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Abstract

The genetic regulation of gene expression varies greatly across tissue-type and individuals and can be strongly influenced by the environ-
ment. Many variants, under healthy control conditions, may be silent or even have the opposite effect under diseased stress conditions.
This study uses an in vivo mouse model to investigate how the effect of genetic variation changes with cellular stress across different tis-
sues. Endoplasmic reticulum stress occurs when misfolded proteins accumulate in the endoplasmic reticulum. This triggers the unfolded
protein response, a large transcriptional response which attempts to restore homeostasis. This transcriptional response, despite being a
conserved, basic cellular process, is highly variable across different genetic backgrounds, making it an ideal system to study the dynamic
effects of genetic variation. In this study, we sought to better understand how genetic variation alters expression across tissues, in the
presence and absence of endoplasmic reticulum stress. The use of different mouse strains and their F1s allow us to also identify context-
specific cis- and trans- regulatory variation underlying variable transcriptional responses. We found hundreds of genes that respond to
endoplasmic reticulum stress in a tissue- and/or genotype-dependent manner. The majority of the regulatory effects we identified were
acting in cis-, which in turn, contribute to the variable endoplasmic reticulum stress- and tissue-specific transcriptional response. This study
demonstrates the need for incorporating environmental stressors across multiple different tissues in future studies to better elucidate the
effect of any particular genetic factor in basic biological pathways, like the endoplasmic reticulum stress response.
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Introduction
Genetic variation rarely acts in isolation and changes in environ-
mental conditions or tissue-type can drastically alter the effect of
a particular variant (Eichler et al. 2010; Nickels et al. 2013; Matsui
and Ehrenreich 2016; Rask-Andersen et al. 2017). This genotype �
environment (G�E) effect is pervasive in biology and is defined as
a genotype-specific phenotypic response to different environ-
ments (Grishkevich and Yanai 2013). G�E effects are particularly
evident in RNA levels where context-specific changes in expres-
sion are the norm (Li et al. 2006; Hodgins-Davis and Townsend
2009; Grishkevich et al. 2012; Glass et al. 2013). Tissue-type can
have significant effects on gene expression across different ge-
netic backgrounds. For example, the GTEx consortium has made
significant progress in understanding the genetic architecture
underlying gene expression across tissues in healthy human indi-
viduals and the large effect that different tissues can have on

these patterns (GTEx Consortium 2017). By studying G�E effects
in different tissues, we are uncovering tissue-specific genetic
mechanisms that underly a variable phenotypic response to envi-
ronmental stimuli. Without including this complexity, we risk
missing important elements of these interactions. This study
uses the endoplasmic reticulum (ER) stress response to evaluate
how G�E interactions alter gene expression across tissue type
and stress conditions.

The ER is a major site of protein and lipid synthesis, protein
folding, and calcium storage (Alberts et al. 2002). ER stress occurs
when misfolded proteins accumulate in the ER lumen because of
overwhelming protein folding demands or improper protein
folding (Lin et al. 2008). Cells respond to ER stress with the well--
conserved unfolded protein response (UPR), a coordinated series
of cellular processes that reduces ER protein load and increases
the ability of the ER to clear misfolded proteins (Travers et al.
2000; Jonikas et al. 2009). The UPR consists of changes in gene ex-
pression which is initiated through the 3 main signaling branches
of the UPR: IRE1, ATF6, and PERK (Ron and Walter 2007). If the
UPR is unable to restore ER homeostasis, it will activate apoptosis
pathways. The response to misfolded proteins is essential for
maintenance of basal cellular conditions and critical when there
are any changes in the cellular environment (Ron and Walter
2007).

Despite being a conserved, basic cellular function, the ER
stress response is subject to inter-individual variation in
Drosophila, mouse, and humans (Dombroski et al. 2010; Chow et al.
2013, 2015, 2016). In Drosophila, we used natural genetic variation
to demonstrate that susceptibility to ER stress is highly variable
across strains and is associated with single nucleotide polymor-
phisms (SNPs) in canonical and novel ER stress genes (2013,
Chow et al. 2016). We also used mouse embryonic fibroblasts
(MEFs) from inbred mouse strains to uncover a complex cis- and
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trans- genetic architecture underlying the variable transcriptional
response to ER stress among different genetic backgrounds
(Chow et al. 2015). Another study demonstrated that the ER stress
response is variable among immortalized human B cells from di-
verse individuals (Dombroski et al. 2010). These previous studies
show that there is an entire layer of genetic variation that is silent
under healthy conditions, but alters expression under ER stress.
However, all past mouse and human studies examining the G�E
interactions under ER stress utilized in vitro cell culture. G�E
studies in other contexts have clearly shown that genetic archi-
tecture changes drastically across different tissue types (GTEx
Consortium 2017; Taylor et al. 2018; Marderstein et al. 2021).

Here, we report that tissue type and ER stress have strong
effects on how genetic variation impacts transcript levels. We
identified hundreds of genes that showed variability in their re-
sponse to ER stress that were dependent on tissue type and ge-
netic background. These genes are enriched for processes, such
as metabolism, inflammation, and immunity. Strikingly, in con-
trast to previous studies where noncanonical ER stress genes
were found to be variable (Chow et al. 2015), we found that some
genotype-dependent ER stress response genes in vivo are in-
volved in pathways with clear roles in the ER stress response, in-
dicating that at least some variability in response is derived from
canonical ER stress genes. Our study design employed F1 mouse
crosses to uncover the cis- and trans- regulatory variation that
underlies the variable ER stress transcriptional response. We
found that genetic variation has a complex and context-specific
role in regulating the variable transcriptional response in the
mouse, especially when it comes to tissue type. This study
expands the understanding of the ER stress transcriptional re-
sponse and the cis-/trans- regulatory variation that impacts this
network in different environmental contexts. Together, these
findings have implications for identifying ER stress response
modifiers, tissue-specific effects, and elements that make up the
highly variable ER stress response.

Materials and methods
Mice
C57BL/6J (B6) and CAST/EiJ (CAST) mice were obtained from
Jackson Laboratories (Bar Harbor, ME). F1s were generated by
crossing female B6 mice to male CAST mice. 6 male mice of each
genotype (B6, CAST, and F1) of approximately 15–23 weeks of age
were used for the experiment. Mice from each genotype were ran-
domly assigned control or TM treatments. The 3 different geno-
types were all housed together based on litters and house
separately after treatment. All experiments involving mice were
performed according to institutional IACUC and NIH guidelines.

Tunicamycin injection and RNA extraction
We administered tunicamycin (TM) or DMSO (control) (Sigma)
with an intraperitoneal injection. TM induces ER stress by inhibit-
ing protein N-glycosylation in the ER, causing an accumulation of
misfolded proteins and a strong UPR (Tkacz and Lampen 1975).
TM was dissolved in DMSO (Sigma) to achieve a 2.5 � 10�4 mg/ml
concentration. To induce ER stress in the mouse model, we
injected mice with a final concentration of 1 mg of TM per 1 kg
mouse weight (same concentration for DMSO control mice) (Choy
et al. 2017; Feng et al. 2017). The final concentration of DMSO in
the control injection was well below the maximum amount that
has been reported to be well tolerated in mice through IP injec-
tion (Gad et al. 2006). After injection, mice were allowed to recover
for 8 h. Mice were then euthanized and organs were harvested

and stored at �80�C. RNA was isolated by Trizol (Ambion) and
Direct-zol RNA MiniPrep Kit (Zymo Research) RNA column ex-
traction protocol.

Illumina mRNA sequencing and alignment
mRNA sequencing was performed on 18 samples (3 genotypes �
3 replicates � 2 treatments) for liver and 18 samples for kidney,
for a total of 36 samples. Samples were prepared and sequenced
by the Huntsman Cancer Institute High-Throughput Genomics
Core. Library prep was performed using Illumina TruSeq
Stranded Total RNA Library Prep Ribo-Zero Gold. The 36 samples
were then sequenced on the NovaSeq 2 � 50 bp Sequencing, for a
total of approximately 25 million paired reads per sample. Fastq
files were trimmed by using seqtk v1.2 software. Parental RNA-
seq reads were aligned to strain-specific reference genomes using
Bowtie2 v2.2.9 software (Langmead and Salzberg 2012). B6 and
CAST genomes were obtained from Ensembl (http://ftp.ensembl.
org/pub/release-103/fasta/; accessed 2022 May 3). Masked refer-
ence genomes were created using bedtools v2.28.0 (Quinlan and
Hall 2010). Known CAST variants were replaced with ambiguous
N nucleotides in the B6 genome. F1 reads were aligned to masked
genomes using STAR v2.6 software, to allow for a more variant
aware alignment (Dobin et al. 2013). Alignment to the respective
parental genomes of B6 and CAST had similar alignment rates
(B6: 89.18%; CAST: 86.35%). Alignment of the F1 transcripts to the
masked genome led to lower alignment rates, most likely due to
the ambiguous nature of the masked genome, but still fell within
the acceptable range for RNA-seq analysis (F1: 70.08%) (Conesa
et al. 2016; Musich et al. 2021). F1 alignment to a masked genome
does not appear to favor the reference genome (B6) based on our
results which showed no bias toward the B6 allele
(Supplementary Fig. 1, a and b). Alignment files were sorted and
converted using samtools v1.12 (Li et al. 2009).

Quantification of expression levels
The Deseq2 default normalization method (median of ratios) was
used to normalize counts (Love et al. 2015). For each genotype,
condition, and tissue type, principal component analysis was
used to identify outlying samples. For a given tissue, within a ge-
notype, we required the TM samples to be clustered together and
the control samples to be clustered together. We also performed
clustering and heatmap analyses with the gene expression data
for each group to look for sample clustering of the TM samples
and the control samples. If a given replicate was not with the ap-
propriate cluster in the principle component analysis (PCA) and
the sample clustering heatmaps, it was removed from the analy-
sis. At least 2 replicates remained after removing outliers for
each combination of tissue, genotype, and condition. The exact
number of resulting samples were:

Liver:

B6 control: N ¼ 3; TM: N ¼ 2

CAST control: N ¼ 2; TM: N ¼ 3

F1 control: N ¼ 3; TM: N ¼ 2

Kidney:

B6 control: N ¼ 3; TM: N ¼ 3

CAST control: N ¼ 3; TM: N ¼ 3

F1 control: N ¼ 3; TM: N ¼ 3

Remaining samples were reanalyzed using Deseq2 v1.28.1. A
gene was considered “expressed” if the Deseq2 value of base
mean was �5. A gene was considered significantly altered by ER
stress if it met a 1.5-fold (5% FDR) change cutoff. Despite some
groups containing lower sample sizes due to outlier removal, we
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are still confident in our results. Deseq2 is designed to offer con-
sistent performance, even for small studies with few replicates
(Love et al. 2014).

Effect of genetic background and tissue type on
fold-change levels
To identify genes that were significantly impacted by tissue-type
in each individual genotype, we used the same Deseq2 pipeline
described above which uses the default Wald-test, but incorpo-
rated tissue and condition as interaction terms. Small P-values
from this study design indicates that the log fold change due to
treatment (ER stress) is significantly different for the 2 tissues.
P-adj values were calculated using the default Deseq2 and multi-
ple testing was accounted for using the Benjamini and Hochberg
method. We used a P-adjusted cutoff of 0.05. This was performed
for each of the 3 genotypes. By incorporating tissue and condition
as interaction terms [ddsSE <- DESeqDataSet(SE, design ¼ � tis-
sue þ condition þ tissue: condition)] we are controlling for any
fundamental differences between the tissues that are not af-
fected by ER stress. If a gene were fundamentally different be-
tween the 2 tissues but responded to ER stress in a similar
manner, this gene would not be identified as significant in our
analysis. We are only identifying genes that respond to ER stress
differently between the 2 tissues. To assess quality of this model,
we created MA plots for each of the 3 genotypes tested, compar-
ing the 2 tissues (Supplementary Fig. 2). There was no depen-
dence or any other anomalous behavior such as batch effects
seen.

To identify genes in a given tissues that is impacted by genetic
background, we used a likelihood ratio test (LRT) that is provided
in the Deseq2 software. An LRT is used to identify genes that
show change in fold-change across the 3 different genetic back-
grounds after the induction of ER stress. Significant P-values indi-
cate a gene that has a change in fold-change, across the 3
genotypes, in any combination, determined solely by the differ-
ence in deviance between the full and reduced model formula.
We used the default Deseq2 Benjamini and Hochberg method to
adjust for multiple tests and calculate our P-adjusted values
which we filtered on (P-adj< 0.05). We used a hypergeometric dis-
tribution test to test for overlap of these sets of genes.

Allele-specific expression quantification in the F1
mouse
Allele-specific expression was quantified using GATK
ASEReadcounter v3.8 (McKenna et al. 2010). SNP information was
obtained from the Sanger Mouse Genomes Project (https://www.
sanger.ac.uk/data/mouse-genomes-project/; accessed 2022 May
3). Counts for all replicates were combined to increase coverage
and reduce variability. To increase the reliability of counts, we
only included genes in our analyses that had at least 2 informa-
tive SNPs between B6 and CAST and at least 20 counts in at least
one of the conditions for both cis-/trans- analysis and for ASE
analysis. This resulted in 5,669 genes in liver and 7,764 genes in
kidney. Genes were considered to have a significant change in
ASE post-ER stress if the ratio of the expression of the 2 alleles
(B6 and CAST) under control conditions was significantly differ-
ent than the ratio of expression under TM conditions determined
by the Fisher’s exact test followed by a 5% FDR correction.

Determination of regulatory effect
We used F1 hybrid mice to quantify allele-specific expression and
partition the effects of genetic variation on gene expression into
cis- and trans- effects. Classification of cis- and trans- effects was

performed using previously published methodology (McManus
et al. 2010; Chow et al. 2015). Category naming and classification
is consistent with established terminology for this type of study
(McManus et al. 2010; Chow et al. 2015). In order to determine if a
gene is impacted by a cis- or trans- effect, we generated F1 hybrid
mice by crossing the highly divergent parental strains; female B6
to male CAST. Transcripts from F1 mice can be assigned to a pa-
rental chromosome based on parental SNPs in the spliced tran-
script. ASE cannot be performed in genes that lack variants in the
spliced transcript. cis- and trans- effects for a particular transcript
are assigned by comparing the ratio of allelic expression in the F1
to the ratio of total expression between the parental strains. In
the F1 hybrid mouse, both parental alleles are exposed to the
same trans- factors. Therefore, the ratio of allelic expression is a
measure of cis- regulatory variation between the 2 parental
strains. If the allelic ratio matches the parental expression ratio,
the expression difference is attributed to cis- regulatory variation.
If the allelic ratio differs from the parental expression ratio, the
expression difference is attributed to trans- regulatory variation.

The requirements for these classifications are highlighted in
Supplementary Fig. 3. We used a 0.1% FDR P-adj cutoff. To fur-
ther confirm if a gene that exhibited a regulatory effect did so in
only 1 condition, we performed a chi-square test. We recognize
that with our lower power due to smaller sample sizes, we are
missing some true effects at subthreshold levels. With greater
power, we would be capturing more of these true effects.
However, we will always miss some true effect due to subthresh-
old levels. We are confident that we are identifying genes with
the most significant levels and most significant impacts on gene
expression.

Enrichment analyses
All gene ontology analyses were performed with DAVID v6.8
(Huang et al. 2009). We used the Benjamini-Hochberg method for
adjusting for multiple testing. We used adjusted P-values to de-
termine significance of enrichment terms and use a P-adj. value
cutoff of 0.05. Transcription factor (TF) binding site enrichments
were identified by using oPOSSUM v3.0 (Ho Sui et al. 2005).
We used the mouse single site analysis (SSA) tool with a cutoff
of 2,000 base pairs up- and downstream of the transcription
start site.

Results
In vivo ER stress induced by TM
To evaluate the extent to which ER stress and tissue type affects
gene expression in diverse genetic backgrounds, we induced ER
stress in different strains of mice. To induce ER stress, we
injected B6 mice, CAST mice, and their F1 hybrid progeny with
TM. TM causes ER stress by blocking N-linked glycosylation
through the inhibition of DPAGT1, which catalyzes the first step
of N-linked glycosylation. TM treatment results in a robust UPR
and is a standard tool for inducing ER stress (Tkacz and Lampen
1975; Heifetz et al. 1979; Bassik and Kampmann 2011). For this
study, we focused on liver and kidney, tissues that rely heavily on
protein transport and secretion. Proper ER function and response
to ER stress plays a large part in their function. In fact, ER stress
and aberrant protein trafficking is pathogenic in a large number
of liver and kidney diseases (Schaeffer et al. 2014; Liu and Green
2019). A XBP1 splicing assay and RT-qPCR of BiP, a canonical ER
stress gene, show that TM injection induced a strong ER stress re-
sponse (Oslowski and Urano 2011) (Supplementary Fig. 4). To de-
termine the full transcriptional response to TM-induced ER
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stress, kidney and liver samples were analyzed by RNA-seq. ER
stress-induced gene expression changes were identified by com-
paring control and TM samples in a tissue- and genotype-specific
manner (Supplementary Tables 1 and 2). At a cutoff of 1.5-fold
(5% FDR) change in transcript level, Gene Ontology (GO) enrich-
ment analyses revealed enrichment for canonical ER stress re-
sponse genes in all tissues and genotypes (Supplementary Table
3). Many canonical ER stress response genes, including Hyou1,
Hspa5 (BiP), Ddit3 (Chop), and Herpud1 (Kozutsumi et al. 1988;
Wang et al. 1996; Kokame et al. 2000; Wang, Wu et al. 2011; Fig. 1),
were significantly upregulated in both tissues and all 3 geno-
types, indicating a strong UPR. As expected, injection of TM indu-
ces a robust in vivo ER stress-response.

Genes that were upregulated in response to ER stress regard-
less of genotype or tissue-type were enriched for binding sites of
known UPR TFs (Supplementary Tables 1 and 4). One of these TFs
is NFYA (z¼ 54.8), which binds in conjunction with ATF6, to 2
sites known as the ER Stress Response Elements I and II (ERSEI
and ERSEII) (Yoshida et al. 2000; Yamamoto et al. 2004). There was
also enrichment for CEBPA binding sites (Z-score¼ 3.4), which
can bind in conjunction with CHOP (Chikka et al. 2013), a down-
stream component of the UPR involved in ER stress induced apo-
ptosis signaling (Nishitoh 2012).

ER stress-induced fold-change in different tissues
We first characterized how gene expression is affected by ER
stress in liver and kidney in each strain independently. In gen-
eral, we found that many genes exhibit tissue-specific ER stress
responses (B6: 34%; CAST: 21%; F1: 24%). The specifics of each ge-
notype are described below. We first compared the magnitude of
the fold change of all genes that display a significant tissue-
specific response to ER stress. In all 3 genotypes, the response
genes in the liver show a significantly lower mean fold change
compared to kidney (B6: Kidney: 0.16; Liver: �0.45; P< 2.2 � 10�16;
CAST: Kidney: 0.17; Liver: �0.26; P¼ 2.67 � 10�09; F1: Kidney: 0.15;
Liver: �0.62; P< 2.2 � 10�16) (Fig. 2, a–c).

In B6, there were 3,071 (1,310 upregulated; 1,761 downregu-
lated) and 3,433 genes (1,944 upregulated; 1,489 downregulated)
that showed a significant change in expression post ER stress, in
liver and kidney, respectively (Supplementary Tables 1 and 2). As
expected, in both tissues, pathways like the ER UPR (GO:0030968;
liver: q¼ 6.5 � 10�09; kidney: q¼ 6.6 � 10�12) were enriched. We
next compared genes and pathways uniquely affected in each tis-
sue when experiencing ER stress. Our analysis takes tissue-type
into account, by including it as an interaction term, when analyz-
ing fold-changes post-ER stress. This eliminates genes that are
fundamentally different in both tissues but only affected by TM

Fig. 1. Upregulation of canonical ER stress genes across genotypes and tissues. Log2(TM/Control) is plotted for genes with known functions in the ER
stress response. Dotted line indicates a 1.5-fold change in gene expression. Each point represents a biological replicate.
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in one. Thus, our analysis requires a gene to be responding to ER
stress in both tissues and at significantly different levels. Of the
genes affected by ER stress in either tissue in B6, 1,751/5,077
genes (34%) showed ER stress-induced expression that differed
between the 2 tissues (cutoff of q< 0.05) (Supplementary Table 5)
(Supplementary Fig. 5a). More than a third of the response genes
in B6 show tissue effects emphasizing the tissue-specificity of
this response. Four of the top 6 functional enrichment terms for
the tissue-effect genes all relate to metabolism (lipid metabolism,
GO: 0006629, q¼ 3.7 � 10�19; fatty acid metabolism, GO: 0006631,
q¼ 3.9 � 10�08; metabolic process, GO: 0008152, q¼ 5.2 � 10�06;
cholesterol metabolic process, GO: 0008203, q¼ 2.2 � 10�04)
(Supplementary Table 6), indicating a tissue-specific metabolic
response to ER stress. Functional enrichment of genes whose ER
stress response was not dependent on tissue type reveals many
canonical ER stress categories such as ER UPR (GO: 0030968,
q¼ 4.0 � 10�06), Golgi to ER retrograde vesicle-mediated transport
(GO: 0006890, q¼ 1.1 � 10�04), and ER-associated ubiquitin-de-
pendent protein catabolic process (GO: 0030433, q¼ 2.4 � 10�03)
(Supplementary Table 7).

Next, we quantified how tissue type impacts the transcrip-
tional response to ER stress in the distantly related CAST
strain. In CAST, there were 3,749 (1,900 upregulated; 1,849

downregulated) and 2,841 genes (1,738 upregulated; 1,103 down-
regulated) in liver and kidney, respectively, that showed an ER
stress-induced change in expression (Supplementary Tables 1
and 2). As in B6, pathways related to the ER stress response
(GO:0030968; liver: q¼ 1.5 � 10�08; kidney: q¼ 2.4 � 10�13) were
significantly enriched in both tissues. Of the 5,115 genes affected
in either tissue, 1,054 genes showed tissue-dependent responses
to ER stress (1,054/5,115; 21%) (Supplementary Table 5)
(Supplementary Fig. 5b). Functional enrichment revealed 7 signif-
icant categories, 3 of these relate to metabolism, similar to what
was observed with B6, again indicating a tissue-specific metabolic
response after ER stress induction (lipid metabolic process, GO:
0006629, q¼ 1.4 � 10�03; fatty acid metabolic process, GO:
0006631, q¼ 2.2 � 10�03; metabolic process, GO: 0008152, q¼ 3.9
� 10�03) (Supplementary Table 6). Functional enrichment of
tissue-independent genes reveals enrichment for ER stress terms
(ER UPR, GO: 0030968, q¼ 3.9 � 10�08; response to unfolded pro-
tein, GO: 0006986, q¼ 9.4 � 10�07) (Supplementary Table 7).

Finally, we asked how tissue type impacts gene expression lev-
els in response to ER stress in the B6/CAST F1 hybrid mouse. In
the F1, there were 3,056 genes in liver (1,330 upregulated; 1,726
downregulated) and 2,806 genes in kidney (1,936 upregulated; 870
downregulated) that showed a significant change in expression

Fig. 2. Tissue-specific expression post ER stress response. Log2(TM/Control) is plotted for each gene that displays a significant tissue-specific response
to ER stress in B6 (a), CAST (b), and F1 (c). An ANOVA test was used to test for a tissue effect on expression change. Normalized counts are plotted for
genes that display expression with a tissue-effect post ER stress in B6 (d), CAST (e), and F1 (f). Each point represents a biological replicate. All plots show
a significant tissue effect (P-adj< 0.05).
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post ER stress (Supplementary Tables 1 and 2). As expected, these
genes are enriched for the ER stress response (GO:0030968; liver:
q¼ 2.2 � 10�09; kidney: q¼ 4.6 � 10�12). Of the 4,738 genes af-
fected in either tissue, 1,130 genes showed variable ER stress-
induced expression between the 2 tissues in the F1 hybrid (1,130/
4,738; 24%) (Supplementary Table 5) (Supplementary Fig. 5c). We
observed enrichment patterns similar to B6 and CAST. There was
enrichment for metabolism in the tissue-dependent genes (meta-
bolic process, GO: 0008152, q¼ 1.9 � 10�24; lipid metabolic pro-
cess, GO: 0006629, q¼ 2.9 � 10�17; fatty acid metabolic process,
GO: 0006631, q¼ 1.1 � 10�14; glutathione metabolic process, GO:
0006749, q¼ 9.5 � 10�07) and enrichment for ER stress (GO:
0030968, q¼ 1.3 � 10�07) in the tissue-independent genes
(Supplementary Tables 6 and 7).

Many genes affected by ER stress exhibit a tissue-effect (B6:
34%; CAST: 21%; F1: 24%). In many cases, this tissue-effect is ob-
served in only 1 genotype (B6: 964/1751, 55%; CAST: 405/1064,
38%; F1: 444/1130, 39%) (Supplementary Fig. 6a). This genotype-
effect is explored further in the next section. When comparing
the genes with tissue-specific effects on post ER stress expres-
sion, B6 was the only genotype to have significant functional en-
richment for the ER stress response (GO: 0034976; q¼ 2.1 � 10�02)
(Supplementary Table 6), suggesting that B6 may harbor varia-
tion that affects how its tissues differentially utilize canonical ER
stress response genes. For example, Wfs1 is involved in calcium
homeostasis in the ER and impacts the ER stress response
(Yamada et al. 2006; Fonseca et al. 2010) and has similar control
levels in both tissues in B6, but there is a Log2FC of 1.8 in kidney
and a Log2FC of 3.2 in liver (Fig. 2d) post ER stress. Wfs1 shows no
tissue effect in CAST or the F1. Response to nutrients (q¼ 3.2 �
10�03) was the only functional enrichment unique to the CAST
genotype (Supplementary Table 6). Many of these nutrient-
sensing genes are involved in lipid transport, cholesterol
transport, and lipid localization. This indicates a CAST- and
tissue-specific response to ER stress involving lipid metabolism
and localization. One of the top significant genes in CAST with a
tissue-effect was Tsc22d1 (P-adj¼ 6.64 � 10�24) which is signifi-
cantly upregulated in kidney (Log2FC¼ 1.077) and downregulated
in liver (Log2FC¼�2.7) (Fig. 2e). Tsc22d1 is a TF responsive to
TGFb and is thought to be a tumor suppressor gene (Hömig-
Hölzel et al. 2011). Functional enrichment in genes with a tissue-
effect in the F1 revealed terms such as cellular amino acid
biosynthetic process (q¼ 4.6 � 10�02), protein homotetrameriza-
tion (q¼ 8.1 � 10�03), and fatty acid beta-oxidation (q¼ 1.8
� 10�07) (Supplementary Table 6). One of the top genes with
tissue-dependent expression unique to F1 is Acot1 (q¼ 2.02 �
10�06) (Fig. 2f). Acot1 impacts the lipid composition of the cell,
which can alter membrane components (Liu et al. 2020). This
implicates, similar to CAST, a tissue- and genotype-specific re-
sponse to ER stress which involves membrane composition.

We found 1,623 genes, common in all 3 genotypes, whose ER
stress response was not affected by tissue type (Supplementary
Fig. 6b). As expected, functional enrichment of these genes
includes many functions directly related to the ER stress re-
sponse (ER UPR, GO: 0030968, q¼ 1.8 � 10�09; response to un-
folded protein, GO: 0006986, q¼ 1.3 � 10�06) (Supplementary
Table 7). The top significant functional category was ribosome
biogenesis (GO: 0042254, q¼ 3.2 � 10�11) and the top cellular com-
partment enrichment category was for the nucleolus (GO:
0005730, q¼ 1.6 � 10�33). The nucleolus is integral to ribosome
biogenesis. The nucleolus has been shown to play an active role
in regulating cellular stress, with potential links to the ER stress

response (Yang et al. 2018; Chen and Stark 2019; Pecoraro et al.
2020).

ER stress-induced fold-change varies by genetic
background
To determine how genetic background impacts variation in ER
stress-induced gene expression in each tissue, we examined
genotype-effects of ER stress on expression in liver and kidney. In
either tissue, based on a 1.5-fold cutoff (FDR 5%), the majority of
genes are upregulated post-ER stress in only 1 or 2 of the geno-
types (Fig. 3). In liver, 2,330 (of 20,131, 11.5%) genes are signifi-
cantly upregulated post-ER stress in at least one of the
genotypes. Of these genes, 950 (41%) are uniquely upregulated in
only 1 genotype, 550 (23%) are upregulated in 2 genotypes, and
830 (36%) are upregulated in all 3 genotypes (Fig. 3). In kidney,
2,718 (of 20,661, 13.2%) genes are significantly upregulated post-
ER stress in at least one of the genotypes. Of these genes, 971
(36%) are uniquely upregulated in only 1 genotype, 594 (22%) are
upregulated in 2 genotypes, and 1,153 (42%) are upregulated in
all 3 genotypes (Fig. 3).

To identify genes with genotype-dependent ER stress-induced
gene expression, we performed a likelihood-ratio test for each tis-
sue. Ninety-one ER stress response genes in the liver were depen-
dent on genetic background (91/5,143; 1.8% of ER stress-regulated
genes) (q< 0.05) (Supplementary Table 8). There was no func-
tional enrichment among these genotype-dependent ER stress re-
sponse genes. Nevertheless, there were some striking
observations. For example, many of these genes are involved in
immunity, such as Rsad2, Tlr12, Zc3hav1, and Nlrp6. Other genes
point to important genotype differences that may define how a
genotype responds to stress. For example, Mrs2, which is involved
in magnesium transportation into the mitochondria, shows one
of the strongest genotype-dependent expressions post-ER stress
(P-adj¼ 7.93 � 10�06) (Fig. 4a). Under control conditions, each ge-
notype has similarly low levels of Mrs2. However, under ER stress,
each genotype responds very differently (Log2FC: B6: -0.145; F1:
0.49; CAST: 1.23). Mrs2 is required for the normal function of the
mitochondrial respiratory complex, which has been linked to ER
stress outcomes (Piskacek et al. 2009; Balsa et al. 2019; Knupp et al.
2019). Mrs2 or any one of these immunity genes could play a role
in the variable ER stress response given their genotype-
dependent expression and their connection to the ER stress re-
sponse (Todd et al. 2008; Bettigole and Glimcher 2015).

Fig. 3. Genotype-specific expression post ER stress. Proportion of ER
stress-upregulated genes that are shared in all 3 genotypes, shared in 2
genotypes, or unique to 1 genotype.
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In kidney, 117 genes showed a genetic background-dependent
response to ER stress (117/4,813; 2.4% of ER stress-regulated
genes) (q< 0.05) (Supplementary Table 8). There was no func-
tional enrichment among these genotype-dependent genes in the
kidney. However, many of these genes have functions that can
affect the ER stress response. Some of these processes include
amino acid transport (Slc7a5), apoptosis (Cib1, Egln3), regulation
of transcription (Jdp2), and nucleotide exchange factors (Sil1)
(Fig. 4, b–f). Further functional validation will be required to con-
firm the impact these genes have on the variable ER stress re-
sponse. Similar to liver, there are a number of genes that are
involved in the immune response in kidney. However, the exact
immunity genes with genotype-effects are unique to kidney, such
as Cdd36, Alcam, and Tapbpl. For the 208 genes that display
genotype-dependent expression in either liver or kidney, we
asked which genotype had the highest or lowest expression of the
3 genotypes. We found F1 to be the least likely (23%, 95/416) to
have the outlying expression level, indicating that in most genes

that show a genotype-effect (77%, 321/416) there is a potential
additive effect between the 3 genotypes where F1 expression is
intermediate to B6 and CAST expression. There were a similar
number of genes in both tissues that displayed genotype-
dependent expression (liver: 91; kidney: 117). Between the 2 tis-
sues, 9 genes showed a genotype effect in both tissues, which is
greater than expected by random chance (P¼ 1.08 � 10�05). Of
these 9 genes, some maintain similar expression patterns be-
tween the 2 tissues across the 3 genotypes, while some trend in
different directions. For example, Ces1f displays genotype-
dependent expression in both kidney and liver (kidney q¼ 0.034;
liver: q¼ 7.18 � 10�08). However, the expression pattern is differ-
ent between the 2 tissues. F1 Ces1f expression is the lowest of the
3 genotypes in liver, while F1 Ces1f expression is highest in kidney
(Liver Log2FC: B6: �2.99, F1: �4.71, CAST: �3.22; Kidney: B6:
�1.72, F1: �0.94, CAST: �2.32).

We next performed TF binding site enrichment analysis on
genes variable across genetic background in liver and kidney

Fig. 4. Variable expression of genes across genotypes post ER stress. Normalized counts for each genotype are plotted for control and TM conditions for
a subset of genes that display a significant variable expression across the genotypes in (a) liver or (b–f) kidney. Each point represents a biological
replicate. All plots show a significant genotype effect (P-adj<0.05).
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(Supplementary Tables 8 and 4). For genes variable in liver, we
found enrichment for TFs involved in diseases such as cancer
(e.g. Evi1, Z-score¼ 9.9) and diabetes (e.g. Foxa2, Z-score¼ 8.5)
(Wolfrum et al. 2004; Lugthart et al. 2008; Goyama and Kurokawa
2009). The most significant enrichment in kidney was for Nr3c1
(Z-score¼ 11.9). Nr3c1 binding sites are associated with 11 genes
that show genotype-effect on ER stress response in kidney. Nr3c1
is involved in many processes, including inflammation, mRNA
decay, and chromatin remodeling (Fryer and Archer 1998;
Kadmiel and Cidlowski 2013; Cho et al. 2015). Similar to a previous
study done in MEFs (Chow et al. 2015), there is also enrichment
for genes involved in immunity and inflammation, like RELA and
Nf-kappaB (Liver: Z-score¼ 4.9 and 10.7; Kidney: Z-score¼ 8.3 and
6.5).

Identification of cis- and trans- regulatory
variation
The variable ER stress transcriptional response could be due to
cis- and trans- regulatory variation. These effects can impact a
wide range of genes across different genetic backgrounds and
tissue-types. A cis- regulatory variant influences the expression
of a gene it is physically linked to. Due to this, allele-specific ex-
pression in a diploid, heterozygous animal (e.g. F1 hybrid mouse)
is strong evidence for a cis- acting genetic variant in or near that
expressed gene. An example of a cis- effect is a promoter poly-
morphism impacting the gene’s expression levels. A trans- regula-
tory variant influences an unlinked gene, often physically distant
from the variant. As opposed to cis- acting variants, trans- acting
variants affect both alleles equally, and consequently, differen-
tial expression of a gene between 2 inbred strains that cannot be
explained by ASE in the F1 hybrid is most likely a result from a
trans- acting variant. An example of a trans- effect is a polymor-
phism impacting a TF that can then alter the expression of a
wide range of genes across the genome.

The use of genetically divergent strains of mice and their hy-
brid F1 progeny allowed us to classify genetic effects as cis-, trans-,
or a combination of the 2. Classification of cis- and trans- effects
was performed using a previously published method (McManus
et al. 2010; Chow et al. 2015). We performed cis- and trans- analy-
ses on liver and kidney under control and TM conditions. Genes
were assigned a cis- or trans- expression pattern (FDR¼ 0.1%;
Supplementary Tables 9–11). In liver, under control conditions,
580 transcripts displayed a cis- effect and 392 transcripts dis-
played a trans- effect (Fig. 5a). Under TM conditions, 617 tran-
scripts displayed a cis- effect and 449 transcripts displayed a
trans- effect (Fig. 5b). In kidney, 710 transcripts displayed a cis- ef-
fect and 288 transcripts displayed a trans- effect under control
conditions (Fig. 5c). Under TM conditions, 825 transcripts dis-
played a cis- effect and 230 transcripts displayed a trans- effect
(Fig. 5d). The majority of effects we identified were classified as
cis- regulatory variation.

In liver, there were many genes that displayed expression pat-
terns matching both cis- and trans- effects. These effects can be
acting in an additive manner (cis- þ trans-) or in a nonadditive
manner (cis- � trans-). Under control conditions, 304 transcripts
displayed a cis- þ trans- effect, while 124 transcripts displayed a
cis- � trans- effect. Under TM conditions, 258 transcripts displayed
a cis- þ trans- effect, while 132 transcripts displayed a cis- � trans-
effect (Supplementary Table 9). There were transcripts in kidney
that also displayed a combination of cis- and trans- effects
(Control: cis- þ trans-: 229, cis- � trans-: 115; TM: cis- þ trans-: 283,
cis- � trans-: 121) (Supplementary Table 9). For the remaining
analyses, we focused on genes that displayed only a cis- or trans-

effect due to the difficulty of separating out the cis- and trans-
effects of the cis- þ trans- and the cis- � trans-categories. While
these genes represent potentially interesting genes and patterns,
they are not particularly informative in identifying patterns
solely due to cis- or trans- effects.

ER stress reveals cryptic regulatory variation
unique to stress
To determine whether ER stress alters the contribution of cis- and
trans- effects to regulatory variation, we compared the proportion
of transcripts displaying a cis- or trans- effect in each tissue, under
control and TM conditions. In liver, ER stress does not signifi-
cantly alter the proportion of genes displaying a cis- effect (con-
trol: 0.59; TM: 0.58; P¼ 0.413) (Fig. 6a). However, in kidney, there
is a small, but significant increase in the proportion of genes with
a cis- effect under ER stress conditions (control: 0.71; TM: 0.78;
P¼ 0.00024) (Fig. 6b).

Because the ER stress transcriptional response involves hun-
dreds of transcripts, it is likely that the actual genes showing cis-
and trans- patterns are different under stress. To address this, the
overlap under control and TM conditions, in both the liver and
kidney were analyzed for genes showing cis- and trans- regulatory
variation. We observed both cis- and trans- regulatory variation
that was unique to control or stress conditions or present under
both conditions.

In liver, of the cis- effects detected under control or TM condi-
tions, 37% (357/974) are unique to control, 40% (394/974) are
unique to stress, and 23% (223/974) are common to both (Fig. 6c).
Of the trans- effects detected under control or TM conditions, 39%
(288/737) are unique to control, 47% (345/737) are unique to
stress, and 14% (104/737) are common to both. The magnitude of
the common cis- or trans- effects observed in both conditions
were highly correlated (r2¼ 0.86, P< 2.2 � 10�16) (Supplementary
Fig. 7a), suggesting that this common, overlapping regulatory var-
iation is not impacted by ER stress.

In kidney, 30% (359/1183) of cis- effects are unique to control,
40% (474/1183) are unique to stress, and 30% (351/1183) are com-
mon to both (Fig. 6c). Of the trans- effects detected in kidney, 49%
(224/454) are unique to control, 37% (166/454) are unique to
stress, and 14% (64/454) are common to both. The magnitude of
the common cis- or trans- effects that were observed in both con-
ditions were highly correlated (r2¼ 0.91, P< 2.2 � 10�16)
(Supplementary Fig. 7b) and likely not impacted by ER stress. The
majority of genes that display a regulatory difference depend on
the presence or absence of ER stress and those observed only in
stress conditions may reveal critical components that might be
responsible for the genotype-specific differences in the ER stress
response.

In some cases, canonical UPR genes display regulatory varia-
tion only under stress conditions. For example, Ire1a, one of the
main signal transducers of ER stress, displayed a strong cis- regu-
latory effect in the mouse liver that is only detectable under
stress conditions (Fig. 6d) (v2: P¼ 0.0011). Under control condi-
tions, Ire1a is expressed at similar levels by the B6 and CAST al-
lele. Once ER stress is induced, the B6 allele is expressed 1.5-fold
higher than the CAST allele. There are 691 SNPs within a 6 2kb
window of the Ire1a gene that differs between the B6 and CAST
genotype. Any one or a combination of these SNPs could be con-
tributing to this cis- regulatory difference. Genes that have not
been implicated in the ER stress response, but show a strong,
stress-specific transcriptional response, might represent novel
UPR genes and pathways. For example, in the mouse kidney, the
gene Nuak2 displayed a strong cis- effect seen only under stress
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conditions (Fig. 6e) (v2: P< 0.00001). While under control condi-
tions the Nuak2 alleles are equally expressed, but in the stressed
F1 mouse kidney, the CAST allele is expressed 3-fold higher than
the B6 allele.

ER stress reveals cryptic regulatory variation
unique to tissue type
We next asked whether there was tissue-specific regulatory vari-
ation. We investigated the overlap of genes that displayed cis- or
trans- regulatory variation between liver and kidney in control
and TM conditions. Of the genes that display a cis- effect under
control conditions, 38% (436/1,146) are unique to liver, 49% (566/
1,146) are unique to kidney, and 13% (144/1,146) are common to
both (Fig. 6f). Of the genes that display a cis- effect under TM con-
ditions, 36% (458/1,283) are unique to liver, 52% (666/1,283) are
unique to kidney, and 12% (159/1,283) are common to both
(Fig. 6f). The magnitude of the cis- effects observed in both tissues
were moderately correlated (Control: r2¼ 0.425, P< 2.2 � 10�16;
TM: r2¼ 0.408, P< 2.2 � 10�16) (Supplementary Fig. 8, a and b).

Of the genes that displayed a trans- regulatory effect under
control conditions, 55% (357/644) are unique to liver, 39% (252/
644) are unique to kidney, and 6% (35/644) are common to both
(Fig. 6f). Of the genes that display a trans- regulatory effect under
TM conditions, 65% (422/652) are unique to liver, 31% (203/652)
are unique to kidney, and 4% (27/652) are common to both
(Fig. 6f). The magnitude of the trans- effects observed in both tis-
sues showed a small correlation only in control conditions

(Control: r2¼ 0.186, P¼ 0.009; TM: r2¼ 0.126, P¼ 0.069)
(Supplementary Fig. 8, c and d). Under control and TM conditions,
we found that more genes with a cis- effect were common be-
tween the 2 tissues than genes with a trans- effect (Control: v2

P< 0.00001; TM: v2 P< 0.00001).
Under TM conditions, the majority of genes that displayed

cis- or trans- regulatory variation were unique to either liver or
kidney. Any one of these genes with a tissue- and stress-
specific regulatory effect could be a gene involved in inter-
individual variation in tissue-specific ER stress responses. For
example, the genes Lama5, Hnf4a, Scnn1b, and Pkd2 all display
strong cis- regulatory variation under stress conditions in kid-
ney that are not observed in the mouse liver. Each of these
genes were previously implicated in kidney diseases, such as
Liddle’s syndrome and Polycystic kidney disease (Wang et al.
2006; Cornec-Le Gall et al. 2017; Marable et al. 2018; Voskarides
et al. 2018). The kidney is a tissue that relies heavily on protein
transport and secretion. Proper ER function and response to ER
stress plays a large part in kidney function. In fact, ER stress
and aberrant protein trafficking is pathogenic in a large num-
ber of kidney diseases (Schaeffer et al. 2014). In liver, for genes
such as Sidt2 and Adk, they display cis- regulatory variation
that is unique to the stressed liver and have been associated
with human fatty liver disease (Bjursell et al. 2011; Gao et al.
2016). These genes with tissue-specific cis- regulatory variation
are clear examples of how genetic variation has a differential
impact across tissues.

Fig. 5. Expression ratios of genes with cis- or trans- effects. Log2(B6/CAST) plotted for either alleles in the F1 hybrid or parental expression in control
liver (a), TM liver (b), control kidney (c) and TM kidney (d). Each point represents a gene displaying either a cis- or trans- regulatory effect. Numbers in
parenthesis are the number of genes that display that particular regulatory effect.
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Tissue-specific effects on the regulatory variation
of gene expression
To determine the effect that tissue-type has on the magnitude of
the effect of cis- and trans- regulatory variation on gene expres-
sion levels, we compared the ratio of the absolute fold change of
the parental B6 expression to the parental CAST expression for
each gene displaying cis- or trans- regulatory variation. We com-
pared the effects of cis- and trans- regulatory variation between
liver and kidney to better understand the impact of tissue type on
the strength of a regulatory effect. Under control conditions,
there is no difference between the strength of cis- effects between
the 2 tissues (P¼ 0.170). However, under TM conditions, cis-
effects in liver have a stronger effect on gene expression than in
kidney (P< 1.0 � 10�7) (Fig. 7a). trans- effects, under control condi-
tions, also showed no difference between tissues, but were stron-
ger in liver than kidney under TM conditions (control: P¼ 0.20;
TM: P< 1.6 � 10�3) (Fig. 7b). Within a condition, cis- effects on av-
erage are stronger than trans- effects, but tissue type and ER
stress have different effects on the strength of regulatory effects.
Genetic variation in the stressed liver has a stronger effect on
transcription than in any other context.

In liver, under control and TM conditions, cis- regulatory dif-
ferences have a stronger effect on gene expression levels than

trans- regulatory differences (control: P< 0.003; TM: P< 1.6 �
10�5) (Fig. 7c). There was no difference in the magnitude of effect

when comparing cis- or trans- regulatory variation across control

and TM conditions in liver (cis-: P¼ 0.26; trans-: P¼ 0.93) (Fig. 7c).

We found a similar pattern in kidney. cis- regulatory differences

have a stronger effect on gene expression levels than trans- regu-

latory differences in control and TM conditions (control: P< 9.0 �
10�7; TM: P< 7.06 � 10�4) (Fig. 7d). Again, there was no difference

in the effect when comparing cis- or trans- regulatory variation

across conditions in kidney (cis- P¼ 0.25; trans- P¼ 0.98) (Fig. 7d).

ER stress-induced change in allele-specific
expression
Next, we tested whether ER stress changes the proportion of

ASE—that is, do the 2 alleles respond differently to stress? To do

this, we compared the allelic ratio in the F1 under stress and con-

trol conditions (Fisher’s exact test; 5% FDR). Overall, the ASE pat-

terns were normally distributed and most genes showed equal

allelic expression (Supplementary Fig. 9). A significant change in

ASE post-ER stress was observed in 17% and 13% of expressed

transcripts in liver (970/5669), and kidney (1010/7764), respec-

tively (Fig. 8, a and c) (Supplementary Table 12). The liver dis-

played a higher proportion of genes with a change in ASE under

Fig. 6. ER stress and tissue type reveal cryptic regulatory variation. Proportion of genes displaying a cis- or trans- effect in liver (a) and kidney (b).
Proportion of genes with either a cis- or trans- effect in only stress conditions, only control conditions or both, for liver and kidney (c). Examples of genes
displaying cis- regulatory effects only under stress conditions in F1 liver (d) and F1 kidney (e). Proportion of genes displaying a cis- or trans- effect seen in
only liver, only kidney, or both (f). (b) *P< 0.00024. (d) *P¼ 0.0011. (e) *P< 0.00001.
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stress (v2; P¼ 0.00001). Change in ASE in both tissues was driven
equally by CAST and B6 alleles, indicating that there is no unex-
pected hybrid effect (Supplementary Fig. 1). In liver, of the 970
genes that displayed a significant change in ASE, 191 (/970, 20%)
genes displayed a cis- effect under control conditions and 243 (/
970, 25%) genes under TM conditions (Supplementary Fig. 10).
Only 113 (/970, 12%) genes displayed a trans- effect in control con-
ditions and only 104 (/970, 11%) genes displayed a trans- effect in
TM conditions (Supplementary Fig. 10). In kidney, of the 1,010
genes that displayed a significant change in ASE, 185 (/1010, 18%)
displayed a cis- effect under control conditions and 227 (/1010,
22%) under TM conditions. Only 63 (/1010, 6%) genes displayed a
trans- effect in control conditions and only 51 (/1010, 5%) genes
displayed a trans- effect in TM conditions (Supplementary Fig.
10). Significant ASE genes classified as a combination of cis- and
trans- were not discussed in this paper.

Genes that exhibit a change in ASE and transcript level post
ER stress fall in both up- and downregulated categories (Liver:
35% upregulated 156/448, 65% downregulated 292/448; Kidney:
78% upregulated 206/265, 22% downregulated 59/265) (Fig. 8, b
and d). In all cases, the B6 and CAST alleles contributed equally
to changes in ASE (Supplementary Fig. 11, a and b). However, the
majority of genes that show an ER stress-induced change in ASE
do not exhibit a change in their total transcript abundance (liver:
522/970 or 54%; kidney: 745/1010 or 74%) (Fig. 8, b and d).
This pattern was observed in a previous study performed in

fibroblasts (Chow et al. 2015). For example, under control condi-
tions, the B6 allele of the gene Phosphatidylcholine transfer pro-
tein (Pctp) accounts for 63% of allelic expression, while under TM
conditions, the B6 allele accounts for only 30% of allelic expres-
sion (Fisher’s exact; q¼ 0.00001) (Fig. 9a). While the ratio of ex-
pression between alleles is significantly changed under TM
conditions, the net result is no significant change in total RNA
transcript levels, suggesting a possible compensatory mechanism
between the 2 alleles.

Genes that show a significant change in ASE and in transcript
levels post-ER stress are of particular interest, as this suggests dif-
ferential allelic response to stress. Sesn2, which is involved in a vari-
ety of different stress responses (Lee et al. 2010), showed one of the
most significant changes in ASE (Fisher’s exact; q< 0.00001). Under
control conditions, the B6 and CAST allele in the F1 hybrid mouse
are expressed at equal levels (B6: 0.53; CAST: 0.47). Total Sesn2 tran-
script responded to TM conditions with a 13-fold increase. At the
allelic level, the CAST allele is increased 24-fold, while the B6 allele
is only increased 3-fold (TM: B6: 0.13, CAST: 0.87) (Fig. 9b). The large
increase of the CAST allele is driving the Sesn2 transcriptional re-
sponse to TM-induced ER stress in the F1. In the parental strains,
there is a similar bias in terms of Sesn2 upregulation post-ER stress.
The B6 parental strain has a 6-fold increase in Sesn2 expression
while the CAST parental strain has a 22-fold increase. This strong
parental and allelic response indicates that Sesn2 contains a strain-
and ER stress-specific cis- element that drives differential

Fig. 7. Impact of cis- and trans- effects on gene expression. Absolute log2 fold change of parental expression for genes displaying a regulatory effect.
Comparing impact of cis- effects (a) or trans- effects (b) on gene expression in control or stress conditions. Comparing genes with a cis- or trans- effect in
either control or stress conditions in liver (c) or kidney (d). Liver: control cis-: mean¼ 1.04, SD¼ 1.03 j control trans-: mean¼ 0.82, SD¼ 0.91 j TM cis-:
mean¼ 1.14, SD¼ 1.09 j TM trans-: mean¼ 0.86, SD¼ 0.74; Kidney: control cis-: mean¼ 0.94, SD¼ 0.89 j control trans-: mean¼ 0.66, SD¼ 0.44 j TM cis-:
mean¼ 0.87, SD¼ 0.74 j TM trans-: mean¼ 0.65, SD¼ 0.48. NS¼ not significant.
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transcriptional response to ER stress and potentially other stress
stimuli such as hypoxia and reactive oxygen species (Lee et al.
2010). We see similar patterns for genes that are downregulated
post-ER stress. Presenilin 2 (Psen2), which cleaves proteins such as
APP (amyloid-beta precursor protein) (De Strooper et al. 2012) and
has been shown to cause Alzheimer’s disease, displays a change in
ASE (Fisher’s exact; q¼ 0.00001) and a 2.7-fold decrease in RNA
transcript levels (Fig. 9c). Under control conditions, the B6 allele is
more highly expressed (B6: 0.72; CAST: 0.28). Under stress condi-
tions, the Psen2 B6 allele decreases 4.2-fold in expression while the
CAST allele only decreases 1.6-fold. The greater reduction of the B6
allele results in near equal expression levels of the 2 alleles under
stress conditions (B6: 0.47; CAST: 0.53). The mirrored in the paren-
tal strains as B6 has a 2.2-fold decrease in Psen2 expression while
CAST has only a 1.1-fold decrease. This again indicates a strain-
and ER stress-specific genetic element that drives this differential
response of Psen2 to ER stress in different genetic backgrounds.
Similar patterns are observed in kidney with a wide range of genes
(Fig. 9, d–f).

The majority of ASE post ER stress is tissue specific. Only 210
transcripts display a change in ASE post-ER stress common to

both tissues (Liver: 210/970, 22%; Kidney: 210/1010, 21%)
(Supplementary Fig. 12). For these common genes, tissue type
has a strong effect on the magnitude of the ASE changes post ER
stress, in line with what we observed with tissue-specific changes
in magnitude of cis- and trans- regulatory variation. For example,
in Cathepsin L (Ctsl) (Fig. 10a), the CAST allele is more ER stress re-
sponsive in kidney, while in liver, the B6 allele is more responsive.
Ctsl, which is involved in lysosomal protein degradation, is upre-
gulated in both liver (FC¼ 4.3) and kidney (FC¼ 3.2) post-ER
stress. Ctsl also shows a change in ASE in liver (q¼ 0.017) and kid-
ney (q¼ 0.0002). However, in liver, the CAST allele was responsi-
ble for only 55% of the increase in expression levels, but in
kidney, the CAST allele was responsible for 71% of the increase in
expression levels. This pattern was also observed in downregu-
lated genes. Flavin containing dimethylaniline monoxygenase 1 (Fmo1)
(Fig. 10b), which is involved in the oxidation reduction process, is
downregulated in both liver (FC¼�3.54) and kidney (FC¼�1.5)
and shows a change in ASE in liver (q¼ 7 � 10�5) and kidney
(q< 0.00001). The CAST allele in liver accounts for 80% of the ex-
pression downregulation, but only 28% of the downregulation in
kidney.

Fig. 8. ASE and corresponding change in RNA transcript. Proportion of genes in the F1 displaying significant change in ASE in liver (a) and kidney (c).
Proportion of genes with a significant change in ASE showing ER stress-induced increase in RNA transcripts, decrease, or no change in liver (b) and
kidney (d).
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Discussion
The ER stress and large UPR transcriptional response provides a

unique opportunity to study how G�E interactions can alter gene

expression levels across different tissues. We took advantage of 2

genetically diverse mouse strains, B6 and CAST, and their F1, and

induced a strong in vivo ER stress transcriptional response. This

provided the opportunity to study how stress and tissue type

impacts the effect of genetic variation. We uncovered genes that

showed variable transcript levels in a genotype � tissue � stress
manner. These genes implicated networks and pathways that

could contribute to the variable ER stress response. In addition,

the F1 hybrid gave us the ability to uncover the cis- and trans- reg-

ulatory variation that is impacted by stress and tissue type. We

discovered that most cis- and trans- regulatory variation is context

specific, with most unique to only 1 context. Altogether our

results provide a better understanding for how genetic back-

ground and tissue type impacts the genetic architecture of the

inter-individual transcriptional response to ER stress in mouse

and how different genotypes respond to different environments.
We previously used MEFs to assay how a complex genetic ar-

chitecture influences the transcriptional response to ER stress

across different genetic backgrounds (Chow et al. 2015). Here, we
utilized an in vivo mouse model to identify how these patterns
change when comparing across different tissues. In the MEF study,
upregulated genes most significantly influenced by genetic back-
ground were enriched for roles in inflammation (Chow et al. 2015).
However, in this current study, we find no enrichment for any par-
ticular function in the genotype-dependent genes, in either tissue.
In contrast to the MEF study, these genes are involved in such a
wide array of functions, that there is no enrichment. Much of the
variability in the ER stress response likely stems from these dispa-
rate genes. However, we did find commonalities in these genes,
such as many being involved in immunity displaying a genotype-
effect. In addition, we find genes with roles clearly linked to the ER
stress response such as apoptosis, protein transport, regulation of
transcription, and amino acid transport. This demonstrates the
strong impact that genotype has on how different genes respond
to ER stress in different tissues. In addition, this highlights the
strength of an in vivo study which utilizes different tissues to un-
cover greater depth to the variable ER stress response.

This study emphasizes the strong effect that tissue type has
on how genetic variation impacts the transcriptional response to
ER stress. These differences are observed in the number of

Fig. 9. Change in ASE and transcript levels across stress conditions. ASE and total RNA expression levels are plotted. Genes that display ER stress-
induced change in ASE in liver (a–c) or kidney (d–f). (a) and (d) show no change in total transcript levels, (b) and (e) show an increase in total transcript
level, and (c) and (f) show a decrease in total transcript levels.
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regulatory effects and their impact on transcript levels across tis-
sues. A greater number of genes displayed variation across
tissue-type post-ER stress than genes that displayed variation
across genotypes post-ER stress. Even between the highly diver-
gent strains of B6 and CAST, tissue identify has a stronger effect
than genotype. In addition to tissue differences, this work identi-
fies commonalities across tissues and genetic backgrounds and
can provide insight into what is integral to the ER stress response.
For example, we found genes involved in ribosome biogenesis
and the nucleolus upregulated in response to ER stress indepen-
dent of tissue-type and genetic background. Increasingly, there is
evidence suggesting a role for ribosome biogenesis and the nucle-
olus in the ER stress response (Yang et al. 2018; Chen and Stark
2019; Pecoraro et al. 2020). Further functional studies with the ad-
dition of more tissues and genetic backgrounds can better eluci-
date the role and function of the nucleolar stress response in the
context of ER stress.

The genotype- and tissue- dependent genes highlighted in this
study likely represent a small subset of the genes that make up
the complete story of the variable ER stress response. The use of
arbitrary cutoffs results in the exclusion of true effects at sub-
threshold levels. Despite this, we are confident that the genes we
are identifying in this study with the most significant levels have
the strongest impacts on gene expression and the variable ER
stress response. Inclusion of more genetic backgrounds and
tissue-types will be necessary to build a more complete picture of
the genes underlying the genotype-dependent ER stress response.

The ER stress response is implicated in many different dis-
eases such as Alzheimer’s disease, type II diabetes, ALS, athero-
sclerosis, and cancer (Oyadomari et al. 2002; Song et al. 2008; Auf
et al. 2010; Wang, Popko et al. 2011; Ozcan and Tabas 2012; Wang
et al. 2014 ). Each of these diseases are unique in their tissue of or-
igin. In addition, each individual diagnosed with an ER stress-
related disease will have different genetic backgrounds. The
tissue-dependent ER stress response observed in this study illus-
trates how future studies involving ER stress and disease should
investigate the disease-relevant tissue in the context of different
genetic backgrounds, potentially uncovering novel tissue-specific
effects and mechanisms. For example, the combination of tissue-
type and genetic background revealed Nuak2 to have differential
allelic regulation under ER stress conditions (Fig. 6e). Nuak2
belongs to the AMPK protein kinase family and has mainly been
linked to cancer (Sun et al. 2013; Yuan et al. 2018). Understanding
Nuak2 and its role in AMPK regulation and ER stress can provide
insight into the role of Nuak2 in human disease such as cancer.

This study utilized genetic variation present in different
strains of mice to demonstrate the strong impact that genetic
background and tissue type have on cellular processes such as
the ER stress response. We detected numerous ER stress- and
tissue-specific responses in expression levels, regulatory varia-
tion, and allele-specific effects. The majority of these findings
would have been missed if only studying 1 genotype, condition,
or tissue. Future studies can reveal even more complex interac-
tions that affect transcriptional levels by incorporating more

Fig. 10. Variable magnitude in ASE across tissues. Examples of genes that show ASE in both tissues, but differ in the magnitude of that ASE in a tissue-
dependent manner. An example of an upregulated gene (a) and a downregulated gene (b). ASE and total RNA expression levels are plotted.
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variables, such as cell type, additional tissues, and other cellular
stressors. This type of analysis provides better predictive power
for the dynamic effects that genetic variation has on transcrip-
tional levels in different tissues and contexts.
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