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Malassezia pachydermatis is a basidiomycetous yeast that causes infections in humans and animals. Here, we report the genome
sequence of Malassezia pachydermatis strain CBS 1879, which will facilitate the study of mechanisms underlying pathogenicity
of the only non-lipid-dependent Malasezzia species.
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M. pachydermatis is the only non-lipid-dependent species of
the genus Malasezzia. All other 13 species (1) of this genus

are obligate lipophilic and require fatty acids for growth. This is
due to the lack of a fungal type fatty acid synthase (2). M. pachy-
dermatis is able to assimilate fatty acids from the growth medium
and can thus be considered a facultative lipophilic species (3). The
molecular mechanisms underpinning this behavior are not yet
clear.

M. pachydermatis is a member of the microbiota of animals. It
is an opportunistic pathogen of dogs causing dermatitis and otitis
externa. M. pachydermatis has also been implicated in human
bloodstream infections (4, 5). Three genomes of the obligate lipo-
philic species M. globosa, M. restricta, and M. sympodiales have
been reported (2, 6). Our goal is to understand the facultative
lipophilic nature of M. pachydermatis.

M. pachydermatis genomic DNA was extracted as previously
described (7). The DNA was sequenced with the Illumina HiSeq
2000 platform at ServiceXS (Leiden, the Netherlands). Two runs
with 120-bp paired-end reads on 250-bp fragments were per-
formed following standard Illumina protocols with a 280-fold ge-
nome coverage. Reads were quality controlled with FastQC (8)
and trimmed using Flexbar (9). De novo assembly was performed
using CLC Assembly Cell (CLC bio, Denmark). The resulting con-
tigs were scaffolded using SSPACE_Basic (10), and gaps were filled
with GapFiller (11). The final assembly consisted of 148 contigs
that were linked by pair-end reads into 91 scaffolds, 28 of which
were longer than 1 kb. The maximum contig and scaffold length
were 1,466,538 and 1,489,072 bp, respectively, and the N50 was
0.64 Mbp and 1.3 Mbp, respectively. The genome size was 8.15
Mbp with a G�C content of 55.17%.

The genome was annotated using Maker2 (12) and we made
use of a set of 109,264 previously reported Ustilaginomycotina pro-
teins, 1,413 ESTs from Malassezia spp., and CEGMA (13). The
homology-based predictor GeneMark and the ab-initio predic-
tors SNAP (14) and Augustus (15) were used to predict genes. In
order to train Augustus and SNAP we ran MAKER two consecu-
tive times; the initial annotation output from MAKER was con-

verted into a model for SNAP and a training set for Augustus,
which was used in the subsequent run. Functional annotation of
the predicted genes was performed by Blast2GO (16), which in-
volved Blast and InterProScan annotation (17, 18).

A total of 4,202 protein-coding genes were predicted with an
average size of 1,581 bp. The coding regions corresponded to 81%
of the genome. In addition, CEGMA showed that 97.18% of the
eukaryotic core genome was present in the genome (13).

Lipid degrading enzymes play an important role in the host
invasion process of M. pachydermatis (19, 20). A total of 50 lipid
degrading enzymes were identified in the genome, including 35
lipases and 15 esterases. Most interestingly, a typical fungal fatty
acid synthase was not detected in the genome. Instead a polyketide
synthase, homologous to fatty acid synthases (21), was detected
that showed 75% identity with its bidirectional homologue of
M. sympodialis. How M. pachydermatis is able to grow in the ab-
sence of fatty acids is a subject for future research.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited at DDBJ/EMBL/GenBank un-
der the accession number LGAV00000000. The version described
in this paper is LGAV01000000.
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