highly potent
data source for the construction of multilayered networks
providing holistic views of individual cellular systems. Moreover,
it opens a great opportunity for understanding intratumoral
heterogeneity [356]. From the enhanced capability to unravel the
complex underlying mechanisms of cancer to drug repurposing
[357] and precision medicine [358], network-based approaches
facilitate the translation of raw biological data of single-
layer omics experiments to practical knowledge and possible
interventions.

Successful implementations of integrative approaches
in cancer research

With significant growth during the last decade, high-throughput
technologies prompted many studies with results of clinical
relevance. The search for molecular markers predictive of the
response to specific types of treatment is a hot topic in precision
oncology and many studies provide encouraging results. For
instance, in a study by Taber et al. [359], sequential analysis of
genomics, transcriptomics and proteomics data resulted in the
identification of a subgroup of muscle-invasive bladder cancer
patients with high genomic instability and nonbasal/squamous
expression subtype that were highly responsive to cisplatin-
based chemotherapy, while patients with low genomic insta-
bility and basal/squamous expression subtype showed poor
response. In another study, proteogenomics analysis of HPV-
negative head and neck squamous cell carcinoma shed light
upon multiple clinically significant aspects of this malignancy
[360]. In addition to providing insights into the underlying
biology of this type of cancer, they identified multiple potentially
druggable targets. Interestingly, this study proposed that
amplification of EGFR does not necessarily correlate with the
prevalence of EGFR ligands, suggesting that the investigation
of EGFR ligand abundance is a more appropriate strategy for
prediction of response to treatments with anti-EGFR monoclonal
antibodies.

The interplay between molecules is best explored through
network analysis. In a remarkable pan-cancer network-based
integration of genomics and transcriptomics data of 9738 sam-
ples from 20 TCGA cohorts, Paull et al. [361] identified 407 master
regulator (MR) proteins responsible for channeling the functional
effects of the plethora of genomic aberrations to specific gene
expression signatures across tumor types. These proteins were
categorized into 24 MR modules, each involved in the regulation
of specific hallmarks of cancer. They proposed that based on the
status of these 24 modules (activated/inactivated) in each indi-
vidual, patient-tailored combinations of drugs that specifically
target these modules can be administered with precision.

In addition, although in its infancy, single-cell multiomics
is an emerging mighty technology. Perhaps, the most profound
contribution of single-cell technologies is that they allow us to
dissect intratumoral heterogeneity at individual cell resolution
and explore common cancer type- or subtype-specific patterns
of heterogeneity among cellular clusters. The delineation of
these patterns can enhance our understanding of how tumors
with specific origins exhibit certain properties (e.g. metasta-
sis, drug resistance, etc.), yielding insights into their assail-
able aspects and providing new means for patient stratification
[131]. Single-cell multiomics has the capacity to uncover intra-
tumoral heterogeneity across layers of molecular information
and provide us with a systems-level understanding of this phe-
nomenon. Indeed, an integrative study of mRNA and protein lev-
els at single-cell resolution evaluating the effect of BMP4 (a pro-
posed therapeutic agent for glioblastoma [362]) on early-passage
glioblastoma cultures [363] identified extensive heterogeneity
in how subpopulations of cells respond to BMP4 treatment.
Utilizing the mRNA and protein information in complement,
they concluded that while all of the treated cells activated the
BMP4 pathway, a subset of cells escapes proliferation suppres-
sive effects of BMP4 treatment through a TNC protein-dependent
mechanism. Together, such studies illustrate the massive poten-
tial of integrative approaches in deepening our understanding
of tumor biology and directing clinical efforts toward precise
patient stratification and treatment.
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Conclusion
Current omics technologies and computational advancements
provide unprecedented capacity to study cancer etiology and
underlying mechanisms, discover clinically applicable diagnos-
tic and predictive biomarkers, identify therapeutic targets and
develop therapeutic interventions. Despite significant progress
in the field, various uncharted territories remain to be explored.
The fact that no driver mutation could be identified for 5% of
the cancers [16] or the unknown exact basis for metastasis [66]
highlights the existence of fundamental gaps in our knowledge.
Until these fundamental shortcomings in our knowledge persist,
our inability to design highly effective therapeutic interventions
is not surprising. With the enhancement of our knowledge dur-
ing the last decades, it is becoming evident that cancer should
no longer be viewed as a disease of the genome but should
rather be regarded as a disease of the cellular system. Rapid
advances in technologies and methodologies are paving the road
for more effective study of cellular systems and their perturba-
tions. However, the dispersion of the plethora of bioinformatics
tools, the lack of benchmarked gold standard methods and the
required computational skills are major prohibitive elements.
There is an ever-growing need for user-friendly workflows that
have been adjusted for specific study goals. The extension of
current comprehensive platforms such as Galaxy [364] that allow
for designing and utilizing readymade workflows for a very wide
range of omics experiments will result in further facilitation of
data analysis processes.

Key Points
• Systemic perception of cancer is essential for the

design of effective interventions.
• High-throughput technologies are the main arteries of

systemic studies of cancer.
• Emerging data integration approaches are rapidly

altering current paradigms of oncology.
• Vertical integration of omics data is capable of

addressing multifaceted challenges.
• Network-based data analysis is a major asset in data

integration and interpretation.

Supplementary data

Supplementary data are available online at Briefings in
Bioinformatics.
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