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Abstract: The process of DNA CpG methylation has been extensively investigated for over 50 years
and revealed associations between changing methylation status of CpG islands and gene expression.
As a result, DNA CpG methylation is implicated in the control of gene expression in developmental
and homeostasis processes, as well as being a cancer-driver mechanism. The development of
genome-wide technologies and sophisticated statistical analytical approaches has ushered in an era
of widespread analyses, for example in the cancer arena, of the relationships between altered DNA
CpG methylation, gene expression, and tumor status. The remarkable increase in the volume of
such genomic data, for example, through investigators from the Cancer Genome Atlas (TCGA), has
allowed dissection of the relationships between DNA CpG methylation density and distribution,
gene expression, and tumor outcome. In this manner, it is now possible to test that the genome-wide
correlations are measurable between changes in DNA CpG methylation and gene expression.
Perhaps surprisingly is that these associations can only be detected for hundreds, but not thousands,
of genes, and the direction of the correlations are both positive and negative. This, perhaps, suggests
that CpG methylation events in cancer systems can act as disease drivers but the effects are possibly
more restricted than suspected. Additionally, the positive and negative correlations suggest direct
and indirect events and an incomplete understanding. Within the prostate cancer TCGA cohort,
we examined the relationships between expression of genes that control DNA methylation, known
targets of DNA methylation and tumor status. This revealed that genes that control the synthesis of
S-adenosyl-L-methionine (SAM) associate with altered expression of DNA methylation targets in a
subset of aggressive tumors.

Keywords: CpG methylation; gene expression; genome-wide; prostate cancer; Indolethylamine
N-Methyltransferase; Methionine Adenosyltransferase 2B

1. Introduction

1.1. Methylation of DNA Cytosine

The patterns and function of DNA methylation have been extensively investigated across
organisms, in settings of both health and disease (reviewed in [1]). In humans, for example, this
covalent DNA modification has been studied in developmental and normal biology [2] where it is
clear that the control of DNA methylation is biologically profound. The control of DNA methylation is
central to embryogenesis, genetic imprinting, and X chromosome inactivation. Furthermore, DNA
methylation levels change across the genome through the aging process, thus giving rise to the concept
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of the so-called epigenetic clock (reviewed in [3,4]). There has been an equally profound examination
of DNA methylation in cancer settings (reviewed in [5]) and other age-related syndromes.

At the center of the process of DNA methylation is the transfer of a methyl group from
S-adenosyl-L-methionine (SAM) to the cytosine of a CpG dinucleotide (adjacent within a single DNA
strand), immediately following DNA replication [6]. The addition of a methyl group to cytosine most
commonly occurs in the context of a being adjacent and five prime to guanine and, hence, the nomenclature
of CpG where p represents the DNA phosphate backbone. Cytosine can also be hydroxyl methylated.

In fact, SAM is a universal methyl donor, being the substrate for enzymes that control the methylated
status of DNA, RNA [7], and proteins, such as histones [8]. Indeed, varieties of the enzymes that
control these events have relatively high affinity for SAM [9]. Following donation of a methyl group,
S-adenosyl-L-homocysteine (SAH) is formed and the ratio of SAM/SAH appears to be critical for the
control of these biological processes (reviewed in [10]). Importantly, these substrates are, themselves,
profoundly and rapidly influenced by environmental factors including diet [11] and, in turn this potentially
combines with genetic variation and links to the predisposition to a number of diseases (reviewed in [12]).

The central tenet of studying changes in DNA methylation is that it represents a major mechanism
by which chromatin access of transcription factors (TF) and the basal transcriptional machinery is
modulated. There are at least 50 years of research supporting links between altered DNA methylation
of genes that, in turn, govern processes associated with cancer initiation and progression. In the 1960s,
researchers had already observed altered patterns of DNA methylation in cancer cell models and
even proposed that this resulted in altered distribution of the sites of transcription initiation [13,14].
The biochemistry and regulation of CpG methylation was investigated and led to the description of
altered methylation states of known tumor suppressors and oncogenes. Subsequent exploration of
the associations at candidate sites between altered DNA methylation and gene expression largely
confirmed the hypothesis that the DNA methylation signal serves as a physical impediment to TFs
and the transcriptional machinery.

Thus, a general hypothesis emerged where the consequence of DNA methylation is to provide
a physical barrier to positive regulators of transcription. More specifically, DNA methylation is a
process of epigenetic control of the information encoded by DNA. That is, the process does not alter
the underlying DNA sequence as 5-methylcytosine (5mC) still operates in a codon in the same manner
as unmethylated cytosine, and yet it is heritable to daughter cells as the 5mC mark is copied to the
nascent strand of DNA during DNA replication.

Methylated cytosine is a dynamic modification not only because it is added and removed by
enzymatic processes, but also because it can spontaneously deaminate and, therefore, mutate [15–17].
By contrast, spontaneous deamination of unmethylated cytosine is readily recognized by the
DNA repair machinery and corrected. Therefore, during the course of evolution methylated CpG
dinucleotides have steadily been deaminated. As a result, across the human genome the frequency
of CpG is actually underrepresented accounting for only 1/80th of the dinucleotides in the genome
rather than the expected 1/16th [18].

The overwhelming majority (~85%) of methylated CpG sites in the genome are found in repetitive
elements such as short interspersed nuclear elements (SINEs) and long interspersed nuclear elements
(LINEs), as well as satellite DNA repeats in peri-centromeric regions. Persistent methylation of
CpG in these repetitive elements is probably withstood as there is less evolutionary pressure on
these regions and they can withstand the increased mutation rate without apparent harm to fitness.
By contrast, CpG regions that remain unmethylated presumably have higher evolutionary pressure to
remain unmethylated and thereby avoid the higher mutation rate. Approximately 15% of the CpG
sites are found in CpG islands in the promoter regions of some 70% of protein-coding genes [19].
Presumably the regulatory function of methylation at CpG islands outweighs the potential mutation
that may occur and argues for evolutionary conservation of CpG island function in gene regulation.
Hence, while there is significant evolutionary pressure to reduce CpGs, the function of CpGs in islands
is advantageous and protected from evolutionary erosion [20,21].
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CpG islands are between 300 and 3000 bp (base pairs) in length with a GC content of greater than
50% and an observed/expected ratio of CpG to GpC greater than 0.6. Consistent with the idea that
they play roles in the control of gene expression, they are often found to overlap with the histone mark
trimethylated at Lysine 4 of Histone 3 (H3K4me3) and binding sites for RNA polymerase indicative of
active, or at least permissive, transcription [22,23]. Although annotation of the non-coding genome
is not as complete, there is evidence that CpG islands that previously appeared to be orphans, not
associated with a known gene, can be associated with long non-coding RNA (lncRNA), micro RNAs
(miRNAs) and other non-coding genes [24] and that these distal, or orphan, CpG islands may be
important sites for TF binding and the control of non-coding RNA expression [25].

2. The Control of CpG Methylation and Its Impact on Transcription

As with all modifications to DNA, the addition and subtraction of methyl groups is tightly
regulated by antagonistic enzyme families. The DNA methyl transferases (DNMTs) add methyl
groups. DNMT1 is the major DNA methyltransferase expressed at high levels in all tissues where it
plays a role in the maintenance of cytosine methylation following progression though the cell cycle.
DNMTA3a and 3b are more involved in the de novo initiation of methylation patterns. Whilst these
enzymes have been identified and investigated for many years, being cloned in the late 1980s and early
1990s [26], the ten-eleven translocation (TET) family of proteins were identified as the methylcytosine
dioxygenases only in 2009 [27]. These proteins can reverse the methylation actions of DNMTs by
oxidizing 5mC. Again, underscoring the importance of DNA methylation in embryogenesis, the genetic
knockout of DNMT and TET family members display a range of embryonic phenotypes, including
lethality, supporting the importance of normal regulation of DNA methylation [28–36].

DNMT1 maintains the DNA methylation pattern from the parent cell to the daughter cell.
This heritable nature of DNA methylation is a key feature defining DNA methylation as an epigenetic
mark. Unlike DNMT1, DNMT3a and DNMT3b normally methylate DNA that is unmethylated on
both strands and do not have binding preference to the hemi-methylated state—a feature central to
DNMT1’s maintenance function. The roles of DNMT3b and 3a are not completely redundant. DNMT3a
is a distributive enzyme, while DNMT3b is a processive enzyme. DNMT3a is important for focal
methylation of single copy genes or regions where there are not long stretches of CpG to methylate.
On the other hand, the high processivity of DNMT3b is conducive to its role in methylating the highly
repetitive peri-centromeric regions where there are long stretches with many CpG positions to be
methylated. Another DNMT3 family member is DNMT3L, which has no catalytic activity because of
having a non-consensus catalytic domain. Nevertheless, DNMT3L plays an important role in DNA
methylation because it interacts with DNMT3a and 3b. For instance, the interaction with DNMT3a
increases the activity of DNMT3a and has been shown to be essential for maternal imprinting.

TET1 was initially cloned from leukemic cells where it was identified as a fusion partner of the
mixed-lineage leukemia (MLL) translocation [37], but its function was only revealed by in 2009 [27],
when the capacity to oxidize 5mC was revealed. Three TET family members exist [38], and similarly to
the DNMTs, the TETs appear to differ in their functions. TET1 exerts an important embryonic function
by governing expression of stem cell specific TFs such as NANOG [38] and its loss triggers a shift
towards trophectoderm differentiation. TET1 also governs meiosis [39] and prevent the spread of CpG
methylation [40]. Others have applied TET1 chromatin immunoprecipitation combined with next
generation sequencing (ChIP-Seq) to approaches revealed binding of TET1 to CpG rich sequences in
transcriptionally-active promoters, but also at polycomb-repressed genes. Thus, TET1 at least has
a potentially dual role in triggering gene activation, and also modulating polycomb-mediated gene
repression [41,42]. Again, in embryonic systems, TET1 was shown to associate with so-called bivalent
environments with H3K4me3 and H3K27me3, adding evidence to the concept that TET1 at least
controls the so-called ‘poised’ chromatin state for example at developmentally-regulated genes [43].
Supporting an antagonistic role against DNMTs, TET1 can remove the imprinted status of specific
genes [44,45].
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There is some evidence for TET2 and TET3 to target specific gene regulation programs, for
example the active repression of interleukin 6 (IL6) during inflammation through active recruitment of
histone deacetylases (HDAC) independently of modification of 5mC [46]. There is also evidence of
either genetic variation or somatic mutation of TET2 to impact hematopoietic stem cell function and is
implicated in a range of myeloid disorders [47].

Thus, 5mC is directly governed spatially and temporally, often in a gene program specific manner,
by at least six different enzymes. The levels of 5mC at CpG regions and islands is in turn sensed by a
number of proteins, to help translate the chemical signal of the methyl group into biological functions
that include regulating transcriptional activity; this is most clearly found when the CpG island is in a
proximal promoter region.

The impact of altered CpG island methylation is thought to regulate transcription in at least two
mechanisms. Firstly, the increase in methylation levels at CpG islands or CpG regions can impact the
physical access of TFs and, therefore, suppress gene regulation. Indeed, early studies demonstrated that
a single methylated CpG in a 6 bp region could impact TF access [48]. Secondly, the methylation of CpG
regions are, in turn, recognized by a family of proteins containing the methyl-CpG-binding-domain,
known collectively as MBDs. These proteins Methyl-CpG Binding Protein 2 (MeCP2), Methyl-CpG
Binding Domain Protein 1 (MBD1), MBD2, MBD3, and MBD4), along with Zinc Finger and BTB
Domain Containing 33 (ZBTB33/KAISO) which has a different domain to recognize methylated
DNA, are found in complexes that contain other chromatin modifying enzymes such as HDACs.
Various workers established that CpG methylation attracts MeCP1 [49] and that these proteins can
recruit HDACs to repress transcription [50]. Similarly, MeCP2 binds to methylated DNA and recruits
SIN3a, which recruits HDACs leading to a situation where regions of DNA methylation coexist with
regions of deacetylated histones that can form a compact, closed chromatin structure to exclude
interaction with TF and the basal transcriptional machinery. Therefore, the levels of methylation at
CpG islands can impact more widely the genome around the island.

When restricted to specific biological settings, the relationships between DNA methylation,
chromatin assembly and transcription are certainly apparent. The mostly-methylated CpG islands
on the inactive X chromosome in a female cell strongly (but not exclusively) correlate with gene
silencing [51–53]. In a similar way, imprinted genes, expressed either from the paternal or the maternal
allele, are associated with CpG island regions methylated only on one allele. Another group of genes, the
cancer-testis (CT) antigen genes, such as those of the melanoma antigen family (MAGE) families often
have methylated CpG island promoters in all normal tissues, except testes, where they are expressed.
Often these genes are expressed widely in cancers where those CpG islands lose methylation [54–59].

3. The Transition from Epigenetic to Epigenomic Analyses of Cancer Genomes

3.1. Development of Technologies and Computational Approaches for Epigenomic Analyses

Early work in cancer systems, at candidate loci, quickly revealed that gains and losses of
DNA CpG methylation were significantly detected at the sites of tumor suppressors and oncogenes.
These observations gave rise to the concept of epi-mutations that could act alongside somatic mutations
as cancer-drivers [60]. Specifically, regulatory and promoter CpG regions on these genes have been
identified as being inappropriately methylated. Some of the earliest studied in the field were focused
on loss of methylation at the CpG islands of known oncogenes, for example at the RAS locus [61].
Subsequently, other workers considered the possibility for gain of methylation at tumor suppressors
and again early studies demonstrated gain of CpG methylation at the calcitonin gene in lung cancer [62].
In part, this suggested that hypomethylation at oncogenes may arise earlier in cancer, or pre-malignant
conditions whereas hypermethylation, by contrast, possibly arises later and tends to be associated
with promoters that control the expression of oncogenes and tumor suppressor. More recently, there is
some evidence for coordinated hypo and hypermethylation events occurring in leukemia [63].



Biomolecules 2017, 7, 15 5 of 20

As well as giving rise to the concept of epi-mutations, the sequencing of DNA methylation events,
inter-joined as they are with the regulation of histone modifications, also justified development of
DNMT inhibitors and the combination of epigenetic therapies that targeted both CpG methylation and
repressive histone modifications [64,65].

These candidate gene studies were catalysts for the development of genomic technologies and
large scale data-analytic approaches aimed at revealing how many and how frequently CpG islands
and regions were methylated in various cancer types. For example, some of the first technologies to
expand from the candidate loci to genome-wide coverage built on the use of methylation sensitive
restriction enzymes that digest specifically unmethylated CpG regions [66]. The recovered fragments
were modified to detect digestion, or not, of fragments indicative of methylation status that could be
imaged with either radiolabel approaches or subsequently with next generation sequencing (NGS)
approaches. Thus, workers were able to begin to measure quantitative differences in the levels and
distribution of CpG methylation between cell models, or tumor material compared with adjacent
normal material.

In parallel, other technologies were developed using microarray platforms and hybridization,
and the Illumina platform clearly emerged as the market leader. This platform allowed the relatively
easy scanning of multiple CpG regions in cells, be they cell lines, frozen tumor or even formalin fixed
material. The CpGs assessed by these technologies were selected based on their relative position within
CpG islands and or near to gene features such as Reference Sequence (RefSeq) annotated transcriptional
start sites (TSS). Although these early arrays and more recent larger ones sample CpG positions in
all known TSSs and CpG islands and even annotated enhancers, they are not exhaustive in their
coverage and frequently have rather limited numbers of CpG positions representing large genomic
regions. Furthermore, their design rationale is based on an incomplete understanding of which CpG
positions might be most relevant to regulation of chromatin and of gene expression. Nonetheless, these
approaches have very clearly established that there are altered patterns of CpG methylation at CpG
islands in a wide range of cells and in health and disease.

A significant caveat is an implicit assumption that the CpG positions represented on the array
from a given genomic region are indicative of the broader methylation state of all CpGs in that region.
While this is clearly correct in some situations, it may not be universal, and there is clearly emerging
evidence for highly specific patterns of CpG methylation. For example, when comparing CpG island
methylation between normal and cancer, it is likely that a few CpG positions can accurately represent
the CpG island status. However, it is much less clear if this is true when comparing non-malignant
genomes with different exposures. Nevertheless, array studies have provided significant insights
from which a generally more textured understanding has emerged of the roles of different CpG
methylation positions and density on gene expression in development (reviewed in [67,68]). Indeed,
the CpG methylation arrays are one of the earliest and widely applied genomic technologies, and also
helped to catalyze the development of the statistical framework for the analyses of differential DNA
methylation [69,70].

To obtain exhaustive genome-wide coverage has required the development of NGS-based
approaches to DNA methylation [71,72], for example, whole genome bisulphite sequencing (BS) at the
base pair resolution. However, this does not distinguish between 5mC and 5-hydroxymethylcytosine
(5hmC) and, therefore, comparative analyses is needed using BS and oxidative BS sequencing.
5mC and 5hmC specific antibodies can be used in Methylated DNA immunoprecipitation
(MeDIP-Seq) approaches. Other modifications include GC based enriched regions (eRRBS), as well
as locus-averaging methods that pull down methylated peaks or associated with MBD binding.
Array technology has continued to be developed, principally by Illumina who have developed 27K,
450K and no 850K Infinium Methylation EPIC rrays for more comprehensive analyses.

Marching in tandem with the progress of the technologies available to survey the CpG status
across the genome have been an equally profound development of the computational approaches to
analyze the data. The broad demands of these software are to cope with modelling the data, dealing
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with incompleteness of data and identifying differentially methylated regions (DMR). Most commonly,
the bioinformatics community uses the R platform for statistical computing [73,74] and a range
of library packages implemented in Bioconductor [75,76]. For example, there are currently over
60 packages available in Biconductor that deal with the analyses of genomic CpG methylation data.
R and Bioconductor are both community developed and maintained and, therefore, new approaches
are continually developed. Indeed, Bioconductor illustrates the combination of packages, or software
libraries, that can be applied for optimal workflows for many common bioinformatic analyses. Such a
workflow has been developed for the analyses of DNA methylation [77].

3.2. Analyses of CpG Methylation in Large Cohorts of Publically Available Data

In tandem with the development of these, and other, genomic technologies has been their
widespread application across multiple genomes undertaken by researchers in the Encyclopedia of
DNA elements (ENCODE) [78,79], RoadMap Epigenome [80], and FANTOM [81] consortia. In doing
so, these consortia have also generated remarkable volumes of publically available data with which
to interrogate DNA methylation patterns and relationships to gene expression and cell phenotypes.
In cancer it is clear that the TF-genome interactions are corrupted [82–85] and “re-wired” [86–88], for
example, by somatic mutations and endogenous structural variants that disrupt TF binding. A major
driver of addressing global DNA methylation in cancer has been the development of large cancer
genome studies, for example the Cancer Genome Atlas (TCGA) in which virtually all 30,000 tumors
in the archive have been screened with Illumina microarray approaches. This, in part, has allowed
workers to undertake pan-cancer analyses of the DNA methylation patterns in an effort to classify
different methylation subgroups between tumors [89].

However, testing the extent of genome-wide correlations between CpG methylation and gene
expression is challenging because of statistical, biological, and technical limitations and incomplete
biological understanding and, therefore, the extent and strength of correlations differ significantly
between studies. For example, it is also critical to consider that these DNA methylation states are in the
context of chromatin, and that this chromatin structure is, in part, being defined by modifications of
histones making up the nucleosomes; unmethylated CpGs are frequently associated with active histone
marks. This interplay of epigenetic events has also guided how researchers consider the transcriptional
potential of a gene, as to whether the gene is active, repressed, or poised [90]. If the gene locus was in
a transcriptionally permissive environment, and is poised, then methylation can impact expression of
the gene.

A further major impediment to identifying TF-genomic interactions that are disrupted by CpG
methylation, and which might also drive cancer development is the sheer volume of TF complexes
involved and the combinatorial nature of epigenomic events. Over 20% of the protein-coding genome
relates to transcriptional control; approximately 2500 TF interact with over 2000 TF co-factors
and chromatin remodeling factors, before even considering the actions of the non-coding genome.
The diversity of TF-genomic interactions is amplified even further when considering that each
TF complex may have thousands of genomic binding sites, known collectively as a cistrome [91].

Therefore, it is reasonable to postulate that the choice of TF binding sites is guided by the interplay
of multiple histone modifications and the CpG methylation status, but it is much harder to test the
strength of these relationships and how they diverge across cancer states. Therefore, considering the
impact of CpG methylation on TF-genomic interactions quickly becomes a very challenging question.
For instance, although CpG islands tend to be considered as discrete data points, being either on or off,
they are in fact highly continuous. CpG status can be altered by both changes in the distribution and
density of methylation.

Furthermore, workers have more recently proposed that the regions around the islands,
(the shores and shelves) carry further important information to mediate relationships that control
gene expression [92,93]. For example, the shores and shelves on CpG islands tend to have higher
variation across cancers and therefore comparative analyses have to be specific to locations. As the
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CpG methylation status of the human genome has become increasingly mapped it has also emerged
that differential methylation is not restricted to the CpG islands, but also extends to CpG regions for
example at enhancers [94] as well as across gene bodies. Again, it is worth remembering that the one
of the earliest studies of DNA methylation impacting transcription factor binding considered a single
6 bp region and the impact of one methylated cytosine within that region [48]. Thus, as further details
regarding DNA methylation patterns in tissues have emerged, so too have the complexities in which
they relate to transcription.

From a developmental perspective, recent genomic studies have begun to reveal the impact of
CpG methylation at enhancer and intergenic regions. Clearly, 5mC dynamics are dramatic and dynamic
in embryos to establish totipotency. In mammals, active TET-dependent oxidation of 5mC as well as
passive cell-division dependent depletion is critical to demethylate gene enhancers and activation of
transcription factors that control embryonic development pathways [95]. More recently, cell-based
studies have also modeled the impact of CpG methylation in gene enhancers and revealed the interplay
with the so-called bivalent status of enhancers and super-enhancers [96], again demonstrating the
interplay between CpG methylation and histone modifications.

There are approximately 50,000 CpG islands in the human genome (depending on the specific
definitions of GC content, density, and length) and the shore and shelf concept of course expands
this number. Rarely is a region entirely methylated or not and therefore the calculation of the level of
methylation is not trivial, requiring relatively sophisticated statistical models that aim to identify DMR.
To ascribe function to these DMR requires some aspect of spatial annotation. For example, if a CpG
island is proximal to a TSS it is a reasonable assumption that heavily methylated (or unmethylated)
status impacts the expression of this gene. This does not preclude the fact that methylation may impact
the expression of distal genes in both the 5′ and 3′ direction, and that the promoter of one gene may
actually be a distal enhancer of another [97] and, therefore, give rise to so-called “ripple” expression of
adjacent genes [98,99]. Additionally, gene expression may be impacted by the combined effect of 5′

and 3′ distal and proximal regulatory regions and may include the methylation of the gene body.
Finally, the definition of a DMR may also relate to cell type. For example, in a cancer genome it is

not clear if the average methylation state of a limited number of CpG probes within a 1 kb CpG island
accurately define the overall methylation state of that island. If they do, it is also unclear that would
also be true in normal matched tissues.

These concerns notwithstanding, NGS technologies have been applied to an ever-greater extent
with increasing genomic coverage and resolution of CpG methylation yielding new observations
regarding DNA methylation patterns. Genome-wide, in normal cells, there is a negative correlation
for approximately 20% of the genome between elevated 5mC in CpG islands and repression of a
neighboring TSS [100].

Thus, with the development and widespread application of tools to measure CpG methylation
levels and distribution across the genome it is now possible to test the extent of correlation between
CpG methylation and gene expression. Within the cancer context the remarkable volume of data
developed by TCGA investigators has allowed investigators to dissect the relationships between CpG
methylation and gene expression.

One of the earlier studies by Aran et al. [101] addressed this question and focused on negative
correlations between CpG methylation at enhancer sites and the gene body, and gene expression
across multiple cell lines, and offered evidence that enhancer methylation was selectively disrupted
in cancer. However, if the starting point are the individual datasets, rather than modelling the ones
where there is the strongest negative correlation, then identifying these relationships de novo can be
more challenging.

Combining MeDIP-Seq and ribonucleic acid (RNA)-Seq datasets from malignant mesothelioma
cells was undertaken to investigate the genome-wide extent of strong negative correlations between
methylation and gene expression. The number of such CpG methylation-gene expression negative
correlations were strikingly small. For example, there were several thousand hypermethylated and
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hypomethylated genes but only hundreds of genes differential expressed, with the clearest relationships
being at intronic regions where altered methylation associated with altered expression [102].

Similarly in breast cancer, genome-wide NGS approaches have been applied to identify how
CpG methylation impacts gene expression and the emergence of drug resistance. In this context,
approximately one thousand genes had both altered methylation and altered expression, perhaps
supporting the concept that epigenetic events can allow for the rapid adaptation to drug exposure.
However, drilling into the subset of data where CpG methylation and gene expression were negatively
correlated identified fewer genes (in the low hundreds) [103]. In another report [104] in lung cancer the
correlation between DNA methylation and gene expression was detected for approximately 750 genes,
but for one third of these the correlation was positive. Again, a negative correlation could only be found
for approximately 500 genes. Similarly, in esophageal cancer the authors only illustrated the negative
correlation at candidate loci despite having generated RNA-Seq and matched MeDIP-Seq data [105].

Reflecting the challenges in finding strong and widespread negative correlations between genome
wide CpG methylation and genes expression, investigators have applied more sophisticated analytical
approaches to transform the continuous DNA methylation data into a categorical format. Again,
in breast cancer, both positive and negative correlations between DMR and gene expression are
often observed. By selecting for lowly-expressed genes enhanced the detection of greater negative
correlations between gene promoter CpG methylation in the promoter [106]. Therefore, it seems that a
negative correlation between CpG methylation and gene expression exists for only a small subset of
genes expressed in cancer cells, numbering perhaps in the hundreds.

4. Prostate Cancer as a Model of the Interplay between Genomic and Epigenomic Cancer Drivers

Amongst men in the US, prostate cancer (PCa) is most common non-cutaneous cancer diagnosed
and second leading cause of death [107,108]. This cancer is highly heterogeneous in terms of
progression rates. Although pathological tumor grade (Gleason Grade) accurately predicts disease
outcome, currently clinical parameters that can be exploited before surgery do not accurately predict
progression risks to more aggressive stages of disease. Therefore, it is not easy to identify men who
both need and will be cured by surgical treatment, from those men who will experience subsequent
treatment failure and disease recurrence [109,110]. This is of clinical significance as patients who
experience treatment failure are significantly more likely to progress to more aggressive forms of PCa
with significantly increased risks of tumor-related mortality [111,112].

This ambiguity is further obscured because the incidence and natural history of PCa varies
between races. American men of African ancestry have a 19% increased incidence, and 37% increased
mortality from PCa compared to men of European ancestry (reviewed in [113–116]). Thus, in African
American (AA) PCa patients, the disease appears more aggressive, and occurs at a younger age, than
European American (EA) patients.

In an effort to more accurately define disease multiple groups [117], including the TCGA
consortium, have added to previous understanding [118,119] and established roles for common genetic
alterations in PCa [120–122], and novel somatic mutations, including Forkhead Box A1 (FOXA1),
Speckle-Type POZ Protein (SPOP). Also supporting the importance of androgen receptor (AR) signaling
in PCa and the cross-talk with epigenetic events, the co-activator Nuclear Receptor Coactivator 2
(NCOA2) is commonly amplified [122,123].

The complex nature of cancer phenotypes however cannot be explained by genetic components
alone [124]. Epigenomic modifications and events contribute significantly to cell transformation and
play distinct yet complementary roles to genomic events, and add to a fuller explanation for the
etiology of disease. For example, up-regulation of the histone methyltransferase, Enhancer of Zeste
Homolog 2 (EZH2) appears common in both localized and metastatic PCa, and associates with poorer
prognosis [125,126]. Additionally, reflecting different genomic and epigenomic drivers of PCa, there
are significant global differences in the pattern of CpG DNA methylation associated with different
genetic PCa phenotypes, notably in the presence of TMPRSS2–ERG translocations [127,128]. Similarly,
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we and others have examined the expression and CpG methylation status associated with miRNA
(reviewed in [129]). For example, in PCa, promoter hypermethylation is associated with loss of
microRNA (miR)-200 family members that regulate cell migration/invasion. We have defined cohorts
of miRNA that predict aggressive disease [130] and in turn revealed that their expression may often be
associated with altered CpG methylation [131].

The changes in CpG methylation in PCa progression have been comprehensively reviewed by
Lynch and co-workers [132]. They highlighted the consistency of methylation at the promoter of
certain genes, for example Glutathione S-Transferase Pi 1 (GSTP1). They also combined datasets and
measured the overlaps to identify expression of 168 genes commonly identified to have associated
DMR and altered expression including GSTP1 and others such as retinoic acid receptor β (RARB), Ras
Association Domain Family Member 1 (RASSF1), and Aldehyde Oxidase 1 (AOX1) as well homeobox
gene family members.

Others have sought to relate CpG methylation patterns to clinical outcome and combined
their patterns in univariate regression analyses of time to disease recurrence and revealed that
methylation of certain loci, for example again including AOX1 and RARB [133] predicted disease
progression [134,135]. Further supporting the relevance of DMR in PCa progression, the TCGA
investigators revealed how altered DNA methylation patterns associated with different PCa genetic
phenotypes. Interestingly, no negative correlation patterns were noted for DNA methylation level
and either mRNA or miRNA expression. However, subsequent studies by Jin and co-workers of the
same data modelled the interplay between distal, promoter, and genic CpG methylation and gene
expression [136]. Notably, these workers revealed that TSS and distal hypermethylation, but not
hypomethylation, were associated with differential gene expression. Again, reflecting other cancer
studies, the correlations were both negative and positive and the number of genes for which a specific
location of hypermethylation negatively correlated with gene expression was fewer than 100.

To complement these studies, many researchers have examined how the expression and genetic
variation of either DNMTs or TETs are altered in cancer systems. For example, earlier studies have
linked gain of expression or genetic variation with altered DNA methylation patterns in various
tumors. In many cases these gains of DNMTs function were linked to disease progression and worse
clinical features. Indeed, the interplay of DNMTs and TETs has also been established as a putative
feed forward loop where increased DNMTs function silences TETs [137]. Furthermore, researchers
have examined how DNMTs and TETs may contribute to disease progression and established roles for
increased DNMTs in mouse models of prostate cancer [138–140] and that TET1 for example is disrupted
by copy number changes correlating with reduced 5hMC levels in prostate cancer samples [141].
Others have revealed a targeted function for TET1 to interact with the pioneer factor FOXA1 to activate
lineage-specific enhancers [142].

A complementary area of very active research in PCa is the control of one-carbon metabolism
and the methionine cycle that generates the SAM pools that in turn feed into the control of DNA
methylation, as well as histone methylation [143]. This pathway has unique relevance to the prostate
which normally secretes high levels of acetylated polyamines which in turn can stress the cellular
production of SAM and, therefore, the biochemistry of prostate epithelial cells is modified to enhance
methionine salvage pathways. Indeed this dependency may highlight a unique therapeutic approach
to targeting prostate cancer through inhibitors of Methylthioadenosine Phosphorylase (MTAP), the rate
limiting enzyme [144]. Given that folate is an upstream dietary-derived precursor of these pathways it
is likely that dissecting the links between folate metabolism and prostate cancer may yield unique and
tissue-specific insight [145–147].

5. Bioinformatic Approaches to Reveal Associations between DNA Methylation and Prostate
Tumor Status

To add to these studies, we have now sought to model the impact of the DNA methylation pathway
on gene expression in PCa by using the R platform for statistical computing and a range of library
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packages implemented in Bioconductor. As a starting point, we created a list of genes known to be
involved in the control of DNA methylation. To do this we downloaded genes from the DNA methylation
pathway from WikiPathways [148] and combined these genes with those returned from searches of
DNA methylation pathway genes in UniProt [149]. Together these approaches yielded a unique list of
165 genes includes those that control the regulation of SAM pools and DNA CpG methylation.

To examine how these genes were altered in PCa we examined their expression in the TCGA
prostate cancer cohort (PRAD) of 497 tumors. These data are publically available and were downloaded.
The data actually include tumors and normal samples and, therefore, we created an expression table of
all genes detectable in at least 80% of tumors (n = 16,785) given as relative Z-scores as compared to the
mean of the normal [150]. Expression of the 165 gene-panel of the DNA methylation pathway was
examined in this table using genefilter to capture only those genes altered by more than two Z-scores
in 25% of tumors; this yielded 21 genes on the DNA methylation pathway. These genes included DNA
methyltransferase (DNMT3A), MBD1, and Nuclear receptor corepressor (NCOR)1. Tumor expression
patterns for these genes were then visualized and clustered by expression on a heatmap (pheatmap).
Relationships between cluster membership and tumor grade (Gleason Grade 6 and 7 compared to
8, 9, 10) were measured using survival. The expression patterns of these 21 genes clustered tumors
into groups that in turn associated with significantly different levels of Gleason Grade (p < 0.006)
(Figure 1A). Interestingly, of these genes shown to be associated with altered CpG methylation, we
had previously identified that increased NCOR1 binding to gene targets in prostate cancer cell lines
leads to elevated CpG methylation [151].

Next, we sought to investigate the relationships between these 21 genes and the targets of DNA
methylation. To do this, we identified all genes amongst the 16,785 genes expressed in the TCGA-PRAD
tumors that positively and negatively correlated with each of these 21 genes on the DNA methylation
pathway. Subsequently we used a hypergeometric test to measure how genes that were strongly
correlated with these 21 genes on the DNA methylation pathway were themselves enriched for genes
that were known targets of DNA methylation. Thus, for each of the 21 DNA methylation pathway
genes the negative and positive correlations (Pearson correlation either <−0.6 or >0.6) of expression
was determined. Only five DNA methylation pathway genes had strong correlations and subsequently,
the enrichment of the 165 common targets of DNA methylation from the Lynch et al. review [132] was
measured within these correlated genes, using a hypergeometric test.
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Figure 1. Expression and association of the DNA methylation pathway genes with tumor outcome.
(A) Heatmap illustrating common and significantly altered mRNA expression of the DNA methylation
pathway in the Cancer Genome Atlas (TCGA) prostate cancer (PRAD) cohort (n = 497). Gene expression
was measured as normal tissue relative Z-scores of all genes detectable in at least 80% of tumors.
Cluster membership significantly identifies aggressive tumors (p < 0.006); (B) The negative and positive
correlation (Pearson correlation either <−0.6 or >0.6) for each of these commonly altered genes from
the DNA methylation pathway (n = 21) and all other detectable genes in the TCGA cohort (n = 16,785)
was measured and the enrichment of the 165 common targets of DNA methylation from the Lynch et al.
review [132] was measured using a hypergeometric test. Only the indicated genes had significant
correlation with all genes and significant enrichment of the targets of DNA methylation; (C) Heatmap
illustrating common and significantly altered mRNA expression of genes that significantly correlate
with Indolethylamine N-Methyltransferase (INMT) and Methionine Adenosyltransferase 2B (MAT2B)
and are known targets of DNA methylation in TCGA PRAD cohort. Cluster membership significantly
identifies aggressive tumors (p < 0.0007).

This analysis identified that from the DNA methylation pathway genes only Indolethylamine
N-Methyltransferase (INMT) and Methionine Adenosyltransferase 2B (MAT2B significantly correlated
with a set of genes which themselves were significantly enriched for known targets of DNA methylation
in PCa (Figure 1B). For example, INMT and MAT2B were commonly altered and associated with the
expression of genes that are significantly enriched for known targets of DNA methylation changes
in PCa. INMT is a methyltransferase and methionine adenosyltransferase. MAT2B regulates the
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biosynthesis of SAM from methionine and therefore is important in the regulation of SAM pools
upstream of DNA methylation events. INMT was previously identified as predicting disease
progression risk in prostate cancer [152] whereas MAT2B has not previously been implicated in
prostate cancer risk or etiology. Together, these finding suggest that mechanisms that control the flux
of SAM pools appear to be linked to aggressive PCa and that only a relatively small subset of genes
are probably targeted. Again, it is worth emphasizing that SAM pools are related to diet and genetic
variation, and there is a significant literature over how control of the central methyl donor impacts a
range of diseases including PCa [144,145,153–158].

Next, we took targets of DNA methylation that correlated with INMT and MATB expression and
identified those with the most altered expression in the tumors with higher Gleason Grade tumors;
this was 32 genes (Figure 1C). These targets included of course known targets of DNA methylation
and included genes that were both up and down-regulated. Within the down-regulated genes (n = 20)
the down-regulated expression was pronounced and significant in the more aggressive; these genes
included RARB, AOX1, and GSTP1.

Together this translational bioinformatics approach has mined existing datasets and identified
that 21 members of the DNA methylation pathway are commonly altered and associated with more
aggressive tumor features (e.g., INMT and MAT2B). These genes were strongly correlated with a
small number of known targets of DNA methylation including RARB, which in turn could distinguish
tumors with higher Gleason Grade.

6. Summary

The current review has aimed to examine the central aspects of the relationships between
DNA CpG methylation and the control of gene expression. Within the cancer arena, this complex
field has made very significant strides with the application of genome-wide technologies and
sophisticated statistical approaches, combined with high-quality and large-scale tumor profiling
data. Perhaps surprisingly, the numbers of negative correlations between DNA CpG methylation and
gene expression are in the hundreds not thousands, although within these there are clear examples
of tumor adaptation to drug exposure, and genes that are known tumor-drivers. We also present
a bioinformatics pipeline to examine how genes known to control DNA CpG methylation relate to
altered gene expression and tumor status. This approach is relatively generic and revealed that, at least
in PCa, the control of the biosynthesis of SAM is significantly associated with altered gene expression
and tumor aggressiveness.
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