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Abstract Conventional Ly6Chi monocytes have developmental plasticity for a spectrum of

differentiated phagocytes. Here we show, using conditional deletion strategies in a mouse model

of Toll-like receptor (TLR) 7-induced inflammation, that the spectrum of developmental cell fates of

Ly6Chi monocytes, and the resultant inflammation, is coordinately regulated by TLR and Notch

signaling. Cell-intrinsic Notch2 and TLR7-Myd88 pathways independently and synergistically

promote Ly6Clo patrolling monocyte development from Ly6Chi monocytes under inflammatory

conditions, while impairment in either signaling axis impairs Ly6Clo monocyte development. At the

same time, TLR7 stimulation in the absence of functional Notch2 signaling promotes resident tissue

macrophage gene expression signatures in monocytes in the blood and ectopic differentiation of

Ly6Chi monocytes into macrophages and dendritic cells, which infiltrate the spleen and major blood

vessels and are accompanied by aberrant systemic inflammation. Thus, Notch2 is a master

regulator of Ly6Chi monocyte cell fate and inflammation in response to TLR signaling.
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Introduction
Infectious agents or tissue injury trigger an inflammatory response that aims to eliminate the inciting

stressor and restore internal homeostasis (Bonnardel and Guilliams, 2018). The mononuclear

phagocyte system (MPS) is an integral part of the inflammatory response and consists of the lineage

of monocytes and macrophages (MF) and related tissue-resident cells. A key constituent of this sys-

tem are monocytes of the major (classic) monocyte subtype, in mice called Ly6Chi monocytes. They

originate from progenitor cells in the bone marrow (BM), circulate in peripheral blood (PB) and

respond dynamically to changing conditions by differentiation into a spectrum of at least three dis-

tinct MPS effector phagocytes: Macrophages, dendritic cells (DC), and monocytes with patrolling

behavior (Arazi et al., 2019; Bonnardel and Guilliams, 2018; Chakarov et al., 2019;

Gamrekelashvili et al., 2016; Hettinger et al., 2013). The diversity of monocyte differentiation

responses is thought to be influenced by environmental signals as well as tissue-derived and cell-

autonomous signaling mechanisms to ensure context-specific response patterns of the MPS

(Okabe and Medzhitov, 2016). However, the precise mechanisms underlying monocyte cell fate

decisions under inflammatory conditions are still not fully understood.

When recruited to inflamed or injured tissues, Ly6Chi monocytes differentiate into MF or DC with

a variety of phenotypes and function in a context-dependent-manner and regulate the inflammatory

response (Krishnasamy et al., 2017; Xue et al., 2014). However, Ly6Chi monocytes can also convert

to a second, minor subpopulation of monocytes with blood vessel patrolling behavior. In mice, these

are called Ly6Clo monocytes and express CD43, CD11c and the transcription factors Nr4a1, Pou2f2

(Gamrekelashvili et al., 2016; Patel et al., 2017; Varol et al., 2007; Yona et al., 2013). These

monocytes have a long lifespan and remain mostly within blood vessels, where they crawl along the

luminal side of blood vessels to monitor endothelial integrity and to orchestrate endothelial repair

(Auffray et al., 2007; Carlin et al., 2013; Getzin et al., 2018). Steady-state monocyte conversion

occurs in specialized endothelial niches and is regulated by monocyte Notch2 signaling activated by

endothelial Notch ligands (Avraham-Davidi et al., 2013; Bianchini et al., 2019;

Gamrekelashvili et al., 2016; Varol et al., 2007). Notch signaling is a cell-contact-dependent sig-

naling pathway regulating cell fate decisions in the innate immune system (Radtke et al., 2013).

Notch signaling regulates formation of intestinal CD11c+CX3CR1
+ immune cells (Ishifune et al.,

2014), Kupffer cells (Bonnardel et al., 2019; Sakai et al., 2019) and macrophage differentiation

from Ly6Chi monocytes in ischemia (Krishnasamy et al., 2017), but also development of conven-

tional DCs (Caton et al., 2007; Epelman et al., 2014; Lewis et al., 2011), which is mediated by

Notch2.

Toll-like receptor 7 (TLR7) is a member of the family of pathogen sensors expressed on myeloid

cells. Originally identified as recognizing imidazoquinoline derivatives such as Imiquimod (R837) and

Resiquimod (R848), TLR7 senses ssRNA, and immune-complexes containing nucleic acids, in a

Myd88-dependent manner during virus defense, but is also implicated in tissue-damage recognition

and autoimmune disorders (Kawai and Akira, 2010). TLR7-stimulation induces cytokine-production

in both mouse and human patrolling monocytes and mediates sensing and disposal of damaged

endothelial cells by Ly6Clo monocytes (Carlin et al., 2013; Cros et al., 2010), while chronic TLR7-

stimulation drives differentiation of Ly6Chi monocytes into specialized macrophages and anemia

development (Akilesh et al., 2019). Furthermore, systemic stimulation with TLR7 agonists induces

progressive phenotypic changes in Ly6Chi monocytes consistent with conversion to Ly6Clo mono-

cytes, suggesting involvement of TLR7 in monocyte conversion (Santiago-Raber et al., 2011). Here,

we show that Notch signaling alters TLR-driven inflammation and modulates Ly6Clo monocyte vs.

macrophage cell fate decisions in inflammation.

Results

TLR and Notch signaling promote monocyte conversion
We first studied the effects of TLR and/or Notch stimulation on monocyte conversion in a defined in

vitro system (Gamrekelashvili et al., 2016). Ly6Chi monocytes isolated from the bone marrow (Fig-

ure 1—figure supplement 1A and B) of Cx3cr1gfp/+ reporter mice (GFP+) were cultured with recom-

binant Notch ligand Delta-like 1 (DLL1) in the presence or absence of the TLR7/8 agonist R848 and

analyzed after 24 hr for the acquisition of key features of Ly6Clo monocytes (Gamrekelashvili et al.,
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2016; Hettinger et al., 2013). In contrast to control conditions, cells cultured with DLL1 showed an

upregulation of CD11c and CD43, remained mostly MHC-II negative, and expressed transcription

factors Nr4a1 and Pou2f2, markers for Ly6Clo monocytes, leading to a significant, five-fold increase

of Ly6Clo cells, consistent with enhanced monocyte conversion. Cells cultured with R848 alone

showed a comparable phenotype response, both qualitatively and quantitatively (Figure 1A–C).

Interestingly, on a molecular level, R848 stimulation primarily acted on Pou2f2 induction and CD43

expression, while Notch stimulation primarily induced Nr4a1 and CD11c upregulation. Furthermore,

the combination of DLL1 and R848 strongly and significantly increased the number of CD11c+CD43+

Ly6Clo cells above the level of individual stimulation and significantly enhanced expression levels of

both transcriptional regulators Nr4a1 and Pou2f2 (Figure 1A–C), suggesting in part synergistic and/

or cumulative regulation of monocyte conversion by TLR7/8 and Notch signaling. By comparison,

the TLR4 ligand LPS also increased Ly6Clo cell numbers and expression levels of Nr4a1 and Pou2f2.

However, the absolute conversion rate was lower under LPS and there was no synergy/cumulative

effect seen with DLL1 (Figure 1D and E).

Since monocyte conversion is regulated by Notch2 in vitro and in vivo (Gamrekelashvili et al.,

2016), we next tested TLR-induced conversion in Ly6Chi monocytes with Lyz2Cre-mediated condi-

tional deletion of Notch2 (N2DMy). Both, littermate control (wt) and N2DMy monocytes showed com-

parable response to R848, but conversion in the presence of DLL1, and importantly, also DLL1-R848

co-stimulation was significantly impaired in knock-out cells (Figure 1F). This suggests independent

contributions of TLR and Notch signaling to monocyte conversion.

To study whether the TLR stimulation requires Myd88 we next tested purified Ly6Chi monocytes

(Figure 1—figure supplement 1C and D) with Myd88 loss-of-function (Myd88-/-). Compared to wt

cells, Myd88-/- monocytes showed strongly impaired conversion in response to R848 but a conserved

response to DLL1. The response to DLL1-R848 co-stimulation, however, was significantly impaired

(Figure 1G). Furthermore, expression of Nr4a1 and Pou2f2 by R848 was strongly reduced in

Myd88-/- monocytes with or without DLL1 co-stimulation, while DLL1-dependent induction was pre-

served (Figure 1H). Thus, Notch and TLR signaling act independently and synergistically to promote

monocyte conversion.

To address the role of TLR stimulation for monocyte conversion in vivo we adoptively transferred

sorted Ly6Chi monocytes from CD45.2+GFP+ mice into CD45.1+ congenic recipients, injected a sin-

gle dose of R848 and analyzed transferred CD45.2+GFP+ cells in BM and Spl after 2 days (Figure 2A

and Figure 1—figure supplement 1A and B). Stimulation with R848 significantly promoted conver-

sion into Ly6Clo monocytes displaying the proto-typical Ly6CloCD43+CD11c+MHC-IIlo/- phenotype

(Figure 2B and C and Figure 2—figure supplement 1A). In contrast, transfer of Myd88-/- Ly6 Chi

monocytes resulted in impaired conversion in response to R848 challenge (Figure 2D and E and Fig-

ure 1—figure supplement 1D and Figure 2—figure supplement 1B). Together, these data indicate

that TLR and Notch cooperate in the regulation of monocyte conversion.

Notch2-deficient mice show altered myeloid inflammatory response
To characterize the response to TLR stimulation in vivo, we applied the synthetic TLR7 agonist Imi-

quimod (IMQ, R837) in a commercially available crème formulation (Aldara) daily to the skin of mice

(El Malki et al., 2013; van der Fits et al., 2009) and analyzed the systemic inflammatory response

in control or N2DMy mice (Gamrekelashvili et al., 2016; Figure 3A). While treatment with IMQ-

induced comparable transient weight loss and ear swelling in both genotypes (Figure 3—figure sup-

plement 1A), splenomegaly in response to treatment was significantly more pronounced in N2DMy

mice (Figure 3—figure supplement 1B).

To characterize the spectrum of myeloid cells in more detail, we next performed flow cytometry

of PB cells with a dedicated myeloid panel (Gamrekelashvili et al., 2016) in wt or N2DMy Cx3cr1gfp/+

mice and subjected live Lin-CD11b+GFP+ subsets to unsupervised t-SNE analysis (Figure 3B). This

analysis strategy defined five different populations, based on single surface markers: Ly6C+, CD43+,

MHC-II+, F4/80hi and CD11chi (Figure 3C). Applying these five gates to samples from separate

experimental conditions identified dynamic alterations in blood myeloid subsets in response to IMQ,

but also alterations in N2DMy mice (Figure 3D). Specifically, abundance and distribution of Ly6C+

cells, containing classical monocytes, in response to IMQ were changed to the same extend in both

genotypes. In contrast, the MHC-II+ and F4/80hi subsets were more abundant in N2DMy mice, but

also showed more robust changes in response to IMQ. On the other hand, the CD43+ subset,
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Figure 1. Inflammatory conditions enhance monocyte conversion in vitro. (A–F) Monocyte conversion in the presence of DLL1 and TLR agonists in vitro:

(A) Representative flow cytometry plot, (B) relative frequency of Ly6Clo monocyte-like cells in live CD11b+GFP+ cells (left) or absolute numbers of Ly6Clo

monocyte-like cells recovered from each well (right) are shown (representative of 3 experiments, n = 3). (C) Bar graphs showing expression of Ly6Clo

monocyte hallmark genes, Nr4a1 and Pou2f2 from in vitro cultures treated with R848 (pooled from four experiments, n = 8–12). (D) Relative frequency

(in live CD11b+GFP+ monocytes) or absolute numbers of Ly6Clo monocyte-like cells (from three experiments, n = 3) and (E) expression of Nr4a1 and

Pou2f2 (from four experiments, n = 4–6) in the presence of LPS in vitro are shown. (F) wt or N2DMy Ly6Chi monocyte conversion in the presence of DLL1

and R848 in vitro: relative frequency (in live CD11b+GFP+ monocytes) or absolute numbers of Ly6Clo monocyte-like cells (from three experiments, n = 4)

is shown. (B, D, F) Absolute frequency of monocytes for Ctrl and DLL1 (in B, (D), and wt (Ctrl), wt+DLL1 (Ctrl) in (F) conditions are derived from the same

experiments but are depicted as a three separate graphs for simplicity.(G, H) R848-enhanced conversion is Myd88 dependent in vitro. Relative

frequency (in live CD11b+CX3CR1
+ monocytes) or absolute numbers of Ly6Clo monocyte-like cells (G) and gene expression analysis in vitro (H) are

shown (data are from two independent experiments, n = 3). (B, D, F–H) *p<0.05, **p<0.01, ***p<0.001; two-way ANOVA with Bonferroni’s multiple

comparison test. (C, E) *p<0.05, **p<0.01, ***p<0.001; paired one-way ANOVA with Geisser-Greenhouse’s correction and Bonferroni’s multiple

comparison test.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Strategy of monocyte isolation from mouse bone marrow.
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containing the patrolling monocyte subset, showed prominent enrichment in wt mice, but was less

abundant and showed diminished distribution changes after IMQ treatment in N2DMy mice

(Figure 3D).

To analyze the initially defined subsets more precisely, we applied a multi-parameter gating strat-

egy to define conventional cell subsets (Figure 3—figure supplement 2A and B and

Supplementary file 1; Gamrekelashvili et al., 2016).

In response to IMQ, Ly6Chi monocytes in wt mice increased transiently in blood, and this

response was not altered in mice with conditional Notch2 loss-of function (Figure 3E). In contrast,

while Ly6Clo monocytes robustly increased over time with IMQ treatment in wt mice, their levels in

N2DMy mice were lower at baseline (Gamrekelashvili et al., 2016) and remained significantly

reduced throughout the whole observation period (Figure 3E and F and Figure 3—figure supple-

ment 2A and B). At the same time, while untreated N2DMy mice showed increased levels of MHC-II+

Figure 2. Inflammatory conditions enhance monocyte conversion in vivo. (A–E) Adoptive transfer and flow cytometry analysis of BM CD45.2+ Ly6Chi

monocytes in control or R848 injected CD45.1+ congenic recipients: (A) Experimental setup is depicted; (B) Flow cytometry plots showing the progeny

of transferred CD45.2+CD11b+Ly6ChiCX3CR1-GFP+ (GFP+) cells in black and recipient CD45.1+ (1st row), CD45.1+CD11b+ (2nd row) or

CD45.1+CD11b+Ly6Chi cells (3rd �5th rows) in blue; (C) Frequency of donor-derived Ly6Clo monocytes pooled from two independent experiments

(n = 5). (D, E) R848-enhanced conversion is Myd88 dependent in vivo. (D) Flow cytometry plots showing transferred CD45.2+CX3CR1
+ wt or Myd88-/-

cells in black and recipient CD45.1+CX3CR1
+ (1st row), CD45.1+CX3CR1

+CD11b+ (2nd row) or CD45.1+CX3CR1
+CD11b+Ly6Chi cells (3rd �5th rows) in

blue. All recipient mice which received wt or Myd88-/- donor cells were treated with R848; (E) Frequency of donor-derived Ly6Clo monocytes pooled

from two independent experiments are shown (n = 4/5). (C, E) *p<0.05, **p<0.01, ***p<0.001; Student’s t-test.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Inflammatory conditions enhance monocyte conversion in vivo.
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Figure 3. Acute inflammation triggers altered myeloid cell response in N2DMy mice. (A) Experimental set-up for IMQ treatment and analysis of mice. (B,

C) Gating strategy for t-SNE analysis and definition of cell subsets based on expression of surface markers are shown. t-SNE was performed on live

CD45+Lin-CD11b+GFP+ cells concatenated from 48 PB samples from four independent experiments. (D) Unsupervised t-SNE analysis showing

composition and distribution of cellular subsets from PB of wt or N2DMy IMQ-treated or untreated mice at different time points defined in B, C) (n = 8

Figure 3 continued on next page
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atypical monocytes (Figure 3E and F and Figure 3—figure supplement 2A and B;

Gamrekelashvili et al., 2016), IMQ treatment induced the generation of F4/80hiCD115+ monocytes

in the blood and increased MF in the spleen at d5 (Figure 3E and F and Figure 3—figure supple-

ment 3A and B). This was followed by a peak in the DC population at d7 (Figure 3E and F and Fig-

ure 3—figure supplement 3A and B). These latter changes did not occur in bone marrow but were

only observed in the periphery (Figure 3—figure supplement 3C). Together, these data suggest

that wt Ly6Chi monocytes convert to Ly6Clo monocytes in response to TLR stimulation, while Notch2

deficient Ly6Chi monocytes differentiate into F4/80hiCD115+ monocytes, macrophages and DC, sug-

gesting Notch2 as a master regulator of Ly6Chi monocyte cell fate during systemic inflammation.

Global gene expression analysis identifies macrophage gene expression
signatures in monocytes of Notch2-deficient mice during acute
inflammation
To characterize more broadly the gene expression changes involved in monocyte differentiation dur-

ing inflammation, we next subjected monocyte subsets from PB of wt and N2DMy mice after Sham or

IMQ treatment (Figure 4—figure supplement 1A) to RNA-sequencing and gene expression analy-

sis. After variance filtering and hierarchical clustering, 600 genes were differentially expressed

between six experimental groups (Figure 4A and Figure 4—source data 1).

Principal component analysis (PCA) of differentially expressed genes (DEG) of all experimental

groups revealed a clear separation between control Ly6Chi monocytes and IMQ-treated Ly6Chi or

Ly6Clo monocytes. Interestingly, the effects of Notch2 loss-of-function were most pronounced in the

Ly6Clo populations, which separated quite strongly depending on genotype, while Ly6Chi monocytes

from wt and N2DMy mice over all maintained close clustering under Sham or IMQ conditions

(Figure 4B and C and Figure 4—source data 1).

Furthermore, while wt Ly6Clo cells were enriched for genes characteristic of patrolling monocytes

(Hes1, Nr4a1, Ace, Cd274 and Itgb3), cells in the Ly6Clo gate from N2DMy mice showed upregulation

of genes characteristic of mature phagocytes, such as MF (Fcgr1, Mertk, C1qa, Clec7a, Maf, Cd36,

Cd14, Adgre1 (encoding F4/80)) (Figure 4D–F).

Comparative gene expression analysis of Ly6Clo cell subsets during IMQ treatment identified 373

genes significantly up- or down-regulated with Notch2 loss-of-function (p-value<0.01, Figure 4C–F

and Figure 4—source data 2), which were enriched for phagosome formation, complement system

components, Th1 and Th2 activation pathways and dendritic cell maturation by ingenuity canonical

pathway analysis (Figure 4—figure supplement 1B). Notably, signatures for autoimmune disease

processes were also enriched (Supplementary file 2). Independent gene set enrichment analysis

(GSEA) (Isakoff et al., 2005; Mootha et al., 2003) confirmed consistent up-regulation of gene sets

in N2DMy Ly6Clo cells involved in several gene ontology biological processes, such as vesicle-medi-

ated transport (GO:0016192), defense response (GO:0006952), inflammatory response

(GO:0006954), response to bacterium (GO:0009617) and endocytosis (GO:0006897)

(Supplementary file 3 and Figure 4—source data 2). Overall, these data suggest regulation of

Ly6Chi monocyte cell fate and inflammatory responses by Notch2.

Furthermore, changes in cell populations resulted in altered systemic inflammatory response pat-

terns. Levels of TLR-induced cytokines and chemokines, such as TNF-a, CXCL1, IL-1b, IFN-a, were

elevated to the same extend in wt and N2DMy mice in response to IMQ treatment, suggesting nor-

mal primary TLR-activation (Figure 4—figure supplement 1C). However, circulating levels of chemo-

kines produced by Ly6Clo monocytes (Carlin et al., 2013), such as CCL2, CCL3, CXCL10, and IL-10

Figure 3 continued

mice are pooled for each condition). (E, F) Relative frequency of different myeloid subpopulations in PB and Spl of untreated or IMQ-treated mice are

shown (data are pooled from six experiments n = 7–18). (E, F) *p<0.05, **p<0.01, ***p<0.001; two-way ANOVA with Bonferroni’s multiple comparison

test.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. IMQ treatment induces systemic inflammation in mice.

Figure supplement 2. Identification of myeloid cell subsets in IMQ-treated mice.

Figure supplement 3. Flow cytometry analysis of myeloid cells in IMQ-driven inflammation.
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Figure 4. Enhanced macrophage gene expression signatures in monocytes and altered inflammatory response in N2DMy mice. (A, B) Hierarchical

clustering of 600 ANOVA-selected DEGs (A) and PCA of PB monocyte subsets (B) after IMQ treatment (n = 4) is shown (Variance filtering 0.295, ANOVA

followed by the B-H correction (p<0.0076, FDR � 0.01)). (C) Hierarchical clustering of 373 DEGs from IMQ-treated wt and N2DMy Ly6Clo monocyte

subsets (Variance filtering 0.117,–0.6�Dlog2 � 0.6, Student’s t-test with B-H correction (p<0.01, FDR � 0.05)). (D) Volcano plot showing 379 DEGs

Figure 4 continued on next page
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were higher in wt mice compared to N2DMy mice, while the levels of pro-inflammatory cytokines IL-

17A, IL-6 and GMCSF were significantly enhanced in N2DMy mice but not in wt mice as compared to

untreated controls, confirming systemic alterations in addition to cellular changes in Notch2 loss-of-

function mice in response to IMQ (Figure 4G and Figure 4—figure supplement 1C).

Notch2-deficiency promotes macrophage differentiation
To match the observed gene expression pattern of inflammatory Ly6Clo cells from wt and N2DMy

mice under IMQ treatment with previously described cells of the monocyte-macrophage lineage we

performed pairwise gene set enrichment analysis with defined myeloid cell transcriptomic signatures

using the GSEA software and BubbleGUM stand-alone software (Isakoff et al., 2005;

Mootha et al., 2003; Spinelli et al., 2015; Figure 5A and Supplementary file 4 and 5 and Fig-

ure 4—source data 2). Out of 29 transcriptomic signatures - representing tissue MF, monocyte

derived DC (MoDC), conventional DC (cDC), plasmacytoid DC (pDC), classical (Ly6Chi) monocytes

(cMonocyte), non-classical (Ly6Clo) monocytes (ncMonocyte) and B cells (as a reference) – significant

enrichment was registered in seven signatures (normalized enrichment score (NES >1.5, FDR < 0.1)).

The cell fingerprint representing ncMonocyte (#3) was highly enriched in the gene set from wt Ly6Clo

monocytes (NES = 1.91, FDR = 0.039), while all other cell fingerprints showed no significant similarity

(Figure 5A and Supplementary file 4), confirming a strong developmental restriction toward Ly6Clo

monocytes in wt cells. In contrast, N2DMy gene sets showed the highest similarity (NES >1.8 and

FDR < 0.01) with four cell fingerprints (#1, 5, 6, 7) representing different MF populations, and weak

similarity to MoDC (NES = 1.64, FDR < 0.1) and cMonocyte (NES = 1.54, FDR < 0.1) (Figure 5A and

Supplementary files 4 and 5). Phenotyping of cell populations by flow cytometry using MF markers

MerTK and CD64 (Figure 5B–D) confirmed selective expansion of an F4/80hiMerTK+ (FM+) mono-

cyte population in IMQ-treated N2DMy mice (Figure 5A and Supplementary files 4 and 5). Together,

these data demonstrate a cell fate switch from Ly6Clo monocytes toward macrophage signatures in

the absence of Notch2.

Notch2 regulates monocyte cell fate decisions during inflammation
In the steady-state, Ly6Chi monocytes differentiate into Ly6Clo monocytes and this process is regu-

lated by Notch2 (Gamrekelashvili et al., 2016). In order to confirm that Notch2 controls differentia-

tion potential of Ly6Chi monocytes in response to TLR stimulation, we performed adoptive transfer

of CD45.2+ wt or N2DMy BM Ly6Chi monocytes into IMQ-treated CD45.1+ congenic recipients and

analyzed the fate of donor cells after 3 days (Figure 5—figure supplement 1A). Unsupervised t-SNE

analysis of flow cytometry data showed an expanded spectrum of expression patterns in cells from

N2DMy donors compared to wt controls (Figure 5—figure supplement 1B). More precisely, Ly6Chi

monocytes from wt mice converted preferentially to Ly6Clo monocytes (Ly6CloF4/80lo/-CD11c+-

CD43+MHC-IIlo/- phenotype) during IMQ treatment (Figure 5E and F and Figure 5—figure supple-

ment 1C). In contrast, conversion of Notch2-deficient Ly6Chi to Ly6Clo monocytes was strongly

impaired, but the development of donor-derived F4/80hi macrophages in the spleen was strongly

enhanced (Figure 5G). Furthermore, expansion of macrophages was also observed in aortas of

Notch2 deficient mice in vivo after IMQ treatment (Figure 5H). Adoptive transfer studies confirmed

that MF in IMQ-treated aortas originated from N2DMy Ly6Chi monocytes (Figure 5J and K).

Figure 4 continued

between wt and N2DMy Ly6Clo cells (-log10(p-value) � 2, FDR � 0.05, light blue); and 87 DEGs (�1�Dlog2 � 1 (FDR � 0.01) purple); genes of interest

are marked black (Student’s t-test with B-H correction). (E) Heat map of top 38 DEGs from (D) log10( p-value) � 4,–1�Dlog2 � 1, Student’s t-test with

B-H correction. (F) Bar graph showing mean number and SEM of sequence reads for selected genes from IMQ-treated wt and N2DMy Ly6Clo cell

subsets. (G) Analysis of cytokine and chemokine profiles in the serum of IMQ-treated mice. n = 5–10, pooled from four independent experiments. (G)

*p<0.05, **p<0.01, ***p<0.001; 2way ANOVA with Bonferroni’s multiple comparison test.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. List of 600 DEGs for hierarchical clustering and PCA (Figure 4A and B) from Ly6Chi and Ly6Clo subpopulations isolated from sham-or

IMQ(Aldara)-treated wt or N2DMy mice.

Source data 2. List of 373 DEGs between Ly6Clo cells isolated from IMQ(Aldara)-treated wt or N2DMy mice and used for the analysis in Figure 4C and

D, Figure 5A and Supplementary file 2–5.

Figure supplement 1. Gating strategy for cell sorting, IPA and cytokine and chemokine analysis in IMQ-treated mice.
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Figure 5. Notch2-deficient Ly6Clo cells show enhanced macrophage maturation during acute inflammation. (A) GSEA based on 373 DEGs between

IMQ-treated wt and N2DMy Ly6Clo subsets in PB. Red – positive-, and blue - negative enrichment in corresponding color-coded wt or N2DMy cells. Size

of the circle corresponds to NES and intensity of the color to FDR. (B, C) Representative flow cytometry plots showing expression of F4/80 and MerTK

in gated Lin-CD45+CD11b+GFP+Ly6Chi and Lin-CD45+CD11b+GFP+Ly6Clo cells from PB of Sham- or IMQ-treated wt or N2DMy mice. (D) Representative

Figure 5 continued on next page
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To evaluate Notch targeting efficiency in our system we performed flow cytometry and transcrip-

tome analysis of transgenic monocyte subsets. In Ly6Chi monocytes, the Lyz2Cre-mediated condi-

tional deletion strategy induced a 40–50% reduction of Notch2 expression by flow cytometry and

transcriptome analysis (Figure 5—figure supplement 2A and C), and a > 50% reduction of Notch

target gene Hes1, demonstrating partial targeting and functional impairment of Notch2 in Ly6Chi

monocytes (Figure 5—figure supplement 2B). At the same time, in Ly6Clo monocytes at baseline

there was only minor reduction of Notch2, corroborating earlier results (Gamrekelashvili et al.,

2016), but more efficient reduction of Notch2 in IMQ-treated mice to levels seen in Ly6Chi mono-

cytes (Figure 5—figure supplement 2C). Furthermore, levels of Notch target gene Hes1 were low

in Ly6Chi monocytes but significantly increased in Ly6Clo monocytes (Figure 5—figure supplement

2B; Gamrekelashvili et al., 2016), suggesting low Notch signaling in Ly6Chi monocytes but higher

Notch signaling activity in Ly6Clo monocytes.

Since Ly6Clo monocyte deficiency in Nr4a1-deficient mice is caused by increased apoptosis

(Hanna et al., 2011), we analyzed cells by AnnexinV staining. Notch2-deficiency did not significantly

increase cell death in all analyzed cell populations, neither during steady state nor during inflamma-

tion (Figure 5L and M).

Together, these data confirm that Notch2 is a master regulator of Ly6Chi monocyte differentiation

potential, regulating a switch between Ly6Clo monocyte or macrophage cell fate during inflamma-

tion. These data also demonstrate that in the context of inactive myeloid Notch2 signaling, TLR-stim-

ulation results in systemic pro-inflammatory changes and vascular inflammation.

Discussion
Together, our data present a spectrum of developmental cell fates of Ly6Chi monocytes and their

coordinated regulation by TLR and Notch signaling during inflammation. TLR and Notch signaling

act independently and synergistically in promoting Ly6Clo monocyte development from Ly6Chi

monocytes, while impairment in either signaling axis impairs Ly6Clo monocyte development. On the

other hand, TLR stimulation in the absence of functional Notch2 signaling promotes macrophage

gene expression signatures in monocytes and development of MF in aorta and spleen, suggesting

Notch2 as a master regulator of Ly6Chi monocyte cell fate during systemic inflammation.

Plasticity of Ly6Chi monocytes ensures adaptation to environmental signals, which trigger distinct

cell developmental programs inducing context- or tissue-specific subsets of terminally differentiated

phagocytes, including Ly6Clo monocytes, MF or DC (Guilliams et al., 2018). In the steady-state, a

subset of Ly6Chi monocytes converts to Ly6Clo monocytes in mice and humans, which is regulated

by Notch2 and the endothelial Notch ligand Delta-like 1 (Dll1) (Gamrekelashvili et al., 2016;

Patel et al., 2017; Yona et al., 2013). However, when recruited into tissues, Ly6Chi monocytes can

give rise to two types of monocyte-derived resident tissue macrophages (MRTM) (Chakarov et al.,

2019). These Lyve1hiMHC-IIlo and Lyve1loMHC-IIhi MRTMs differ in phenotype and function as well

as spatial distribution. Our gene set enrichment analysis revealed that the signature of cells from

Figure 5 continued

flow cytometry histograms with corresponding mean fluorescence intensities (MFI) showing expression of CD64 on myeloid cells in PB of sham or IMQ-

treated mice. (E) Flow cytometry analysis 3 days after adoptive transfer of wt or N2DMy BM CD45.2+ Ly6Chi monocytes in IMQ-treated CD45.1+

recipients. Transferred cells are shown in black and recipient CD45.1+ (1st row), CD45.1+CD11b+ (2nd row) or CD45.1+CD11b+Ly6Chi cells (3rd �5th rows)

are depicted in blue. (F, G) Frequency of donor-derived Ly6Clo monocytes (G) or macrophages (H) in CD45.2+CD11b+GFP+ donor cells after adoptive

transfer of wt or N2DMy Ly6Chi monocytes is shown. Data are pooled from three independent experiments (n = 6/9). (H) Relative (top) and absolute

number (bottom) of myeloid subpopulations in aortas of untreated or IMQ-treated mice. Data are pooled from six experiments (n = 7–18). (J, K)

Representative flow cytometry plot of donor CD11b+GFP+ cells (J) and relative frequency of donor-derived macrophages (K) within

CD45.2+CD11b+GFP+ cells recovered from aortas after adoptive transfer of wt or N2DMy Ly6Chi monocytes. (K) Data are pooled from three

independent experiments (n = 9). (L, M) Relative frequency of apoptotic (AnnexinV+PIneg) cells in each myeloid subpopulation isolated from PB or BM

of Sham- or IMQ-treated mice is shown (Data are from two independent experiments (n = 6–7)). (F, G, K) *p<0.05, **p<0.01, ***p<0.001; Student’s t-

test. (H, L, M) **p<0.01, ***p<0.001; two-way ANOVA with Bonferroni’s multiple comparison test.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Characterization of F4/80hi monocytes in IMQ-treated mice.

Figure supplement 2. Expression of Notch2 and Notch-regulated gene in monocytes of IMQ-treated mice.
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inflamed wt mice showed highest and selective similarity to non-classical Ly6Clo monocytes, while

Notch2 loss-of-function cells showed the highest similarity to the gene set of Lyve1hiMHC-IIlo MRTM,

but also a more general similarity to an extended spectrum of different MF signatures, suggesting

Notch2 as a gate keeper of Ly6Clo monocytes vs. macrophage differentiation during inflammation.

Due to the low number Ly6Clo monocytes at the steady state, we were not able to compare baseline

expression profiles, which is a limitation of this analysis. Lyve1hiMHC-IIlo interstitial MFs are closely

associated with blood vessels across different tissues and mediate inflammatory reactions

(Chakarov et al., 2019). In line with this, Notch2 knock-out mice showed a population of FM+ mono-

cytes with partial gene expression signatures of MF circulating in the blood and increased MF in the

aorta, and adoptive transfer studies of Ly6Chi monocytes successfully recapitulated their differentia-

tion into aortic MF. These data also have implications for the potential developmental regulation of

MRTMs by TLR and Notch2. At the same time, the Notch2-deficient population showed weaker but

significant enrichment of MoDC signatures, suggesting a mixture of cell subsets representing differ-

ent stages of monocyte differentiation (Menezes et al., 2016; Mildner et al., 2017) or lineage com-

mitment (Liu et al., 2019; Yanez et al., 2017) within this cell pool, although formally we cannot

exclude progenitor contamination as a confounder in our adoptive cell transfer studies.

The Lyz2Cre-mediated conditional deletion strategy induced a 40–50% reduction of Notch2

expression, and a > 50% reduction of Notch target gene Hes1 in Ly6Chi monocytes, suggesting suffi-

cient targeting and functional impairment of Notch2. Nevertheless, partial targeting might explain

the small differences seen in PCA analysis in these cells. However, in light that baseline Notch signal-

ing activity seems to be low in Ly6Chi monocytes and only significantly increases in Ly6Clo monocytes

(Gamrekelashvili et al., 2016), it suggests that Notch2 influences cell fate decision in Ly6Chi mono-

cytes or at the early stages of conversion to Ly6Clo monocytes. Furthermore, the fact that there is

only a minor reduction of Notch2 in Ly6Clo monocytes at baseline, which suggests a strong selection

bias against Notch2 loss-of-function, further argues for a strict Notch2-dependence of monocyte

conversion.

In the case of Nr4a1 loss-of-function, the reduced numbers of Ly6Clo monocytes are due to

increased apoptosis (Hanna et al., 2011). Although we did not find evidence for increased apoptosis

due to Notch2-deficiency, our data do not exclude the possibility that regulation of cell survival by

Notch2 contributes to the observed phenotype. In fact, two lines of the evidence suggest that regu-

lation of cell survival might act synergistically to cell fate choices: first, in absolute numbers, there is

no compensation by alternative cell fates for the number of lacking Ly6Clo monocytes in the blood

or spleen of N2DMy mice; second, expression of Bcl2, a strong regulator of cell survival, is downregu-

lated in IMQ-treated N2DMy Ly6Clo cells as compared to controls.

While our current data clearly demonstrate that Notch2 loss-of-function promotes macrophage

gene expression profiles in monocytes and macrophage development from Ly6Chi monocytes during

TLR stimulation, we have previously shown that Dll1-Notch signaling promotes maturation of anti-

inflammatory macrophages from Ly6Chi monocytes in ischemic muscle (Krishnasamy et al., 2017).

Furthermore, Dll4-Notch signaling initiated in the liver niche was recently shown to promote Kupffer

cell development after injury (Bonnardel et al., 2019; Sakai et al., 2019) or to promote pro-inflam-

matory macrophage development (Xu et al., 2012). This suggests that the role of Notch is ligand-,

cell- and context-specific, which emphasizes the differential effects of specific ligand-receptor combi-

nations (Benedito et al., 2009). Our data demonstrate that Notch2 is a master regulator of Ly6Chi

monocyte cell fate during inflammation, which contributes to the nature of the inflammatory

response.

Lastly, our data also reveal a potentially important function of myeloid Notch2 for regulation of

systemic and vascular inflammation with implications for autoimmune disease. When wt mice are

challenged with TLR stimulation they show predominant conversion of Ly6Chi monocytes into Ly6Clo

monocytes with blood vessel patrolling and repairing function (Carlin et al., 2013) and IL-10 secre-

tion. In contrast, Notch2 knock-out mice show predominant and ectopic differentiation of Ly6Chi

monocytes into FM+ monocytes and macrophages, which appear in the bloodstream and the spleen

and infiltrate major blood vessels, such as the aorta, along with aberrant cytokine profiles. In addi-

tion, absence of functional Notch2 promoted a core macrophage signature and strong upregulation

of canonical pathways involved in autoimmune disease. Since TLR7 has been implicated in the devel-

opment of autoimmune disease (Santiago-Raber et al., 2011; Santiago-Raber et al., 2010), our

data suggest Notch2 as an important modulator of this process by regulating cell differentiation and
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systemic inflammation. However, the relevance and possible disease context requires further

studies.

Materials and methods

Mice
B6.129P-Cx3cr1tm1Litt/J (Cx3cr1GFP/+) mice (Jung et al., 2000), B6.129P2-Lyz2tm1(cre)Ifo (Lyz2Cre) mice

(Clausen et al., 1999), B6.129-Notch2tm1Frad/J (Notch2lox/lox) mice (Besseyrias et al., 2007), B6.129-

Lyz2tm1(cre)IfoNotch2tm1FradCx3cr1tm1Litt (N2DMy) (Gamrekelashvili et al., 2016 have been previously

described. B6.SJL-PtprcaPepcb/BoyJ (CD45.1+) mice were from central animal facility of Hannover

Medical School (ZTL, MHH). B6.129P2-Myd88tm1Hlz/J (Myd88-/-) (Gais et al., 2012) and Myd88+/+ lit-

termate control (wt) mice were kindly provided by Dr. Matthias Lochner. Mice were housed under

specific pathogen-free conditions in the animal facility of Hannover Medical School.

Tissue and cell preparation
For single cell suspension mice were sacrificed and spleen, bone marrow, blood and aortas were col-

lected. Erythrocytes were removed by red blood cell lysis buffer (BioLegend) or by density gradient

centrifugation using Histopaque 1083 (Sigma-Aldrich). Aortas were digested in DMEM medium sup-

plemented with 500 U/ml Collagenase II (Worthington). After extensive washing, cells were resus-

pended in PBS containing 10%FCS and 2 mM EDTA kept on ice, stained and used for flow

cytometry or for sorting.

Flow cytometry and cell sorting
Non-specific binding of antibodies to Fc-receptors was blocked with anti-mouse CD16/CD32 (TruSt-

ain fcX from BioLegend) in single-cell suspensions prepared from Spl, PB or BM. After subsequent

washing step, cells were labeled with primary and secondary antibodies or streptavidin-fluorochrome

conjugates and were used for flow cytometry analysis (LSR-II, BD Biosciences) or sorting (FACSAria;

BD Biosciences or MoFlo XDP; Beckman Coulter).

For apoptosis assay, single-cell suspensions were stained with primary and secondary antibodies,

washed, re-suspended in AnnexinV binding buffer (Biolegend) and transferred into tubes. Cells were

stained with AnnexinV (AnnV) and propidium iodide (PI) at room temperature for 20 min and were

immediately analyzed by flow cytometry. Antibodies and fluorochromes used for flow cytometry are

described in Supplementary file 6. Flow cytometry data were analyzed using FlowJo software

(FlowJo LLC). Initially cells were identified based on FSC and SSC characteristics. After exclusion of

doublets (on the basis of SSC-W, SSC-A), relative frequency of each subpopulation from live cell

gate, or absolute number of each subset (calculated from live cell gate and normalized per Spl, per

mg Spl, mg BM, mg aorta or ml PB) were determined and are shown in the graphs as mean ± SEM,

unless otherwise stated. Unsupervised t-distributed stochastic neighbor embedding (t-SNE) analysis

(van der Maaten and Hinton, 2008) was performed on live CD45+Lin-GFP+CD11b+ population in

concatenated samples using FlowJo.

Cytokine multiplex bead-based assay
Sera were collected from control or Aldara treated mice and kept frozen at �80˚C. Concentration of

IFN-g , CXCL1, TNF-a, CCL2, IL-12(p70), CCL5, IL-1b, CXCL10, GM-CSF, IL-10, IFN-b, IFN-a, IL-6, IL-

1a, IL-23, CCL3, IL-17A were measured with LEGENDplex multi-analyte flow assay kits (BioLegend)

according to manufacturer’s protocol on LSR-II flow cytometer. Data were processed and analyzed

with LEGENDplex data analysis software (BioLegend).

RNA isolation, library construction, sequencing and analysis
Peripheral blood monocyte subpopulations were sorted from Aldara treated mice or untreated con-

trols (Figure 5—figure supplement 1A) and RNA was isolated using RNeasy micro kit (Qiagen).

Libraries were constructed from total RNA with the ‘SMARTer Stranded Total RNA-Seq Kit v2 – Pico

Input Mammalian’ (Takara/Clontech) according to manufacturer’s recommendations, barcoded by

dual indexing approach and amplified with 11 cycles of PCR. Fragment length distribution was moni-

tored using ‘Bioanalyzer High Sensitivity DNA Assay’ (Agilent Technologies) and quantified by ‘Qubit
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dsDNA HS Assay Kit’ (ThermoFisher Scientific). Equal molar amounts of libraries were pooled, dena-

tured with NaOH, diluted to 1.5pM (according to the Denature and Dilute Libraries Guide (Illumina))

and loaded on an Illumina NextSeq 550 sequencer for sequencing using a High Output Flowcell for

75 bp single reads (Illumina). Obtained BCL files were converted to FASTQ files with bcl2fastq Con-

version Software version v2.20.0.422 (Illumina). Pre-processing of FASTQ inputs, alignment of the

reads and quality control was conducted by nfcore/rnaseq (version 1.5dev) analysis pipeline (The

National Genomics Infrastructure, SciLifeLab Stockholm, Sweden) using Nextflow tool. The genome

reference and annotation data were taken from GENCODE.org (GRCm38.p6 release M17). Data

were normalized with DESeq2 (Galaxy Tool Version 2.11.39) with default settings and output counts

were used for further analysis with Qlucore Omics explorer (Sweden). Data were log2 transformed,

1.1 was used as a threshold and low expression genes (<50 reads in all samples) were removed from

the analysis. Hierarchical clustering (HC) or principal component analysis (PCA) was performed on

600 differential expressed genes (DEGs) after variance filtering (filtering threshold 0.295) selected by

ANOVA with the Benjamini-Hochberg (B-H) correction (p<0.01, FDR � 0.01). For two group compar-

isons Student’s t-test with B-H correction was used and 373 DEGs ((Variance filtering 0.117,–

0.6�Dlog2 �0.6 (p<0.01, FDR � 0.05)) were selected for further IPA or GSEA analysis.

Ingenuity pathway analysis (IPA) was performed on 373 DEGs using IPA software (Qiagen) with

default parameters. Top 20 canonical pathways and top five immunological diseases enriched in

DEGs were selected for display.

Gene set enrichment analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005) was per-

formed on 373 DEGs using GSEA software (Broad institute) and C5 GO biological process gene sets

(Liberzon et al., 2015) from MsigDB with 1000 gene set permutations for computing p-values and

FDR.

BubbleGUM software, an extension of GSEA (Spinelli et al., 2015; Vu Manh et al., 2015), GSEA

software (Broad Institute) and published transcriptomic signatures (Chakarov et al., 2019;

Gautier et al., 2012; Schlitzer et al., 2015; Vu Manh et al., 2015) were used to assess and visualize

the enrichment of obtained gene sets for myeloid populations and define the nature of the cells

from which the transcriptomes were generated.

In vitro conversion studies
96-well flat bottom plates were coated at room temperature for 3 hr with IgG-Fc or DLL1-Fc ligands

(all from R and D) reconstituted in PBS. Sorted BM Ly6Chi monocytes were cultured in coated plates

and were stimulated with Resiquimod (R848, 0.2 mg ml�1, Cayman Chemicals) or LPS (0.2 mg ml�1,

E. coli O55:B5 Sigma-Aldrich) in the presence of M-CSF (10 ng ml�1, Peprotech) at 37˚C for 24 hr.

One day after culture, cells were harvested, stained and subjected to flow cytometry. Relative fre-

quency (from total live CD11b+GFP+ cells) or absolute numbers of Ly6Clo monocyte-like cells

(CD11b+GFP+Ly6Clo/-CD11cloMHC-IIlo/-CD43+) recovered from each well served as an indicator of

conversion efficiency and is shown in the graphs. Alternatively, cultured cells were harvested and iso-

lated RNA was used for gene expression analysis.

Induction of acute systemic inflammation using IMQ
Mice were anesthetized and back skin was shaved and depilated using depilating crème. Two days

after 50 mg/mouse/day Aldara (containing 5% Imiquimod, from Meda) or Sham crème were applied

on depilated skin and right ear (where indicated) for 4–5 consecutive days (El Malki et al., 2013;

van der Fits et al., 2009). Mouse weight and ear thickness were monitored daily. Mice were eutha-

nized on the indicated time points after start of treatment (day 0, 5, 7 and 12) PB, Spl, BM and aor-

tas were collected for further analysis.

Adoptive cell transfer experiments
Lin-CD11b+Ly6ChiGFP+ monocytes were sorted from BM of CD45.2+ donors and injected into

CD45.1+ recipients intravenously (i.v.). In separate experiment wt or Myd88-/- LinCD45.2+CD11b+-

Ly6ChiCX3CR1
+ monocytes were used as a donor for transfer. 30 min later PBS or R848 (37.5 mg per

mouse) were injected in recipient mice. Two days after transfer Spl, PB and BM were collected and

single cell suspension was prepared. After blocking of Fc receptors (anti-mouse CD16/CD32, TruSt-

ain fcX from BioLegend), cells were labeled with biotin-conjugated antibody cocktail containing anti-
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CD45.1 and anti-Lin (anti-CD3, CD19, B220, NK1.1, Ly6G, Ter119) antibodies, anti-biotin magnetic

beads and enriched on LS columns (Miltenyi Biotec) according to manufacturer’s instructions.

CD45.1negLinneg fraction was collected, stained and analyzed by flow cytometry. Ly6Clo monocytes

(CD45.2+CD11b+GFP+Ly6Clo/-F4/80loCD11cloCD43hi cells) and macrophages (CD45.2+CD11b+-

GFP+Ly6Clo/-F4/80hiCD115+ cells) were quantified in Spl, BM and PB as relative frequency of total

donor derived CD45.2+CD11b+GFP+ cells. Adoptive transfer experiments in IMQ-treated mice were

performed using wt or N2DMy Lin-CD45.2+CD11b+Ly6ChiGFP+ donor monocytes and Spl, PB and

aortas of recipients were analyzed 3 days after transfer.

Quantitative real-time PCR analysis
Total RNA was purified from cell lysates using Nucleospin RNA II kit (Macherey Nagel). After purity

and quality check, RNA was transcribed into cDNA employing cDNA synthesis kit (Invitrogen)

according to manufacturer’s instructions. Quantitative real-time PCR was performed using specific

primers for Nr4a1: forward, 5’-AGCTTGGGTGTTGATGTTCC-3’, reverse, 5’-AATGCGATTCTGCAGC

TCTT-3’ and Pou2f2: forward, 5’-TGCACATGGAGAAGGAAGTG-3’, reverse, 5’-AGCTTGGGACAA

TGGTAAGG-3’ and FastStart Essential DNA Green Master on a LightCycler 96 system from Roche

according to manufacturer’s instructions. Expression of each specific gene was normalized to expres-

sion of Rps9 and calculated by the comparative CT (2-DDCT) method (Schmittgen and Livak, 2008).

Statistical analysis
Results are expressed as mean ± standard error of mean (SEM). N numbers are biological replicates

of experiments performed at least three times unless otherwise indicated. Significance of differences

was calculated using unpaired, two-tailed Student’s t-test with confidence interval of 95%. For com-

parison of multiple experimental groups one-way or two-way ANOVA and Bonferroni’s multiple-

comparison test was performed.
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sisches Landesamt für Verbraucherschutz und Lebensmittelsicherheit), Lower Saxony, Animal Studies

Committee, animal study proposals #14-1666, #16-2251, #18-2777, #2014-63, #2018-221). Mice

were housed in the central animal facility of Hannover Medical School (ZTL) and were maintained

and supervised as approved by the Institutional Animal Welfare Officer (Tierschutzbeauftragter).

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.57007.sa1

Author response https://doi.org/10.7554/eLife.57007.sa2

Additional files

Supplementary files
. Supplementary file 1. Surface phenotype signatures for identification of distinct myeloid popula-

tions in vivo. Lin: CD3, CD45R/B220, CD19, NK1.1, Ly6G, Ter119.

. Supplementary file 2. IPA of top five immunological diseases enriched in Ly6Clo cells from IMQ-

treated N2DMy mice.

. Supplementary file 3. Top 20 gene sets involved in GO biological processes enriched in Ly6Clo

cells from IMQ-treated N2DMy mice.

. Supplementary file 4. Parameters and the results of GSEA performed on 373 DEGs for Figure 5A.

. Supplementary file 5. List of the genes enriched in Lyve1hiMHC-IIlo MF gene set from Figure 5A.

. Supplementary file 6. List of antibodies and fluorescence dyes for flow cytometry used in the

study.

. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Data from RNA sequencing have been deposited to NCBI’s Gene Expression Omnibus and are avail-

able under the accession number GSE147492.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Gamrekelashvili J,
Limbourg FP

2020 Notch and TLR signaling
coordinate monocyte cell fate and
inflammation

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE147492

NCBI Gene
Expression Omnibus,
GSE147492

References
Akilesh HM, Buechler MB, Duggan JM, Hahn WO, Matta B, Sun X, Gessay G, Whalen E, Mason M, Presnell SR,
Elkon KB, Lacy-Hulbert A, Barnes BJ, Pepper M, Hamerman JA. 2019. Chronic TLR7 and TLR9 signaling drives
Anemia via differentiation of specialized hemophagocytes. Science 363:eaao5213. DOI: https://doi.org/10.
1126/science.aao5213, PMID: 30630901

Gamrekelashvili et al. eLife 2020;9:e57007. DOI: https://doi.org/10.7554/eLife.57007 16 of 19

Research article Immunology and Inflammation

https://orcid.org/0000-0001-7533-6906
https://orcid.org/0000-0002-8313-7226
https://doi.org/10.7554/eLife.57007.sa1
https://doi.org/10.7554/eLife.57007.sa2
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147492
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147492
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE147492
https://doi.org/10.1126/science.aao5213
https://doi.org/10.1126/science.aao5213
http://www.ncbi.nlm.nih.gov/pubmed/30630901
https://doi.org/10.7554/eLife.57007


Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, Hoover PJ, Chicoine A, Eisenhaure TM, Jonsson AH, Li S, Lieb
DJ, Zhang F, Slowikowski K, Browne EP, Noma A, Sutherby D, Steelman S, Smilek DE, Tosta P, Apruzzese W,
et al. 2019. The immune cell landscape in kidneys of patients with lupus nephritis. Nature Immunology 20:902–
914. DOI: https://doi.org/10.1038/s41590-019-0398-x, PMID: 31209404

Auffray C, Fogg D, Garfa M, Elain G, Join-Lambert O, Kayal S, Sarnacki S, Cumano A, Lauvau G, Geissmann F.
2007. Monitoring of blood vessels and tissues by a population of monocytes with patrolling behavior. Science
317:666–670. DOI: https://doi.org/10.1126/science.1142883, PMID: 17673663

Avraham-Davidi I, Yona S, Grunewald M, Landsman L, Cochain C, Silvestre JS, Mizrahi H, Faroja M, Strauss-Ayali
D, Mack M, Jung S, Keshet E. 2013. On-site education of VEGF-recruited monocytes improves their
performance as angiogenic and arteriogenic accessory cells. The Journal of Experimental Medicine 210:2611–
2625. DOI: https://doi.org/10.1084/jem.20120690, PMID: 24166715
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