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Abstract: Infrared spectroscopy of liquid biopsies is a time-
and cost-effective approach that may advance biomedical
diagnostics. However, the molecular nature of disease-related
changes of infrared molecular fingerprints (IMFs) remains
poorly understood, impeding the methodQs applicability. Here
we probe 148 human blood sera and reveal the origin of the
variations in their IMFs. To that end, we supplemented infrared
spectroscopy with biochemical fractionation and proteomic
profiling, providing molecular information about serum
composition. Using lung cancer as an example of a medical
condition, we demonstrate that the disease-related differences
in IMFs are dominated by contributions from twelve highly
abundant proteins—that, if used as a pattern, may be
instrumental for detecting malignancy. Tying proteomic to
spectral information and machine learning advances our
understanding of the infrared spectra of liquid biopsies,
a framework that could be applied to probing of any disease.

Introduction

Infrared spectroscopy is a well-established method of
studying chemical substances via analyzing the vibrational
transitions that are characteristic of their molecular struc-
ture.[1] In particular, infrared molecular fingerprinting of
human biofluids has the potential to provide information
about the health state of individuals when combined with
appropriate machine learning algorithms.[2–14] The idea behind
is to record an infrared absorption spectrum of the whole
molecular ensemble composing a biofluid using Fourier-

transform infrared (FTIR) spectroscopy and pinpoint the
deviations, associated with a given pathophysiological con-
dition. However, the molecular origin of such changes in
infrared molecular fingerprints (IMFs) is poorly under-
stood.[15, 16] The interpretation of the infrared absorption
spectra is currently largely restricted to the characteristic
spectral signatures of various functional groups.[17–19] How-
ever, these are contained in many different types of biomol-
ecules, their spectral features in aqueous environment are
broad and strongly overlapping, and the molecular complex-
ity of biofluids is extremely high. Therefore, the understand-
ing of the underlying molecular changes of the IMFs has so far
been limited.[20, 21]

Thorough exploration of the molecular origin of IMFs
would be instrumental for successful application and verifi-
cation of molecular fingerprinting in clinical settings.[3] It
would allow for improved sample preparation, ensure that the
spectral features used for building the computational models
are indeed caused by a medical condition and not by
confounding factors and help define the possible limitations
of blood-based IMFsQ applicability.[22] In this study we focus
on human blood serum analysis as an example of minimally
invasive and cost-effective biofluid probing procedure. Sev-
eral studies measured the concentrations of a range of
analytes in human blood serum using conventional biochem-
ical methods and demonstrated that IMFs can be used to
retrieve these concentrations using multivariate regression or
consecutive spectral subtraction approaches.[14, 23–28] However,
they come up short in determining how exhaustive the list of
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molecular constituents is and connecting disease-related
changes in the molecular composition of biofluids to the
changes in the corresponding IMFs.[26] Moreover, majority of
previous studies reported measurements of dry sam-
ples,[14,23, 24, 26, 28] which decreases the unwanted water back-
ground. However, the infrared spectra of dried compounds
can be very different from those in the native environment as
dehydration distorts the spectral contributions of hydrophilic
molecules.[29] We avoid this issue by measuring the samples in
their native liquid state and analytically subtracting the water
absorption background.[11]

It had been suggested that large variations in blood-based
IR spectra may be caused by a varying albumin-to-globulin
ratio.[30] Indeed, the spectroscopic signature of human blood
serum is vastly dominated by a few highly abundant molecular
components, such as human serum albumin (HSA) and
immunoglobulins.[31] To overcome the challenge of strong
molecular signals that overshadow the signals from less
abundant molecules, splitting complex biological samples into
several fractions of different chemical nature is benefi-
cial.[28, 32,33] Previously, ultrafiltration has been used to frac-
tionate human blood serum based on molecular weight of the
components.[15, 24, 28, 34,35] However, commercially available
centrifugal filters introduce unwanted chemicals and require
additional washing steps.[36] In this study, we chose to adapt
a combination of solvent-extraction sample preparation
protocols, which are typically used in metabolomics[37] and
proteomics,[38] because of their robustness and speed.[39]

In order to explore the dependence of the IMF of human
blood serum on its molecular composition, spectroscopic
molecular fingerprinting should be ultimately combined with
a technique that is able to provide molecular-specific infor-
mation over a high dynamic range.[40] Recently, a high-
throughput mass spectrometry (MS)-based proteomic work-
flow has been established for the analysis of human blood
plasma.[41] We adapted this technology for human blood
serum and applied it to our sample set in order to model the
IMFs of hydrated biofluids as a linear combination of
molecular components. Although FTIR has been integrated
with proteomics to study tissue thin-sections,[42, 43] such
a parallelized approach for molecular annotation of disease-
relevant vibrational fingerprints of human blood derivatives
has been lacking this far.

With the gained understanding of the molecular compo-
sition underlying the IMFs of human blood serum, we
compare the samples of lung cancer patients (tumor node
metastasis (TNM) clinical stages II and III) with reference
individuals matched in age, gender and smoking status. We
focused on lung cancer as a prototypical disease for which
non-invasive early detection from blood profiling would be
highly beneficial.[44, 45] The ability of FTIR spectroscopy of
blood serum to discriminate lung cancer cases from controls
has been previously shown in several studies.[46, 47] Pattern
recognition algorithms were used to identify non-small cell
lung carcinoma and subtype the disease conditions.[46] Inde-
pendently, the ratio between intensities at 1080 and 1170 cm@1

was put forward as the most informative for disease detection,
and it was suggested that changes in the protein secondary
structure might be correlated with lung cancer.[47] Other types

of cancer have also been detected with various efficiencies
using blood-based IMFs, with little insight into molecular
changes for the reasons stated above.[10, 48–52]

In this study, we obtain reproducible, cost- and time-
efficient IMFs of human sera and use proteomic measure-
ments to facilitate their understanding at a molecular-level. In
particular, we reveal a pattern of changes of human blood
serum composition, which correlates with the presence of
lung cancer and results in an observable difference between
IMFs of blood sera of lung cancer patients compared to the
reference group. Both spectral and molecular information
was used to build explainable classification models for lung
cancer detection.[53] This paradigm can be applied to possibly
any other health phenotypes in order to develop efficient and
explainable diagnostic tools.

Results

Decomposing the Complexity of Human Blood Sera Using
Biochemical Fractionation

We recorded infrared absorption spectra of liquid human
blood sera in the range from 1000 to 3000 cm@1 (Fig-
ure 1A,B). The spectra are dominated by amide bands that
are attributed to the vibrations of protein backbone.[54] In
particular, the most prominent feature between 1600 and
1700 cm@1 (Amide I band) is characteristic of the secondary
structure of the proteins.[54] The region on the red side of the
spectrum (1000–1200 cm@1) is often referred to as “carbohy-
drate region”, because of the typical absorption patterns that
glycans exhibit here.[18] Finally, lipids produce several absorp-
tion bands around 1735 cm@1, 2852 cm@1 and 2926 cm@1.[55]

Attributing the distinct features of the mid-infrared
absorption spectrum of human blood serum to a specific
molecular class is somewhat oversimplified, since absorption
spectra of various biological molecules often overlap. In order
to gain deeper insight into the origins of different spectral
features, we built a comprehensive model of the human blood
serum absorption. To this end, we used a set of 148 blood
serum samples (Figure 1A).

As a first step, we recorded the IMFs of each full intact,
fluid, serum sample using high-throughput automated FTIR
spectrometer in transmission mode (black line in Fig-
ure 1B).[11] After every sample, a reference measurement of
water-filled cuvette is performed and used to subtract the
water background from the sample spectra such that the first
derivative of the resulting curve is minimal from 1800 to
2200 cm@1 (SI Materials and Methods, section 4). Next, we
biochemically fractionated each sample into three fractions
(metabolites, human serum albumin (HSA)-depleted proteins
and HSA-enriched proteins) and recorded their IMFs (col-
ored lines in Figure 1B) in order to assess the relative
contributions of roughly defined molecular classes. In paral-
lel, we used proteomic analysis of the crude sera and HSA-
depleted fractions to characterize the efficiency of HSA
depletion and the molecular composition of each protein
fraction.
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Human serum albumin is the most abundant serum
protein and constitutes about a half of total protein mass.[31]

It is helpful to separate HSA away from other proteins,
because its intense absorption potentially obscures the signals
from other molecules.[32] For this purpose, we first precipi-
tated most of the proteins using cold ethanol.[38] The super-
natant was enriched in HSA, which we precipitated in the
next step to separate it from metabolites.[56] The latter fraction
was dried in vacuum and all three of them were re-dissolved
in water prior to spectroscopic measurements.

We assessed the reproducibility of our fractionation
protocol both with FTIR spectroscopy and proteomic anal-
yses (Figure 1C). First, we estimated the measurement
uncertainty of the proteomic workflow as the coefficient of
variation (CV) in repeated measurements of the same single
human blood plasma sample. The average CV for the 12
proteins considered in this study (see below) in the crude
plasma samples is 9 %, and it rises to 10% in the HSA-
depleted fraction of the same sample, suggesting that the
process of fractionation adds only minor error compared to
the instrumental one. The CV measured for 93 reference
individuals provides a rough estimate for the between-person
variability, which is higher than the instrumental error for all

considered proteins (33 % on average). The analysis based on
IMFs leads to similar conclusions (Figure 1C, right axis).

We further compared the spectral intensities of each of
the fractions (Figure 1B). This procedure facilitates several
unexpected conclusions about the nature of the IMFs of crude
blood sera: Firstly, the signals between 1000 and 1200 cm@1

are typically attributed to carbohydrates.[18] Indeed, we
detected the metabolite fraction containing free carbohy-
drates, exhibiting characteristic pattern in this region of the
spectra. However, the intensity of the signals from both two
protein fractions combined is an order of magnitude higher
than that of metabolite fraction in this spectral region. We
attribute this effect to glycosylation of proteins and further
demonstrate it below. Additionally, we show that metabolites
exhibit an absorption band that overlaps with Amide I of the
proteins and reaches 10% of its intensity.

Altogether, our fractionation workflow enabled us to
disentangle the quantitative contributions of metabolites and
proteins to the IMF of crude blood sera. Since the absorption
of proteins fractions is, as expected, significantly higher than
that of metabolites, in the next step we focused on under-
standing and modeling the contribution of protein absorption
to the overall fingerprints.

Figure 1. Decomposing the complexity of human blood sera using chemical fractionation. A) Overview of the workflow of the study. B) Average
infrared molecular fingerprint (IMF) of human blood serum of 93 reference individuals and the corresponding IMFs of 3 fractions. The dashed
vertical line shows the position of the Amide I band in the HSA-enriched fraction. The two lower inserts highlight the regions with the largest
relative differences between the fractions. C) Reproducibility of the fractionation protocol assessed with proteomic and FTIR measurements. Left
axis: coefficients of variation for the levels of 12 proteins considered in this study for the same 8 serum samples with and without fractionation as
well as their between-person variability in 93 control individuals. Right axis: the corresponding variations in the IMFs, averaged across
wavenumbers.

Angewandte
ChemieResearch Articles

17062 www.angewandte.org T 2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH Angew. Chem. Int. Ed. 2021, 60, 17060 – 17069

http://www.angewandte.org


Towards Molecular Understanding of Infrared Fingerprints Using
Proteomics

We demonstrated that the IR spectrum of blood serum
mostly exhibits signals originating from the protein absorp-
tion. It is therefore important to understand how various
proteins of blood sera contribute to the overall IR absorption
spectra of this biofluid. To that end, we performed bottom-up
proteomic analysis of the same samples. They were subjected
to an established mass-spectrometry based proteomics pipe-
line.[41] In brief, proteins in the sample are denatured and
disulfide bonds reduced and quenched. Proteins are then
digested into tryptic peptides and desalted. The peptides are
separated by reversed phase chromatography coupled online
to the mass spectrometer to detect the mass to charge ratios of
peptides and their fragments in a quantitative manner. This
enables software-dependent peptide identification and sub-
sequently quantitative protein assembly from detected pep-
tides.[57,58]

The first ten proteins listed in Figure 1C are the ten most
abundant proteins in human blood serum (Table S1). The
quantitative values for each protein (so called “label-free
quantification” or LFQ values) provided by proteomic
measurements are suited to characterize the differences
between subjects in a study, but not directly proportional to
the absolute concentrations of proteins,[59] as revealed by
Table S1. To obtain the actual protein concentrations, we re-
scaled the LFQ values using the average reference concen-
trations of these proteins in healthy subjects.

To be able to link the actual individual protein levels
directly to the IMFs of blood sera, we measured IR
absorption spectra of each of the 10 most abundant proteins
separately, dissolved in phosphate-buffered saline (PBS).
Figure 2A demonstrates the IR spectra of 5 highly abundant
proteins (Figure S2 for all proteins). The position and shape
of the Amide I band is characteristic for their secondary
structure and qualitatively corresponds to the known b-sheet
and a-helix content of proteins.[54] As expected, alpha-1-acid
glycoprotein (ORM1 in Figure 2A) shows particularly high
absorption in the region of 1000–1200 cm@1, because about
45% of its dry mass is comprised of carbohydrates.[60]

In order to estimate the contribution of each protein to
the IMF of blood serum, we modeled the absorption spectra
of every individualQs serum as a sum of IR absorption spectra
of proteins multiplied by their respective concentrations,
measured by proteomics [Eq. (1)]:

IMF ~nð Þ ¼
X

i

Ci > Si ~nð Þ, ð1Þ

where ~n represents wavenumber, Ci—concentration of the
protein i in mgmL@1, Si ~nð Þ—absorption spectrum of the
protein i for 1 mgmL@1.

We started by taking into account the spectral contribu-
tion of HSA only (i = 1) and building complexity by adding
proteins one by one, in the order as listed in Table S1.
Figure 2C shows how the model becomes closer to the
experimentally measured IMFs with every additional protein.
Adding further lower abundant proteins to the model is

expected to yield only small improvements, since the total
concentration of remaining proteins that are beyond the ten
molecules considered here is about the same order of
magnitude as the level of complement component C3.

Figure 2. Molecular modeling of infrared fingerprints based on serum
proteomic profiling. A) Examples of infrared absorption spectra of
human serum proteins at the same concentration, 5 mg mL@1, labeled
according to the corresponding genes: SERPINA1, alpha-1-antitrypsin;
ALB, human serum albumin; HP, haptoglobin; ORM1, alpha-1-acid
glycoprotein 1; IGHA1, immunoglobulin A. B) Average IMF of 148
human blood sera, each modelled as a sum of contributions of 10
proteins compared to the average experimentally measured IMF.
C) Average vector distance between the model and experimental
spectra for all 148 samples depending on the number of proteins
introduced into the model.
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In Figure 2B we compare the average modeled and
experimental absorption spectra of human blood serum.
Given the linear character of the model and the limited
number of considered components, the matching is remark-
ably high. The only prominent peaks missing from the
modeled spectra are the C=O (at 1735 cm@1) and C@H
stretches (at 2852 cm@1 and 2926 cm@1) known to be unique
for lipids.[55] Indeed, the average concentration of cholesterol
in human blood serum is of the same order of magnitude as
the last proteins we considered.[61] The model can, therefore,
be further refined by including cholesterol and other metab-
olites, such as ATP, melanin, glucose and urea. In fact, adding
the entire metabolite fraction to the model further reduces
the RSS between the model and the experiment by 50%
(Figure S3).

Combining MS-Based Proteomics and IR Fingerprinting Reveals
Lung Cancer-Related Molecular Changes in Blood Serum

Having obtained a simple model of the IR absorption of
human blood serum, we can address the question how this
absorption changes as a consequence of a disease. In this
study we focused on lung cancer, as the most common cause
of cancer-related deaths worldwide.[44] We compare the IMFs
of sera between two cohorts: 55 lung cancer patients (therapy
na"ve, prior to any cancer-related therapy, at TNM clinical
stages II and III) with 93 reference individuals. In the latter
cohort we gathered non-symptomatic individuals (“healthy”),
patients with chronic pulmonary obstructive disease (COPD)
and individuals with lung hamartoma, to challenge our
detection regime by non-cancerous lung diseases. Important-
ly, to avoid possible confounding bias the cohorts are gender,
age and smoking-status matched (Table S2).

We find that infrared molecular fingerprints of lung
cancer patients clearly differ from that of reference individ-
uals. The black line in Figure 3 A shows the difference
between the average IMF of lung cancer patients and those
of references as a function of wavenumber, which we specify
as “differential fingerprint”. The p-values of the most
prominent spectral peaks are below 10@6 (Table S3), strongly
suggesting that the differences between the IMFs of two
cohorts are statistically significant. To further quantify these
differences, we applied support vector machine (SVM)
algorithm to classify the samples into two classes—cancer
cases and reference individuals. To that end, the data were
split into train and test sets, employing 10-times repeated 10-
fold cross-validation. The area under the curve (AUC) of the
receiver operating characteristics (ROC) curve was used as
a measure of classification efficiency. For the classification of
lung cancer patients versus references, the model reveals an
AUC of 0.85: 0.1, implying that the SVM model can, in
principle, be trained to distinguish between the two cohorts.

We find that the differential fingerprint of lung cancer has
a specific shape, with prominent features around 1000–
1200 cm@1, as well as in the Amide I and Amide II regions.
Such shape could result from changes in the proteins
secondary structure, as previously suggested[47] or, alterna-
tively, from the changes in their concentration.[22] The

distinction between the two possibilities can only be obtained
by comparison of two sample sets with a technique that
provides information about molecular concentrations.

The HSA-enriched and HSA-depleted fractions reflect
the largest differences between lung cancer and reference
samples with p-values below 10@6 (Table S3), while the
metabolite fraction is not significantly different in the samples
from reference individuals versus these of the lung cancer
patients. This finding is confirmed by the AUC values: for the
metabolite fraction the AUC is 0.62: 0.2, while for the HSA-
enriched fraction it is 0.82: 0.1, and for the HSA-depleted
fraction 0.75: 0.1. Thus, we turned to the proteomic meas-
urements of the same sample set—aiming for the identifica-
tion of individual proteins responsible for the observed
changes in the IMFs.

In line with previous research,[45, 62–68] we find a number of
proteins that demonstrate p-values below 0.0005 (Table S4).
However, the purpose of this study is not the search for
specific biomarking candidates; instead, we wish to evaluate
whether lung cancer results in a pattern of changes in protein
concentrations responsible for its IR signature.

The first question we have addressed is: which proteins do
we have to consider in order to model the differences in the
IMFs between the lung cancer patients and reference
individuals. The differential fingerprint is affected by the
disease-related absolute change in the protein concentration
due to the linear character of the absorption measurement.
Therefore, we ranked all detected proteins according to the
absolute difference in average concentration between lung
cancer and reference samples, as measured by MS (Table S5).
Out of ten proteins that are most extensively changing, eight
are also among the ten most abundant proteins in the blood
sera.

We further identify other proteins reflecting the differ-
ences between the two sample sets, such as alpha-1-acid
glycoprotein-1 and alpha-1-antichymotrypsin: although their
concentrations in non-symptomatic subjects are below the ten
most abundant proteins, they are changing significantly in
lung cancer patients and thus have to be taken into account to
accurately model the disease differential fingerprint. In total,
we considered twelve proteins for the model of lung cancer
differential fingerprint, as shown in Figure 3B: ten most
abundant ones and two additional ones that are changing
most significantly.

The change in the concentrations of some proteins, for
example, HSA, does not reach statistical significance (p =

0.1), being not sufficiently large (@9%) as compared to
between-person variability (reference range: 45 %[69]). How-
ever, in absolute terms, the concentration of HSA changes the
most (@0.4 gdL@1) due to its initially high abundance leading
to an observable change in the infrared absorption. It is
therefore important to take the albumin level into account
when modelling the impact of a disease on an IMF. Moreover,
previous studies have demonstrated lower level of HSA in
lung cancer patients than in general population.[70–72]

After we have modelled the IMF of every individual as
described above, the differential fingerprint of lung cancer
was calculated as the difference between the average finger-
print of lung cancer patients and reference individuals. The
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Figure 3. Lung cancer-related molecular changes in blood serum, based on comparison between 55 lung cancer patients and 93 reference
individuals. A) Differential fingerprints of lung cancer in full sera: experimentally measured and modeled based on the levels of 12 proteins. The
shaded area shows the standard deviation of the IMFs of the reference group. B) Change in the concentrations of proteins in blood serum caused
by lung cancer, measured by proteomics. The proteins are ordered according the absolute difference in the concentrations in lung cancer and
control individuals. *, p-value below 0.05; **, p-value below 0.0005; ***, p-value below 10@6 ; no star, p-value above 0.05. C) ROC curves based on
the experimental measurement of IMF of full serum and the set of 12 proteins measured by proteomics. The STDs are 0.1 for AUC in panels (C)
and (F). D) Differential fingerprints of lung cancer in HSA-enriched fraction: experimentally measured and modeled based on the levels of 3
proteins. E) Change in the concentrations of proteins in HSA-enriched fraction caused by lung cancer, measured by proteomics. F) Comparison
between the ROC curves based on the experimental measurement of IMF of HSA-enriched fraction and the corresponding set of 3 proteins.
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resulting curve of this twelve-protein model very closely
resembles the measured differential fingerprint, reflecting all
the important features (pink line in Figure 3A). Moreover,
the binary classification of lung cancer cases versus reference
individuals based on the concentrations of the twelve
identified proteins produces an AUC of 0.82: 0.1, which is
close to the value for experimentally measured serum spectra
(0.85: 0.1). These findings suggest that most of the informa-
tion in IMFs regarding lung cancer status stems from the
molecular changes in these twelve proteins. Moreover, such
kind of information can be measured in time- and cost-
efficient manner by applying FTIR, without the need to
measure the concentrations of each of the protein separately.

Interestingly, the three proteins that change the most
between the lung cancer patients and the reference group
(namely, HSA, haptoglobin and alpha-1-acid glycoprotein 1,
Figure 3B,E) remain predominantly contained in the HSA-
enriched fraction during the fractionation procedure. This
explains the high AUC obtained for this protein fraction:
0.82: 0.1, blue line in Figure 3F. It further suggests that most
of the molecular information about the presence of lung
cancer is encoded in the concentrations of the three proteins
named above, out of all twelve proteins analyzed. Indeed, the
SVM binary classification based on the concentrations of
these three proteins reveales the AUC of 0.82: 0.1, the same
as based on all 12 proteins considered above.

We modeled the IMFs of the HSA-enriched fraction as
detailed above, taking into account the proportion of each
protein in HSA-enriched fraction compared to full serum
(Table S1, Figure S1 and S4). In line with only a minor
contribution of low-abundant proteins and metabolites to the
IR spectra of HSA-enriched fraction, we find that the model
very well reproduces the experimental differential fingerprint
(Figure 3D).

In summary, we observe statistically significant differ-
ences between the IMFs of blood serum of lung cancer
pateints when compared to the IMFs of reference individuals.
Biochemical fractionation and proteomic profiling of the very
same sample set facilitated identification of the compounds
responsible for these differences and revealed previously
unappreciated pattern of changes in the concentrations of
well known proteins that we find to be characteristic of lung
cancer.

Discussion

Although FTIR has been used over decades and blood-
based studies suggested the applicability of this approach to
disease diagnostics, the molecular nature of blood-based
infrared molecular fingerprints (IMFs) and changes therein
has not been well understood. Being cost- and time-efficient,
suitable for high-throughput approaches, IMFs could greatly
contribute to clinical diagnostics if their robust correlation
with any given condition is reproducibly demonstrated.
Molecular understanding of the IMFs along with computa-
tional models may open up a path towards informed choice of
biofluid (e.g. serum vs. plasma), improved sample preparation
and possibly even initial steps of the biomarker identification.

Here we examined the samples with two independent
techniques—IR spectroscopy and mass spectrometry (MS)-
based proteomics—with the goal to elucidate the molecular
entities dominating human blood-based IMFs.

As a first step to decompose chemical complexity of IMFs,
we established a protocol for highly reproducible fractiona-
tion of crude human blood sera into three fractions: human
serum albumin (HSA)-enriched proteins, HSA-depleted
proteins, and metabolites. The strongest IR absorption signal
in human blood serum arises from proteins. We therefore
measured their relative concentrations in the samples using
MS-based proteomic profiling and used the concentrations of
ten most abundant proteins to reconstruct individual spectra
of the human blood serum. This concept is shown in the
bottom part of Figure 4 for the general case of any Romic
technology. Indeed, the model built in this study can be
further developed by adding highly abundant metabolites and
additional proteins until the model reproduces measured
IMFs within their noise limit. In particular, it has been shown
previously that in addition to the proteins discussed here,
FTIR spectra of blood plasma provide information about the
levels of lactate, urea, apolipoproteins B and C, as well as
immunoglobulin D.[26] However, the data presented here
suggest that our 10-protein-based approach leaves little room
for improvement in modelling IMFs measured by FTIR
spectroscopy. The ultimate limitation of such modeling lies in
the linearity of the model, disregarding any interaction
between different blood components. In general, this ap-
proach is facilitated by the measurements of fluid samples, as
performed in this study, where all blood serum compounds
are interrogated in their native aqueous environment. It
remains to be tested if similar modelling could be performed
relying on the spectra of dry films, which are commonly
measured in the field.[10,17]

Infrared molecular fingerprints acquired by field-resolved
spectroscopy[73] may drastically increase the precision of
infrared molecular fingerprinting by reducing the noise limit.
This will render smaller molecular contributions significant,
uncovering thereby more molecular information just as the
combination of further biochemical fractionation (e.g. by
liquid chromatography) with field-resolved spectroscopy will
do. Both may allow more lower-abundance molecules to
contribute to the identification of a pathophysiological con-
dition.

In this study we use lung cancer as a case scenario of
a medical condition, the outcome of which could significantly
benefit from early detection. We find that IMFs of sera
samples of lung cancer patients differ significantly from that
of reference individuals. Using MS-based proteomics, we
identify a pattern of known highly-abundant proteins that
determine the observed change in the IMFs of blood sera.
Some of them have been previously linked to cancer:
unexplained hypoalbuminaenia has been associated with
increased cancer risk,[74] and low pre-treatment albumin
level—with poor survival rate.[75] Moreover, in line with our
findings, the levels of haptoglobin, complement component
C3, alpha-1 antytrypsin and alpha-1-acid glycoprotein were
previously shown to rise in blood of lung cancer pa-
tients.[63–65, 68] Due to differences in tumor growth rate,
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invasiveness and other factors, the exact pattern of changes
might be organ- or cancer type-specific, potentially providing
a way to distinguish between different cancer entities in
a single IMF measurement. This exciting prospect could be
tested using the proposed general workflow (Figure 4).

Importantly, although these proteins are not specifically
challenging to detect and measure, they have previously not
been used in a combined fashion to help detect or diagnose
lung cancer. It is meanwhile widely accepted that using
multiple biomarking molecules together, as a pattern, is more
effective and robust for detecting a particular health con-
dition than using a single biomarker.[31, 67, 76,77] Infrared finger-
printing of human blood serum takes this approach to a new
level: here we effectively combine a wide range of molecules
into a single IR spectrum that can be easily measured and
interpreted. To illustrate that, we considered the levels of all
114 proteins detected by proteomics in every sample.
Importantly, the binary classification efficiency based on all
these proteins measured separately is not higher than the
efficiency based on a single IMF measurement (Table S6).

Lung cancer induces a number of changes in the levels of
blood serum proteins that have been previously linked to
acute-phase response, and it is well-known that cancer is often
associated with inflammatory states.[44, 78] In line with the
general discussion in the field,[22] our findings underscore the

need for additional clinical studies that would look into the
specificity of IMFs. A well-designed reference cohort should
include individuals with potentially similar pattern of changes
in the blood composition: for example, in the case of lung
cancer, with chronic or acute inflammation. Due to cost-
efficiency and rapidity of blood-based infrared molecular
fingerprinting, it could still find a wide range of applications,
even if its specificity proves insufficient for screening
applications.

This study featured case-control design, which is limited in
that between-person variability potentially masks the disease-
related signals. It has been recently demonstrated that IMFs
of healthy individuals remain stable over clinically relevant
periods of time,[11] opening up an avenue of health-monitoring
applications. In such settings, molecular-level understanding
of the disease-related changes in IMFs will become even more
important, helping establish better clinical study design, and
ultimately leading to improved diagnostics to probe human
health and disease.

Conclusion

As the focus of future healthcare is shifting from treat-
ment to early detection and prevention, such rapid, cost-

Figure 4. General workflow for probing molecular changes in disease. The infrared absorption spectra of blood sera are reconstructed as a linear
combination of the spectra from individual molecular constituents, while the concentrations of the latter are measured using an ‘omics
technology. The resulting model is compared to the measured IMFs of blood sera and used to explain disease-related features therein. A similar
workflow can potentially be applied to the detection of any phenotype in human biofluids.
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effective and holistic approaches as infrared molecular
fingerprinting of body liquids will become ever more relevant.
So far, infrared spectral changes in complex bioliquids were
linked to multiple diseases but have remained uninterpretable
with regard to which specific molecule accounts for a spectral
change. In this study we looked systematically into the
contributions of different constituents of blood serum to the
overall IMF. In particular, we showed that the IMFs of blood
serum can be to a high extent modelled using the concen-
trations of the ten most abundant proteins. With non-
metastatic lung cancer as an example of a medical condition,
we showed that a number of highly abundant acute-phase
proteins are up- and down-regulated in cancer patients
compared to the reference group, leading to an observable
change in the IMFs of blood serum. Accompanied by
a meaningful molecular annotation, this change is more likely
to find its use in everyday clinical practice.

The paradigm presented here could in principle be used
for any pathophysiological condition. After having recorded
the IMFs of patients and compared them to matched
reference individuals, one could use biochemical fractiona-
tion to determine which molecular class is responsible for the
disease-related differences and perform in-depth omics
profiling of the identified fraction (Figure 4). This would
provide insights into the nature of information that infrared
molecular fingerprinting is able to provide and into its
additional value compared to well-established clinical tests.
Moreover, combining biochemical fractionation with field-
resolved spectroscopy-based infrared molecular fingerprint-
ing[73] might yield deeper molecular insight along with higher
specificity and sensitivity for disease detection. Ultimately,
the larger clinical studies with purposefully chosen reference
groups, stratified and controlled for comorbidities, may bring
IMF—an inexpensive and time-efficient method—closer to
everyday clinical use.
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