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Background: N6-methyladenosine (m6A) modification is a critical epigenetic

modification in eukaryotes and involves several biological processes and

occurrences of diseases. However, the roles and regulatory mechanisms of

m6A regulators in osteoporosis (OP) remain unclear. Thus, the purpose of this

study is to explore the roles and mechanisms of m6A regulators in OP.

Methods: The mRNA and microRNA (miRNA) expression profiles were

respectively obtained from GSE56815, GSE7158, and GSE93883 datasets in

Gene Expression Omnibus (GEO). The differential expression of 21 m6A

regulators between high-bone mineral density (BMD) and low-BMD women

was identified. Then, a consensus clustering of low-BMD women was

performed based on differentially expressed (DE)-m6A regulators. The m6A-

related differentially expressed genes (DEGs), the differentially expressed

miRNAs (DE-miRNAs), and biological functions were investigated. Moreover,

a weighted gene co-expression network analysis (WGCNA) was constructed to

identify the OP-related hub modules, hub genes, and the functional pathways.

Then, an m6A regulator–target–pathway network and the competing

endogenous RNA (ceRNA) network in key modules were constructed. A least

absolute shrinkage and selection operation (LASSO) Cox regression model and

a Support Vector Machine-Recursive Feature Elimination (SVM-RFE) model

were constructed to identify the candidate genes for OP prediction. The

receiver operator characteristic (ROC) curves were used to validate the

performances of predictive models and candidate genes.

Results: A total of 10,520 DEGs, 13 DE-m6A regulators, and 506 DE-miRNAs

between high-BMD and low-BMD women were identified. Two m6A-related

subclusters with 13 DE-m6A regulators were classified for OP. There were

5,260 m6A-related DEGs identified between two m6A-related subclusters, the
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PI3K-Akt, MAPK, and immune-related pathways, and bone metabolism was

mainly enriched in cluster 2. Cell cycle-related pathways, RNAmethylation, and

cell death-related pathways were significantly involved in cluster 1. Five

modules were identified as key modules based on WGCNA, and an m6A

regulator–target gene–pathway network and the ceRNA network were

constructed in module brown. Moreover, three m6A regulators (FTO,

YTHDF2, and CBLL1) were selected as the candidate genes for OP.

Conclusion: M6A regulators play an important role in the occurrences and

diagnosis of OP.
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Introduction
Osteoporosis (OP), one of the most common bone system

diseases, affects older adults by increasing the risk of bone

fractures, leading to many complications (1). OP is defined as

a skeletal disorder characterized by reduced bone strength (bone

density and bone quality), which increases the risk of fracture

(2). With the World Trade Organization (WTO) criteria, people

with bone mineral density (BMD) of less than −2.5 standard

deviations (SDs) are defined as having OP (3, 4). In recent

decades, improving life and medical conditions are the leading

cause of the average life expectancy. According to the WHO, the

elderly population worldwide will reach 12 billion in 2025, and

approximately 70% will be found in developing counties (5). A

study has shown that the elderly population of over 65 years are

91.5 million in 2020 and will be expected to reach 183.6 million

by 2024 in China (6). The Chinese population with OP is 83.9

million in 1997 and is expected to reach 212 million by 2050 (7).

OP has become a serious public health problem in China,

especially among elderly postmenopausal women (8, 9). There

are two current important approaches for the prevention and

treatment of OP, fundamental supplement for bone health and

pharmacological treatment, both of which are expensive, thus

increasing the familial and societal economic burden of OP and

OP-related fracture (9, 10). Based on this, there is a need to

discover novel biomarkers for early diagnosis and therapy of OP.

In the past decade, the studies have shown the pathogenesis

of OP links to processes at the tissue, cellular, and molecular

levels (11), which involve osteoblast–osteoclast differentiation

(12), bone metabolism (13), and bone immunity (14, 15). The

communication and crosstalk between the main bone cell types

discover the pathogenesis at the cellular level. Several molecules

exert biological function during bone remodeling, such as
02
microRNA-241 (miR-241) and its target ATF4 (16),

prostaglandin E2 (IGE2) (17), and semaphorin 3A (18). The

research of cellular and molecular levels supplements the

concept of bone pathophysiology and possibly provides

breakthrough advances in clinical practice.

N6-methyladenosine (m6A) modification is one of the most

common epigenetic modifications in eukaryotic mRNAs and

involves mammalian development and disease control by

regulating RNA processing and metabolism (19, 20). The M6A

modification process is catalyzed by highly conserved

methyltransferases (writers), demethylases (erasers), and

binding proteins (readers) (21, 22). M6A modification widely

occurs in mRNAs, long non-coding RNAs (lncRNAs), and

miRNAs in many eukaryotes (23, 24). Increasing evidence has

sugges ted that m6A modificat ion acts as a novel

epitranscriptomic marker and exerts a dominant role in bone

development and metabolism of OP (25, 26). For example, FTO-

mediated m6A demethylation in the 3’UTR of PPARG mRNA

promotes osteogenic differentiation of mesenchymal stem cells

(CSCs) (27). Peng Jun et al. have found that METTL3-mediated

m6A methylation of LINC00657 promotes the development of

osteogenesis, and LINC00657 functions as a ceRNA to

upregulate BMPR1B via sponging miR-144-3p (28). Increasing

evidence reveals that m6A-related lncRNA, miRNAs, and

mRNA exert the domain roles in the development of OP,

which may serve as the novel potential targets for diagnosis

and therapeutic targets for OP. However, the biological

significance of the m6A regulators in OP remains elusive.

In the present study, we aimed to investigate the biological

roles and regulatory mechanisms in OP. To achieve this goal, we

comprehensively explored the functions of m6A regulators in

the molecular pattern classification, regulatory mechanisms, and

diagnosis of OP based on the gene expression profiles from Gene

Expression Omnibus (GEO). We not only constructed the m6A-
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related subclusters and an m6A–target–pathway network but

also selected three candidate m6A regulators for diagnosis of OP.
Materials and methods

Data collection and processing

The microarray data and corresponding clinical information

of female patients with low or high BMD were downloaded from

GSE7158 and GSE56815 datasets in the GEO database (Table

S1) (https://www.ncbi.nlm.nih.gov/geo/). In detail, the

GSE56815 dataset was generated by the GPL96 platform and

contained 40 high (20 pre- and 20 postmenopausal) and 40 low

hip BMD (20 pre- and 20 postmenopausal) monocyte samples.

The GSE7158 dataset was generated by the GPL570 platform

and contained 14 high and 12 low hip BMD monocyte samples.

The specific miRNA profiles with 12 OP (6 OP patients with

vertebral fractures and 6 OP patients without vertebral fractures)

and 6 non-OP patients and their corresponding clinical

information were obtained from the GEO database (Table S1),

generated by the GPL18058 platform. Limma R package was

performed to screen the DEGs between high-BMD and low-

BMD samples, and the DE-miRNAs. p-value < 0.05 was

considered to be the cutoff criterion for the identification of

DEGs or DE-miRNAs.
Screening of the DE-m6A regulators

A total of 21 m6A regulators, including eight writers

(METTL3, ZC3H13, METTL14, RBM15B, CBLL1, WTAP,

RBM15, and KIAA1429), two erasers (FTO and ALKBH5),

and 11 readers (YTHDC1, YTHDC2, ELAVL1, YTHDF1,

LRPPRC , YTHDF2 , FMR1 , YTHDF3 , HNRNPC ,

HNRNPA2B1, and IGF2BP1), were selected to explore the

DE-m6A regulators between high-BMD and low-BMD samples.
Consensus clustering analysis

Consensus clustering is an unsupervised clustering method

that was applied to class discovery and clustering (29). Here, the

ConsensusClusterPlus R package was used to class the low-BMD

samples into different subgroups according to the DE-m6A

regulators. ConsensusClusterPlus R was performed 1,000 times

to guarantee the stability of the classification. The number of

clusters k was determined by the consensus clustering cumulative

distribution function (CDF). Furthermore, t-distributed Stochastic

Neighbor Embedding (t-SNE) is a dimension reduction method to

reveal population stratification at different scales (30), and is used

to verify the classification performance based on the mRNA

expression profile of the above DE-m6A regulators.
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Identification of the m6A-related DEGs
between subgroups and functional
enrichment analysis

Limma R package was performed to filter the m6A-related

DEGs between two subgroups based on the cutoff values of p-

value < 0.05. GSEA is a bioinformatic approach for investigating

statistically significant and concordant differences between two

groups based on a prior defined set of genes (31). In the present

study, GSEA was used for GO and KEGG pathway enrichment.

The significantly enriched pathways were identified according to

the threshold value of p-value < 0.05 and |normalized

enrichment score (NES)| > 1. Based on the GSEA results, we

identified the important signaling pathways in OP, including cell

cycle, apoptosis, methylation, metabolism, immunity, and

osteoclast differentiation. Then, the GSVA algorithm was

performed using the Limma R package to probe into the

distinct signaling pathways between two subgroups.

Differential signaling pathways were identified with the criteria

of p-value < 0.05 and |t| > 1.
WGCNA

WGCNA is a bioinformatics method for describing the

correlation patterns among genes across microarray samples

and can be used for finding candidate biomarkers or therapeutic

targets in various biological contexts (32). WGCNA R package

was used to identify the hub genes and the low-BMD-related

modules among low-BMD samples in the GSE56815 dataset.

Firstly, we evaluated the availability of the genes across low-

BMD samples and subsequently constructed an adjacency

matrix to describe the correlation strength between the nodes.

Here, we chose a soft-threshold b = 8 (scale-free R2 = 0.85).

Secondly, the adjacency matrix was transformed into a

topological overlap matrix (TOM) to quantitatively describe

the similarity in nodes. Thirdly, we performed hierarchical

clustering to identify the modules with a minimum size of

30 genes.
Identification of the low-BMD-related
modules and significant targets

After calculating the module eigengene (ME), we

hierarchically clustered the modules and then merged similar

modules. We explored the significant modules relevant to low-

BMD based on the gene significance (GS) and module

membership (MM), which respectively represent the biological

significance and correlation between the gene expression profile

and the ME. We identify the significant low-BMD-related

modules according to the correlation coefficient > 0.5 and p-
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value < 0.05. Then, we downloaded the m6A target gene sets

from the M6A2Target database (http://m6a2target.canceromics.

org/), which is a comprehensive database for targets of m6A

writers, erasers, and readers (33). The correlation between m6A

target genes and the DE-m6A regulators in low-BMD samples

was calculated, and the significant m6A regulators and their

target genes were identified according to the correlation

coefficient > 0.3 and p-value < 0.05. Then, the significant

target genes were enriched in each module, and the

enrichment results were tested using a hypergeometric test

(34). We filtered the wear-relevant target genes by setting the

cutoff values of MM < 0.3 and GS < 0.3.
GO annotation and KEGG
enrichment analysis

The genes in the significantly related module were selected to

conduct GO and KEGG enrichment analysis using the

clusterProfile R package. The significant pathways were

determined by p-value < 0.05.
Construction of an m6A regulator–
target–module–pathway network and
the ceRNA network

Based on the above results, an m6A regulator–target–

module–pathway network was constructed using Cytoscape

software version 3.7.2. According to the DEGs and DE-

miRNAs between OP and non-OP, the miRNA–mRNA and

miRNA–lncRNAs interactions were predicted using miRcode

(http://mircode.org/) (35). The ceRNA network was visualized

using the Cytoscape software version 3.7.2. Then, we identified

the key ceRNA network that contained the m6A regulators and
Frontiers in Endocrinology 04
targets from the previous m6A regulator–target–module–

pathway network.
LASSO regression and SVM-RFE analyses

Least absolute shrinkage and selection operation (LASSO)

and Support Vector Machine-Recursive Feature Elimination

(SVM-RFE) algorithms were conducted to find the significant

prognostic biomarkers in OP. LASSO is a regression analysis

algorithm used to filter the variables to prevent overfitting (36).

Based on the expression of DE-m6A regulators, the prognostic

genes were identified by LASSO regression analysis using the

glmnet R package with the penalty parameter (l) tuning

conducted by 10-fold cross-validation. Moreover, SVM-RFE is

a supervised machine-learning technique to identify the most

relevant features by deleting the feature vector generated by

SVM (37, 38). Here, the SVM-RFE algorithm was performed

using the e1071 R package and used to screen the best variables.

Finally, the candidate prognostic genes for OP were obtained by

overlapping the candidate genes from two algorithms. The ROC

curves were drawn using the pROC R package to verify the

predictive performance of candidate genes in the GSE56815 and

GSE7158 datasets. The area under the ROC curve (AUC) values

were used to estimate the accuracy and efficiency of the

candidate genes.
Statistical analysis

All statistical analyses in this study were performed using R

(version 4.0.2). Wilcoxon rank-sum test was conducted to

compare differences between groups. A two-tailed p-value <

0.05 was considered statistically significant.
FIGURE 1

The workflow of the study design.
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http://m6a2target.canceromics.org/
http://m6a2target.canceromics.org/
http://mircode.org/
https://doi.org/10.3389/fendo.2022.957742
https://www.frontiersin.org/journals/endocrinology
https://www.frontiersin.org


Bai et al. 10.3389/fendo.2022.957742
Results

Identification of the 13
DE-m6A regulators

Details of this study are illustrated in Figure 1. Based on the

GSE56815 dataset, the 10,520 DEGs (4,088 upregulated and 6,432

downregulated DEGs) between high-BMD and low-BMD women

were identified using the Limma R package with p-value < 0.05

(Figure 2A, Table S2). The top 100 significant DEGs (74

upregulated and 26 downregulated DEGs) are shown in

Figure 2B. Moreover, the 13 DE-m6A regulators (METTL3,

HNRNPC, FTO, LRPPRC, YTHDC1, YTHDF1, ZC3H13,

RBM15, YTHDF3, FMR1, RBM15B, YTHDF2, and CBLL1)

between high-BMD and low-BMD women were obtained by

overlapping 10,520 DEGs and 21 m6A regulators (Figure 2C).

These findings suggested that m6A methylation might be involved

in the dysregulated BMD in OP.
Classification of two m6A-related
molecular subclusters for OP based
on 13 DE-m6A regulators

Consensus clustering was performed to identify the m6A-

related molecular subclusters for OP. As shown in Figures S1A–

I, the relative change of the cumulative distribution function

(CDF) and the area under the CDF curve of the consensus

cluster from k = 2 to 6. k = 2 was proven to be the most suitable

clustering to divide the 40 low-BMD patients into clusters

(cluster 1 = 23, and cluster 2 = 17, Figure 3A, Table S3). The

t-SNE plot indicated that 13 significant m6A regulators could

completely distribute the two m6A-related subclusters

(Figure 3B). A total of 5,260 m6A-related DEGs (2,969
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upregulated and 2,291 downregulated m6A-related DEGs)

were identified between the two m6A-related subclusters

(Figure 3C, Table S4). The top 100 m6A-related DEGs (37

upregulated and 63 downregulated m6A-related DEGs) are

shown in Figure 3D.
Functional analyses of the
m6A-related DEGs

We further performed the GSEA to investigate the potential

mechanism of the m6A-related DEGs in OP. The GO and KEGG

pathway enrichment analysis indicated that a total of 2,046 GO

terms and 100 KEGG pathways were obtained (Table S5). The GO

functional enrichment analysis revealed that m6A-related DEGs

were mainly involved in chromosome organization, regulation of

cell cycle, intracellular protein transport, cellular macromolecule

catabolic process, organelle envelope, envelope, hydrolase activity,

acting on acid anhydrides, triphosphatase activity, ATPase activity,

etc. (Figures 4A–C, Table 1). Moreover, the KEGG results showed

that these genes were significantly associated with protein

processing in the endoplasmic reticulum, ubiquitin-mediated

proteolysis, spliceosome, nucleocytoplasmic transport, mRNA

surveillance pathway, ribosome biogenesis eukaryotes, and

proteasome (Figure 4D, Table 2). Interestingly, we found several

OP-related pathways based on the GSEA results, such as apoptosis,

cell cycle, immunity, lipid and glucose metabolism, methylation,

osteoclast differentiation, and other pathways (Table S6). Thus,

GSVA was performed to explore the different signaling pathways

between two subclusters. The enrichment scores of pathways in

each cluster were calculated (Table S7), and a total of 22 pathways

were upregulated in cluster 2 compared with cluster 1, whereas 22

pathways were downregulated in cluster 2 than cluster 1

(Figures 4E, F, Table S7). The 22 upregulated pathways in cluster
A
B

C

FIGURE 2

Identification of the 13 DE-m6A regulators. (A) Volcano plot showing the DEGs between high-BMD women (n = 40) and low-BMD women (n =
40) in the GSE56815 dataset. (B) Heatmap indicating the top 100 DEGs between high-BMD women (n = 40) and low-BMD women (n = 40) in
the GSE56815 dataset. (C) Venn plot showing the DE-m6A regulators between high-BMD women (n = 40) and low-BMD women (n = 40) in the
GSE56815 dataset.
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2 included PI3K-Akt and MAPK signaling pathways, positive

regulation or regulation of monocyte differentiation, monocyte

differentiation, osteoclast proliferation, bone resorption, response

to granulocyte-macrophage colony-stimulating factor, cellular

response to granulocyte-macrophage colony-stimulating factor

stimulus, osteoclast differentiation, glucocorticoid metabolic

process, fructose and mannose metabolism, canonical glycolysis,

lipid homeostasis, glycolysis/gluconeogenesis, pentose phosphate

pathway, carbon metabolism, chemokine signaling pathways,

positive regulation of T-cell apoptotic process, B-cell receptor

signaling pathway, regulation of extrinsic apoptotic signaling

pathway in absence of ligand, and engulfment of apoptosis cell.

The 22 downregulated pathways in cluster 2 included bone cell

development, RNA or tRNA methylation, positive regulation of

gluconeogenesis, fatty acid metabolism, tumor necrosis factor-

mediated signaling pathway, T-cell receptor signaling pathway,

regulation of telomere maintenance via telomerase, regulation of

cell cycle, G2/M transition of the mitotic cell cycle, mitotic cell cycle,

mitotic cell cycle process, cell cycle checkpoint, regulation of mitotic

metaphase/anaphase transition, negative regulation of cell cycle

phase transition, negative regulation of cell cycle G2/M phase
Frontiers in Endocrinology 06
transition, negative regulation of mitotic cell cycle phase

transition, autophagy, apoptosis, and peroxisome.
Identification of the OP-related modules
by WGCNA

We also want to identify the meaningful modules that are

most associated with OP and low-BMD. Thus, we performed

WGCNA with the expression profile of 12,403 genes from 40

samples in the GSE56815 cohort as the input to search for OP

and low-BMD-specific genes (Figure S2A, Table S8). A power

b = 8 was selected as the soft threshold for scale-free network

construction (Figure S2B). Ten modules were identified by

clustering dendrogram (Figure 5A, Figure S2C, D).

Considering the close correlation between modules and

menopause, five modules (MEblue, r = 0.6, p = 4e-05;

MEbrown, r = 0.7, p = 5e-07; MEyellow, r = 0.51, p = 7e-04;

MEred, r = −0.67, p = 3e-06; MEturquoise, r = −0.75, p = 3e-08)

were identified in the hub modules for OP and low BMD

(Figure 5B, Table S8). Therefore, MEblue, MEbrown,
A

B

DC

FIGURE 3

Classification of two m6A-related molecular subclusters for OP based on 13 DE-m6A regulators. (A) Heatmap showing the consensus clustering
of m6A-related subclusters (k = 2) of OP based on 13 DE-m6A regulators. (B) The t-SNE plot showing the two clustered samples in the OP. Red
represents cluster 1, and blue represents cluster 2. (C) Volcano plot showing the DEGs between two m6A-related subclusters. (D) Heatmap
indicating the top 100 DEGs between two m6A-related subclusters.
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A B

D

E F

C

FIGURE 4

Functional analyses of the m6A-related DEGs. (A–D) The GSEA curves showing the GO (BP, CC, and MF) and KEGG pathways between two
m6A-related subclusters. (E, F) Heatmap and bar charts showing the specific signaling pathways in two m6A-related subclusters.
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TABLE 1 Top 10 biological process (BP), cellular component (CC), and molecular function (MF) terms included in GO terms in OP (|NES| > 1, p-wfi

2value < 0.05, q-value < 0.25).

ID Description Set Size Enrichment Score NES p-
value

q-
value

BP

GO:0051276 Chromosome organization 956 −0.356044593 −1.5642 0.001013 0.065091

GO:0051726 Regulation of cell cycle 947 −0.306894939 −1.34803 0.001015 0.065091

GO:0006886 Intracellular protein transport 899 −0.329126874 −1.44317 0.001016 0.065091

GO:0044265 Cellular macromolecule catabolic process 870 −0.382664912 −1.67501 0.001017 0.065091

GO:0044403 Symbiotic process 848 −0.326383911 −1.42922 0.001018 0.065091

GO:0000278 Mitotic cell cycle 831 −0.327102205 −1.43219 0.001017 0.065091

GO:0043603 Cellular amide metabolic process 816 −0.335312476 −1.46838 0.001017 0.065091

GO:0034622 Cellular protein-containing complex assembly 814 −0.339337732 −1.48557 0.001018 0.065091

GO:0016032 Viral process 807 −0.331699238 −1.45128 0.001018 0.065091

GO:0070647 Protein modification by small protein conjugation or removal 805 −0.404121067 −1.76861 0.001017 0.065091

CC

GO:0031967 Organelle envelope 864 −0.338298657 −1.49285 0.001022 0.038992

GO:0031975 Envelope 864 −0.338298657 −1.49285 0.001022 0.038992

GO:0005730 Nucleolus 700 −0.364976689 −1.60546 0.001028 0.038992

GO:0016604 Nuclear body 633 −0.423652483 −1.85605 0.001043 0.038992

GO:1990234 Transferase complex 579 −0.41297279 −1.8024 0.001047 0.038992

GO:0005740 Mitochondrial envelope 515 −0.326814516 −1.42025 0.001057 0.038992

GO:1990904 Ribonucleoprotein complex 504 −0.455696573 −1.97396 0.001067 0.038992

GO:0005635 Nuclear envelope 372 −0.3500178 −1.49069 0.0011 0.038992

GO:0016607 Nuclear speck 329 −0.428431923 −1.80671 0.001122 0.038992

GO:0098687 Chromosomal region 280 −0.494054321 −2.05569 0.001139 0.038992

MF

GO:0016817 Hydrolase activity, acting on acid anhydrides 629 −0.324416155 −1.41125 0.001037 0.074647

GO:0016818 Hydrolase activity, acting on acid anhydrides, in phosphorus-containing
anhydrides

629 −0.324416155 −1.41125 0.001037 0.074647

GO:0016462 Pyrophosphatase activity 626 −0.323272875 −1.40599 0.001038 0.074647

GO:0017111 Nucleoside-triphosphatase activity 588 −0.316533271 −1.37166 0.001047 0.074647

GO:0016887 ATPase activity 318 −0.376932559 −1.5878 0.001124 0.074647

GO:0019787 Ubiquitin-like protein transferase activity 290 −0.442362866 −1.84804 0.001143 0.074647

GO:0004842 Ubiquitin-protein transferase activity 272 −0.437820575 −1.82051 0.001144 0.074647

GO:0140098 Catalytic activity, acting on RNA 266 −0.415825581 −1.72632 0.001145 0.074647

GO:0003729 MRNA binding 222 −0.444648281 −1.81033 0.001183 0.074647

GO:0061659 Ubiquitin-like protein ligase activity 183 −0.43076598 −1.72056 0.001222 0.074647
Frontiers in
 Endocrinology 08
 fronti
TABLE 2 Top 10 KEGG pathways in OP (|NES| > 1, p-value < 0.05, q-value < 0.25).

ID Description Set Size Enrichment Score NES p-value q-value

hsa05014 Amyotrophic lateral sclerosis 278 −0.38971 −1.6096 0.001133 0.042387

hsa05012 Parkinson disease 200 −0.39188 −1.57062 0.001185 0.042387

hsa04141 Protein processing in endoplasmic reticulum 145 −0.42183 −1.64561 0.001205 0.042387

hsa04120 Ubiquitin-mediated proteolysis 121 −0.45869 −1.74585 0.001252 0.042387

hsa03040 Spliceosome 102 −0.51279 −1.9074 0.001302 0.042387

hsa03013 Nucleocytoplasmic transport 90 −0.57872 −2.13247 0.001319 0.042387

hsa03015 mRNA surveillance pathway 72 −0.50116 −1.78817 0.001377 0.042387

hsa03008 Ribosome biogenesis in eukaryotes 53 −0.54982 −1.84501 0.001437 0.042387

hsa03050 Proteasome 42 −0.5757 −1.84178 0.001504 0.042387

hsa05310 Asthma 25 0.579696 1.844009 0.002681 0.05852
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MEyellow, MEred, and MEturquoise modules were selected for

subsequent analyses. We then investigated the correlation

between the module membership and OP and low-BMD-

related gene significance, or that between menopause and OP

and low-BMD-related gene significance, which suggested that

the expression levels of OP and low-BMD-related genes within

the five modules influenced the OP (Figures 5C–G, M).

However, the expression levels of OP and low-BMD-related

genes tended to not be directly influenced by menopause

(Figures 5H–L, N).
Enrichment analysis of the MEbrown
module

To estimate the effect of m6A regulators on the low-BMD of

OP, we obtained the 198 m6A targets for the previous seven DE-

m6A regulators (Table S9) from the m6A2Target database

(http://m6a2target.canceromics.org/) to subsequent analyses.

We identified the strong correlation between five m6A

regulators (METTL3, YTHDF2, YTHDC1, FTO, and

HNRNPC) and 39 m6A targets with the threshold of r > 0.3

and p-value < 0.05 (Table S9). Additionally, we also filtered the

m6A targets with a weak correlation connected to modules with

a threshold of MM < 0.3 and GS < 0.3. Then, a hypergeometric

test was performed to identify the enrichment of m6A targets in

each module, which suggested that m6A targets were

significantly enriched in module brown (Figure 6A, Table 3).

Furthermore, GO and KEGG pathway enrichment analyses were
Frontiers in Endocrinology 09
performed to identify the potential biological functions of

module brown-related genes, resulting in a total of 36

pathways being dysregulated in module brown with p < 0.05

(Table S10). The most significant pathways are shown in

Figure 6B and Table 4, and the genes in module brown were

enriched in aldosterone synthesis and secretion, Ras signaling

pathway, Hedgehog signaling pathway, calcium signaling

pathway, PI3K-Akt signaling pathway, GnRH secretion,

proteoglycans in cancer, nucleocytoplasmic transport, viral life

cycle–HIV-1, and melanoma.
Construction of an m6A regulator–target
gene–pathway network and the ceRNA
network

Based on enrichment analysis and m6A target investigation

in module brown, we constructed a strong correlated m6A

regulator–target gene–pathway network based on two m6A

regulators (METTL3 and YTHDF2), four m6A targets

(SMAD4, HIPK3, MAP4K3, and EGFR), and 19 signaling

pathways (prostate cancer, breast cancer, non-small cell lung

cancer, MAPK signaling pathway, Cushing syndrome, glioma,

melanoma, gastric cancer, pancreatic cancer, FoxO signaling

pathway, PI3K-Akt signaling pathway, focal adhesion,

parathyroid hormone synthesis, Rap1 signaling pathway, Ras

signaling pathway, calcium signaling pathway, proteoglycans in

cancer, cellular senescence, and TGF-beta signaling pathway)

(Figure 7A, Table S11). To explore the molecular mechanism of
TABLE 3 Enrichment of 39 targets of 13 m6A regulators in five modules.

Model p-value Counts

MODELblue 0.6968 3

MODELbrown 0.0401 8

MODELred 0.2302 2

MODELturquoise 0.0570 10

MODELyellow 0.5262 2
fronti
TABLE 4 Top 10 KEGG pathways in module brown (p-value< 0.05).

ID Description Counts p-value FDR

has04925 Aldosterone synthesis and secretion 17 0.000468 0.14834

has04014 Ras signaling pathway 30 0.001304 0.151088

has04340 Hedgehog signaling pathway 11 0.00143 0.151088

has04020 Calcium signaling pathway 29 0.003372 0.260516

has04151 PI3K-Akt signaling pathway 39 0.004807 0.260516

has05218 Melanoma 12 0.005177 0.260516

has04929 GnRH secretion 11 0.005753 0.260516

has05205 Proteoglycans in cancer 24 0.009709 0.34908

has03013 Nucleocytoplasmic transport 15 0.010756 0.34908

has03250 Viral life cycle–HIV-1 10 0.012892 0.34908
e
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m6A regulators in OP, we further investigated whether the m6A

regulators and m6A-related genes were regulated by lncRNA

and miRNA. A total of 506 DE-miRNAs between OP and non-

OP were identified with a p-value < 0.05 (Table S12). Based on

10,520 DEGs and 506 DE-miRNAs, 656 miRNA–lncRNA pairs

and 99 miRNA–mRNA pairs were identified, which included 65

miRNAs, 71 lncRNAs, and 4 mRNAs (Table S13). Then, we

selected the key ceRNA network by inserting four mRNAs and

six genes (METTL3, YTHDF2, SMAD4, HIPK3, MAP4K3, and

EGFR) from the above network. The two key ceRNA networks

were obtained (Figure 7B, Table S13). A ceRNA network

contained lncRNA TMEM92-AS1, has-miR-375, and HIPK3.

Another ceRNA network included seven lncRNAs (XIST,
Frontiers in Endocrinology 10
MUC2, NOP14-AS1, INE1, LINC01136, LINC00837, and

DLEU2), seven miRNAs (hsa-miR-125a-5p, hsa-miR-125b-5p,

hsa-miR-137, hsa-miR-143-3p, hsa-miR-200b-3p, hsa-miR-218-

5p, and hsa-miR-3666), and three mRNAs (SMAD4, METTL3,

and EGFR).
Identification and validation of the
diagnostic markers for OP

Finally, we constructed a LASSO regression and SVM-RFE

model to select the candidate m6A regulators from 13 DE-m6A

regulators to predict the occurrence of OP. As shown in
A B

D E F G

IH J K L

M N

C

FIGURE 5

Identification of the OP-related modules by WGCNA. (A) Clustering dendrogram of genes based on the measurement of dissimilarity (1-TOM)
together with the assigned module colors. (B) Heatmap showing the correlation between the module eigengenes and clinical traits of OP.
(C–G) Scatterplots showing the correlation between the MM and GS in each module (MEblue, MEbrown, MEyellow, MEred, and MEturquoise).
(H–L) Scatter plots showing the correlation between the MM and clinical trait (menopause) in each module (MEblue, MEbrown, MEyellow,
MEred, and MEturquoise). (M) Bar charts showing the correlation between GS and cluster trait in each module (MEblue, MEbrown, MEyellow,
MEred, and MEturquoise). (N) Bar charts showing the correlation between GS and clinical trait (menopause) in each module (MEblue, MEbrown,
MEyellow, MEred, and MEturquoise).
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Figures 8A, B, an optimal l was selected using 10-fold cross-

validation based on the minimum mean square error. Three

m6A regulators (FTO, YTHDF2, and CBLL1) were selected as

the candidate genes by LASSO analysis. Moreover, the SVM-

RFE model was used to narrow down 13 DE-m6A regulators,

and 10 m6A regulators (YTHDF2, FTO, CBLL1, LRPPRC,

YTHDF3, ZC3H13, RBM15B, FMR1, RBM15, and YTHDF1)

were selected as the candidate genes (Figures 8C, D). Moreover,

ROC curves were drawn to assess the predictive ability of LASSO

regression and SVM-RFE models, and the AUC values of ROC

for LASSO regression and SVM-RFE models were 0.712 and

0.951, respectively (Figures 8E, F), which indicated that LASSO

regression and SVM-RFE models showed a high accuracy for OP

prediction. Thus, three m6A regulators (FTO, YTHDF2, and

CBLL1) were subsequently selected as the candidate genes for
Frontiers in Endocrinology 11
OP by overlapping the candidate genes from two models

(Figure 8G). Finally, we also detected the predictive ability of

three candidate genes in the training cohort (GSE56815) and

validation cohort (GSE7158). As shown in Figure 8H, the

expression of FTO was downregulated, whereas the expression

of YTHDF2 and CBLL1 was upregulated in high-BMD women

compared with low-BMD women in the GSE56815 dataset.

CBLL1 has a higher expression in high-BMD women than in

low-BMD women in the GSE7158 dataset (Figure 8I).

Furthermore, the AUC values of ROC curves for three m6A

regulators together (GSE56815, multigene, AUC = 0.683;

GSE7158, multigene, AUC = 0.732) indicated the more

powerful prediction for OP than the predictive ability of a

unique gene of them (GSE56815, FTO, AUC = 0.665;

YTHDF2, AUC = 0.709; CBLL1, AUC = 0.683; GSE7158,
A B

FIGURE 6

Enrichment analysis of the MEbrown module. (A) Bubble plot showing the enrichment of m6A targets in each module (MEblue, MEbrown,
MEyellow, MEred, and MEturquoise). (B) Bubble plot indicating the KEGG pathways of MEbrown.
A

B

FIGURE 7

Construction of an m6A regulator–target gene–pathway network and the ceRNA network. (A) A m6A regulator–target–pathway network in
MEbrown. Orange rectangles present m6A regulators, turquoise ellipses represent m6A targets, and purple diamonds represent pathways.
(B) Two ceRNA networks of OP. One network contained lncRNA TMEM92-AS1, has-miR-375, and HIPK3. Another ceRNA network included
seven lncRNAs (XIST, MUC2, NOP14-AS1, INE1, LINC01136, LINC00837, and DLEU2), seven miRNAs (hsa-miR-125a-5p, hsa-miR-125b-5p, hsa-
miR-137, hsa-miR-143-3p, hsa-miR-200b-3p, hsa-miR-218-5p, and hsa-miR-3666), and three mRNAs (SMAD4, METTL3, and EGFR). Rectangles
represent lncRNAs, quadrangles represent miRNAs, and prisms represent mRNAs.
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FIGURE 8

Identification and validation of the diagnostic markers for OP. (A) LASSO regression coefficient profiles of the 13 m6A regulators. Each curve
represents the changing trajectory of each m6A regulator. (B) Tenfold cross-validation for optimal parameter selection in the LASSO model.
Each red dot represents a lambda value with a confidence interval. The two dotted lines represent the values at minimum criteria and 1-
standard error (1-SE) criteria by 10-fold cross-validation. The x-axis shows the penalization coefficient (log l). The y-axis shows the partial
likelihood deviance values with error bars. (C) The curve of the total within sum of squared error curve under corresponding cluster number k,
and it reached the “elbow point” when k = 10. (D) The curve of average silhouette width under corresponding cluster number k, and the
maximum of average silhouette width was achieved when k = 10. (E, F) ROC curves validated the performances of the LASSO regression model
and the SVM-RFE model. (G) Venn plots show the candidate genes by overlapping the candidate genes selected from the LASSO regression
model and the SVM-RFE model. (H, I) Boxplots showing the three differentially expressed m6A regulators (FTO, YTHDF2, and CBLL1) between
high-BMD women and low-BMD women in GSE56815 and GSE7158 datasets. (J, K) ROC curves validated the performances of three m6A
regulators (FTO, YTHDF2, and CBLL1) for the prediction of OP in GSE56815 and GSE7158 datasets.
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FTO, AUC = 0.625; YTHDF2, AUC = 0.607; CBLL1, AUC =

0.732) (Figures 8J, K).
Discussion

OP is a degenerative bone disease that is characterized by

depleted bone mass, destroyed bone structure, bone fragility, and

fractures (39). Emerging evidence has indicated that m6A

modification plays an important role in impaired bone

information and maintained the balance of bone homeostasis

of OP (40). However, the role and regulatory mechanism of m6A

regulators in OP remains unclear. Here, we integrated analyses

of the m6A-related molecular pattern, m6A targets and their

related regulatory mechanism, and the m6A-related diagnostic

model in OP. Firstly, we investigated the differential expression

of 21 m6A regulators and m6A-related molecular pattern in OP,

and 13 DE-m6A regulators, namely, METTL3, HNRNPC, FTO,

LRPPRC, YTHDC1, YTHDF1, ZC3H13, RBM15, YTHDF3,

FMR1, RBM15B, YTHDF2, and CBLL1, were found in OP.

Based on these m6A regulators, 40 low-BMD women were

distributed into two subclusters (cluster 1 = 23, and cluster 2 =

17). There were 5,260 significant m6A-related DEGs between

two subclusters.

Then, we investigated the functional pathways of the m6A-

related DEGs. These m6A-related DEGs were involved in OP-

related signaling pathways, including apoptosis, cell cycle,

immunity, lipid and glucose metabolism, methylation, and

osteoclast differentiation. Moreover, 22 pathways were

upregulated in cluster 2 compared to cluster 1, such as PI3K-

Akt, MAPK, and immune-related pathways (regulation of

monocyte differentiation, response to granulocyte-macrophage

colony-stimulating factor, chemokine signaling pathways,

positive regulation of T-cell apoptotic process, and B-cell

receptor signaling pathway), bone formation and resorption

(osteoclast proliferation and differentiation, and bone

resorption), bone metabolism (glucocorticoid metabolic process,

fructose and mannose metabolism, canonical glycolysis, lipid

homeostasis, glycolysis/gluconeogenesis, pentose phosphate

pathway, and carbon metabolism), and cell apoptosis

(regulation of extrinsic apoptotic signaling pathway in the

absence of ligand and engulfment of apoptosis cell). In contrast,

the 22 pathways were upregulated in cluster 1 compared to cluster

2, mainly associated with cell cycle-related pathways (regulation of

cell cycle, G2/M transition of mitotic cell cycle, mitotic cell cycle,

mitotic cell cycle process, cell cycle checkpoint, regulation of

mitotic metaphase/anaphase transition, negative regulation of

cell cycle phase transition, negative regulation of cell cycle G2/

M phase transition, and negative regulation of mitotic cell cycle

phase transition). Other pathways included bone cell

development, RNA or tRNA methylation, positive regulation of

gluconeogenesis, fatty acid metabolism, tumor necrosis factor-

mediated signaling pathway, T-cell receptor signaling pathway,
Frontiers in Endocrinology 13
regulation of telomere maintenance via telomerase, autophagy,

apoptosis, and peroxisome.

A previous study has indicated that the PI3K-Akt signaling

pathway has a protective function in glucocorticoid-induced OP

(41), and activating the PI3K-Akt signaling pathway promotes

cell adhesion, cell viability, and osteogenic differentiation (42).

Nevertheless, inhibition of the MAPK signaling pathway can

ameliorate OP (43, 44). Generally, osteoclasts are specialized

cells derived from the monocyte and macrophage hematopoietic

lineage that adhere to the bone matrix and degrade it (45).

Altered cytokine expression and immune cell profile are often

found in OP (14), which affect the communication between

immune cells and osteoblasts and osteoclasts to regulate the

processes of OP (46, 47). These findings suggested that the OP

patients in cluster 2 might show the activated osteoclast and be

involved in the immune-activated bone microenvironment.

Furthermore, we also found several metabolism-related

pathways involved in OP. Glucocorticoid is widely used to

inhibit inflammation of the immune system (48), and it also is

a risk factor for bone fragility that leads to OP (49, 50). Other

metabolism-related pathways, including canonical glycolysis,

glycolysis/gluconeogenesis, lipid homeostasis, pentose

phosphate pathway, and carbon metabolism, were extremely

rare in OP. Recent evidence indicates that active metabolic

reprogramming involves osteoclastogenesis (51), which

represents a therapeutic target for OP treatment (52). Here, we

found that positive regulation of gluconeogenesis and fatty acid

metabolism were upregulated in cluster 1. In addition, we also

found a TNF-mediated signaling pathway and T-cell receptor

signaling pathway involved in cluster 1. TNF-a plays an

important role in immune responses and bone metabolism

(15). Inhibition of TNF-a reduces osteoclast formation to

suppress OP (53, 54). Moreover, several cell cycle-related

pathways, autophagy, and apoptosis involved in cluster 1,

osteoblast proliferation, cell cycle, apoptosis, and autophagy

directly affect the OP process (55).

Thirdly, we further explored the m6A targets and their

related regulatory mechanism in OP. We established a

WGCNA to identify the OP-related hub modules and key

genes. We identified five modules (MEblue, MEbrown,

MEyellow, MEred, and MEturquoise) significantly associated

with OP. In particular, the m6A targets were significantly

enriched in module brown, then an m6A regulator–target

gene–pathway network in module brown was constructed,

which contained two m6A regulators (METTL3 and

YTHDF2), four m6A targets (SMAD4, HIPK3, MAP4K3, and

EGFR), and 19 signaling pathways, such as MAPK, Foxo, PI3K-

Akt, focal adhesion, Rap1 signaling pathway, Ras, calcium,

cellular senescence, and TGF-beta signaling pathways.

METTL3 promotes the osteogenic potential of mesenchymal

stem cells in OP (28, 56, 57), while YTHDF2 has rarely been

found in OP. SAMD4 and EGFR play critical roles in

osteoprogenitor maintenance and bone formation (58, 59).
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The above finding proved that the potential regulatory

mechanism of m6A regulators modulated the process of OP.

MiRNAs and lncRNAs are two targets that have recently come

into the spotlight due to their regulatory ability to affect gene

expression at the transcriptional or post-transcriptional levels

and provide epigenetic modification (54, 60, 61). Here, we found

that an m6A regulator (METTL3) and three m6A targets

(SMAD4, HIPK3, and EGFR) might have a function in OP in

an lncRNA–miRNA-dependent manner.

Finally, we constructed a diagnostic model and identified three

m6A regulators (FTO, YTHDF2, and CBLL1) used to diagnose OP.

We found FTO upregulated in OP, whereas YTHDF2 and CBLL1

were downregulated in OP. Previous studies have indicated that

FTO inhibits osteogenic differentiation to promote OP (26, 62).

Although our study firstly discovered the function of m6A

regulators, m6A-related molecular patterns, and diagnostic values

of m6A regulators in OP, there are also some limitations here. The

first limitation is the lack of complete clinical characteristics of OP

patients in the original dataset. Moreover, although OP is a common

disease for women, the sample size of OP remains small in the

original dataset, and the expression of m6A regulators was verified in

a small cohort. Therefore, future research needs a randomized

control study with a large sample size to verify our results.
Conclusion

Taken together, our findings indicated the function of m6A

regulators in the OP process and diagnosis, which provided a

novel insight into the pathologic analyses and diagnostic

biomarker exploration at the cellular and molecular levels.
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