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Abstract: Amyotrophic lateral sclerosis (ALS) is a prototypical neurodegenerative disease charac-
terized by progressive degeneration of motor neurons to severely effect the functionality to control
voluntary muscle movement. Most of the non-additive genetic aberrations responsible for ALS make
its molecular classification very challenging along with limited sample size, curse of dimensionality,
class imbalance and noise in the data. Deep learning methods have been successful in many other
related areas but have low minority class accuracy and suffer from the lack of explainability when
used directly with RNA expression features for ALS molecular classification. In this paper, we
propose a deep-learning-based molecular ALS classification and interpretation framework. Our
framework is based on training a convolution neural network (CNN) on images obtained from
converting RNA expression values into pixels based on DeepInsight similarity technique. Then,
we employed Shapley additive explanations (SHAP) to extract pixels with higher relevance to ALS
classifications. These pixels were mapped back to the genes which made them up. This enabled us to
classify ALS samples with high accuracy for a minority class along with identifying genes that might
be playing an important role in ALS molecular classifications. Taken together with RNA expression
images classified with CNN, our preliminary analysis of the genes identified by SHAP interpretation
demonstrate the value of utilizing Machine Learning to perform molecular classification of ALS and
uncover disease-associated genes.

Keywords: machine learning; ALS; classification; interpretation; target identification

1. Introduction

Amyotrophic lateral sclerosis (ALS) refers to a group of rare neurological disorders
in which nerve cells (neuron) functionality to control voluntary muscle movement such
as chewing, walking and talking is jeopardized [1–3]. The disease results in a progressive
loss of muscle strength leading to paralysis and eventually death [2]. Genetic aberration is
one of the primary causes of ALS for many patients [2,4]. Most of these genetic aberrations
are non-additive because of their interaction with each other which makes it challenging
to be detected using classical available genotype-phenotype association approaches [2].
ALS is now recognized as a multidimensional spectrum disorder. Recently, deep learn-
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ing techniques have been proven to be widely used for predicting genotype-phenotype
associations and molecular ALS classifications [5–8]. The ability of deep learning models
to effectively extract nonlinear relationships from a large number of samples for complex
disorders has been reported in the literature [9,10].

The molecular ALS classification is also a very complex problem [11] and ideally would
require thousands of samples [12] to train any deep learning algorithm. ALS is a rare disease,
and it is challenging to find a large number of samples for research purpose [12,13]. Another
factor that limits the availability of samples is the accessibility of affected tissues. ALS is a
disease of motor neurons, which reside in the spinal cord and the brain [14]. Postmortem
spinal cord, brain and cerebrospinal fluid are ideal tissue sources which either directly
reflect the pathology of the disease or have interaction with central nervous system, but
they are usually more difficult to access compared to tissue such as blood [15]. In a typical
dataset of rare disease (ALS) samples, the number of samples is far less than the number of
expressed genes [16,17], thus introducing the curse of dimensionality [18].

Another challenge with study of RNA expression, which is the gene transcription
activity represented by the count of reads mapped to the gene in next generation sequencing
data, is tissue heterogeneity and cell composition heterogeneity. Different human tissues
have distinct RNA expression patterns [19]; furthermore, it has been found that ALS
patients and healthy individuals have different cell compositions in same tissue [20], and
these can be confounding factors in disease-associated gene expression identification. As
we are using postmortem samples in the study, RNA quality can be easily impacted by
sample collection time and storage condition, which in turn influences data quality and
gene expression quantification. This is another confounding factor that makes the data
analysis challenging.

Besides limited sample size, the curse of dimensionality and noise of the data, rare dis-
orders data also suffer from a severe class imbalance problem [21,22]. In machine learning,
one of the important criteria for higher classification accuracy is a balanced dataset [22].
Datasets with a large ratio between minority and majority classes face hindrance in learning
using any classifier [22]. In order to cater for dimensionality curse and class imbalance
for molecular classification of ALS, we propose an end-to-end machine-learning-based
pipeline for ALS and control samples classification and interpretation. We used RNA
expression data for control (60) and ALS (490) samples, and each sample is represented
in RNA expression values. The RNA expression values for each sample are mapped to
form a pixel value of an image, thus creating an image dataset. We utilized DeepInsight
package [23] for image creation and a convolutional neural network (CNN) for classifica-
tion. We used various subsets of RNA expression data with our classification model. Using
this approach, even with a small size, highly noisy and severe class imbalance dataset, we
achieved promising classification results. Our method achieves better performance for
a minor class in comparison to other classical methods such as a fully connected neural
network trained, random forest and support vector machines trained on RNA expression
values directly.

In addition to molecular classification of ALS, we also employed SHAP (Shapley
additive explanations) to interpret the prediction results of our classification module [24].
We identified the top 10 pixels with the highest SHAP values and investigated the genes
which these pixels represented. The model found known ALS-associated genes and
predicted potential new disease genes. we demonstrated the value of utilizing machine
learning to perform molecular classification of ALS. In this study, we show that our image-
based neural network approach is able to perform effective feature selection, learn nonlinear
relationship in highly noisy data and identify biologically relevant molecular signals.

2. Materials and Methods

In this section, we first describe the dataset and the performance evaluation criteria
used in this study. Then, we provide details about the developed pipeline and its major parts
such as image creation module, classification module and post hoc interpretation module.
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2.1. Datasets

New York Genome Center (NYGC) RNASeq data were used for this study, and
RNA extraction, library preparation and sequencing were performed by NYGC under
their protocol. In brief, total RNA was extracted from flash frozen postmortem tissues of
ALS and control samples, using trizol/chloroform method, followed by Qiagen RNeasy
minikit column purification. RNA was quantified using Nanodrop 2000 and Qubit™ 2.0
Fluorometer, and its quality was measured by RNA integrity number (RIN) scores on
Agilent Bioanalyzer. Libraries were prepared using KAPA Stranded RNA-Seq Kit, then
loaded to Illumina HiSeq 2500 sequencer for 2 × 125 bp paired-end sequencing.

After receiving the raw sequencing data in fastq format, we performed quality control
using FASTQC [25], with mean quality value across each base position in the read and
per-sequence quality scores as the main metrics for data quality evaluation. The sequences
were pseudo aligned to reference genome of GRCh38 from Ensembl release 95 [26] by
Kallisto [27] for RNA expression quantification. GTF file from Ensembl release 86 was used
for gene region annotation. The transcript abundance quantified by Kallisto was used for
downstream machine learning.

As sex chromosomes have different ploidies in different genders, we only use genes
in autosomes, i.e., chromosomes 1–22 in our pipeline. We also excluded loci with multiple
haplotypes in GRCh38 (such as MHC locus), where accurate expression quantification is
challenging. As genes with low read count carry little information and can be caused by
mapping errors, we conducted a case study which only used high-expression genes, which
are genes with ≥10 reads in ≥10 samples, for model training. In another case study, we
used only protein-coding genes for training, which are defined as protein-coding genes in
Gencode Release 26 [28].

2.2. Evaluation Criteria

In order to measure the ALS classification performance of our developed pipeline,
we used the following metrics: area under curve of receiver operating curve (AUC-ROC),
specificity (SPE), sensitivity (SEN), negative predictive value (NPV), positive predictive
value (PPV), accuracy (ACC) and Matthew’s correlation coefficient (MCC). It should be
noted in this paper that negative class refers to control, and positive class refers to ALS.
The details of these metrics are as follows:

• Area under curve of receiver operating curve (AUC-ROC): AUC-ROC takes into
account all the threshold. The higher the value of AUC-ROC, the better the model is
at distinguishing between classes. It can be computed by taking area under the curve
for true-positive rate (TPR) on the y-axis and false-positive rate (FPR) on the x-axis
for a given dataset. TPR which is also called sensitivity (SEN) describes how good
the model is at classifying a sample as ALS when the actual outcome is also ALS. FPR
describes how often a ALS class is predicted when the actual outcome is control.

SEN = TPR =
TP

TP + FN
(1)

FPR =
FP

FP + TN
(2)

where TP = True Positives, TN = True Negatives, FP = False Positives, FN = False
Negatives, and SEN = Sensitivity.

• Specificity (SPE): SPE is the total number of true negatives divided by the sum of
the number of true negatives and false positives. Specificity would describe what
proportion of the negative class were correctly classified by our model.

SPE =
TN

TN + FP
(3)
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• Negative predictive value (NPV): NPV describes the probability of a sample predicted
as negative class to be actually as negative class.

NPV =
TN

TN + FN
(4)

• Positive predictive value (PPV): PPV describes the probability of a sample predicted
as positive class to be actually as positive class.

PPV =
TP

TP + FP
(5)

• Accuracy (ACC): ACC is the fraction of prediction our model was correct about , i.e.,
it predicted positive class and negative class correctly.

ACC =
TP + TN

TP + TN + FP + FN
(6)

• Matthews correlation coefficient (MCC): MCC has a range from −1 to 1 where −1
indicates a completely wrong binary classifier while 1 indicates a completely correct
binary classifier.

MCC =
TP ∗ TN− FP ∗ FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)

2.3. Image Creation Module

We transform RNA expression data into pixels using the DeepInsight similarity tech-
nique and then trained a convolution neural network (CNN).

Figure 1. ALS and control sample images with 120 × 120 resolution obtained using DeepInsight for
demonstration purposes.

In Figure 1, DeepInsight for RNA expression data is used to create images of ALS and
a control group sample. DeepInsight image creation process is shown in Figure 2. The RNA
expression values were mapped to a 2D matrix such that the features which are similar to
each other occupy nearby positions in the matrix. As shown in Figure 2a, a transformation
T was applied on the genes feature vectors for each sample which creates a 2D matrix M.
Features g1, g3, g6 and gd are closer to each other, which brings them into each other’s
vicinity after applying the transformation T. On the other hand, gene feature g7 is different
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than the others and mapped to a very different location in 2D matrix. Figure 2b shows each
step of the transformation T.

The first step is to find the location of each gene feature. For that purpose, similarity
measuring technique or dimensionality reduction technique like t-SNE or kernel principal
component analysis (kPCA) is applied sample-wise on the gene features data. This results
in feature locations in 2D plane. Once the location of the gene features of samples is deter-
mined, then convex hull algorithm is used to find the smallest rectangle that contains all
the points. Rotation is performed to obtain images in horizontal or vertical orientation only.
Then the gene features are mapped to their respective positions obtained in the previous
step. Thus a new image data is created for each sample where each pixel correspond to
one or more gene features. In case of multiple genes very similar to each, their values are
averaged out to obtain a pixel.

Figure 2. DeepInsight pipeline. (a) An illustration of transformation from feature vector to feature
matrix. (b) An illustration of the DeepInsight methodology to transform a feature vector to image
pixels. Image taken from DeepInsight [23].

In specific implementation for RNA expression data as gene features in our case, we
first normalized the expression values to a range of [0, 1]. We used normalization method
named as norm-2 from DeepInsight [23]. In this normalization, the topology of features
was reserved to some extent of DeepInsight [23]. After normalization, we used a python
package of DeepInsight [29] with t-SNE method to generate single-channel images with
a dimension of 380 × 380 in our final model. For the demonstration purposes, we show
an image of 120 × 120 in Figure 1. Major portion of both ALS and control was similar, yet
subtle changes can be observed, one of which is highlighted in Figure 1.

2.4. Classification Module

After obtaining image data from RNA expression data, we used convolutional neural
network (CNN) to classify images into ALS and control. A convolutional neural network
is a special type of neural network for the image data. CNNs can extract low-level features
from images and compute more complex features as we go deeper in the networks [30,31].
Variants of CNN such as Inception, Alexnet and Resnet have been developed and employed
as highly accurate image classification models [32]. In our particular case, as shown in
Figure 3, there was an input, 2 conv blocks, then fully connected block followed by an
output block. Input contained image data of 490 ALS and 60 control samples. Each sample
was 380 × 380 single-channel image. There were two conv blocks concatenated after the
input. Each of the conv block consisted of one 2D convolution layer followed by ReLU
activation, max pooling and drop out as shown in Figure 3. The depth d of 2D convolution
was 32 in first conv block and 64 in the second conv block. In fully connected block, a dense
layer with 256 units along with ReLU activation was used after flattening the output of the
conv block. A single dense unit followed by sigmoid function was applied at the end of
the fully connected block. At the output, the sample was considered as ALS for prediction
probability greater than 0.5 and control for prediction probability less than 0.5.
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CNN Training

We used Keras deep learning framework [33] for developing and training the CNN
model. We trained it for 500 epochs with an early stopping criteria. During the training, we
used class weights for computing the loss function to cater for class imbalance in our data.
ALS class was assigned with a weight of 0.56, and control was assigned with a weight of
4.57 using sklearn class_weight function [34]. We used ADAM optimizer [35] with a binary
cross entropy loss function from Keras [33] for training our CNN model.

 Convolution 2D
filter = 3 x 3,

depth = d
MaxPooling2D

pool_size = 2 X 2 

R
eLU Dropout = 0.5 

Conv Blocks x 2

Flattening

Dense 256 units

R
eLU

Dense 1 unit

Sigm
oid

ALS and control
Image data

Input

Fully Connected Block
Output

0.5 <

0.5 >Control

ALS

Figure 3. CNN architecture for classifying ALS and control images.

2.5. Classical Machine Learning Methods

We used random forest (RF), support vector machines (SVM) and a fully connected
neural network (FCNN) with 33,153 RNA expression features related to autosomal genes
directly to compare their results with our method.

2.5.1. Random Forest (RF)

Random forests are a combination of tree predictors, such that each tree depends on
the values of a random vector sampled independently and with the same distribution for
all trees in the forest [36]. We used RF from scikit-learn machine learning library with its
default parameters [37].

2.5.2. Support Vector Machines (SVM)

Support vector machines (SVM) belongs to a class of supervised machine learning
methods. It attempts to find a line/hyper-plane (in multidimensional space) that separates
classes of data under observation or ranges for regression [38,39]. We used SVM from
scikit-learn machine learning library with its default parameters [37,40].

2.5.3. Fully Connected Neural Networks (FCNN)

We also compared our method with a fully connected neural network (FCNN). FCNN
can be viewed as a complex mapping function, where the fundamental unit of a FCNN
is called a neuron. It takes input and computes the output after applying non-linearity
and gradient descent based back-propagation algorithm [41]. In specific implementation
for this study, FCNN consisted of two fully connected layers with 200 neurons in each,
a second last layer with 10 neurons and an output layer with one neuron. We placed a
dropout rate of 0.5 after each hidden layer. We used Keras deep learning framework [33]
for training. We trained it for 100 epochs with an early stopping criteria. We used ADAM
optimizer [35] with a binary cross entropy loss function from Keras [33] and a batch size of
32 with a learning rate of 0.001.
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2.6. Post Hoc Interpretation Module

Deep learning methods such as CNN are black-box in nature and extremely difficult to
interpret [42,43]. These methods are capable to answer the “what” question about certain
prediction but fails to give an answer to the “why” question [43,44]. Understanding why a
model makes a certain prediction can be as crucial as the prediction’s accuracy in many
applications [24]. In this study, we used SHAP (Shapley additive explanations) to interpret
the prediction results of our classification module. SHAP assigns each feature an impor-
tance value for a particular prediction. It connects game theory with local explanations and
uniting several previous methods [44–47]. SHAP represents the only possible consistent
and locally accurate additive feature attribution method based on expectations [24].

In this study, once we have trained and tested our model, we employed Deep SHAP
package [48] to interpret the prediction outcome of our classification module. In the first
step, we selected a distribution of background 200 random samples out of the input image
data to take expectations over. Then, we used the selected background distribution along
with the trained model to obtain SHAP values for each pixel in a sample as shown in
Figure 4. Red pixels represent positive SHAP values that increase the probability of the
class, while blue pixels represent negative SHAP values that reduce the probability of the
class. The sum of the SHAP values equals the difference between the expected model
output (averaged over the background dataset) and the current model output. After
obtaining SHAP values of each pixel, we selected the top ten pixels with the highest SHAP
values and mapped them back to specific genes forming those pixels.

Figure 4. Left side is gray-scale image of an ALS sample. Right side shows highlighted pixels in the
image with SHAP values.

3. Results and Discussion

In this section, we present the classification performance of our method with different
image resolutions and RNA expression features related to various sets of genes. We also
show our method’s performance compared with classical machine learning models and the
top 10 gene extracted using SHAP interpretation of our method. Finally, we investigate the
functional and disease association of the extracted genes and then discuss some potentially
identified new genes.

3.1. Samples and Quality Controls

Fastq files of 550 samples (490 ALSs and 60 controls) were downloaded from NYGC
database; all of them passed the default quality control criteria of mean quality value in
the read and per sequence quality scores of FASTQC; and all samples were used for down-
stream analysis. The samples are from 114 ALS patients and 19 control individuals. The
majority of patients and control individuals donate multiple tissues, including cerebellum
(n = 98), frontal cortex (96), motor cortex (118), occipital cortex (58), and spinal cord (163)
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(Table S2), and the composition of tissues is similar between ALSs and controls (Table S4).
We quantified the expression of 39,429 genes (33,153 autosomal and 6276 non-autosomal
genes), and the expression data of autosomal genes were used for model training.

RIN is one of most commonly used metrics for RNA quality control. It has been
shown that RIN values impact RNA sequencing data quality and gene expression quantifi-
cation [49]. The suggested threshold of RIN value for sample inclusion varied in different
studies, and it can be as high as 8 [50] and as low as 3.95 [51]. The samples in this study
have RIN values ranging from 2.2 to 9.9 (Figure S1), and we did not filter out samples with
low RNA quality using a RIN threshold, as it can reduce the power of the analysis [49]; by
contrast, we just used all samples for model training and left the task of distinguishing
biological signals from RNA quality confounding effects to the model. It should be noted
that even though we did not apply any filter on the RIN values, there should not be any
bias in RIN values between two groups; otherwise, it can confound the prediction. There is
no significant difference in the distribution of RIN values in two groups (p-value = 0.70,
t-test) as shown in Figure S2 of the Supplementary Material.

3.2. Classification Performance for Various Image Resolutions

We present the effects of different image resolutions on the classification performance
of our method. For this purpose, we used RNA expression features of 33,153 autosomal
genes. We performed 12-fold cross-validation experiments with image resolutions starting
from 50 × 50 till 380 × 380 as shown in Figure 5. AUC and ACC improves with higher
image resolutions. The highest value of AUC: 0.927 is obtained for the resolution of
320 × 320, whereas for that of ACC: 0.827 is obtained for the resolution of 380 × 380. For
F1 and MCC, we observe an initial improvement with a dip in between around 220 and
250 followed by an improvement until 380 × 380. The highest values for both F1: 0.813 and
MCC: 0.639 are obtained for the resolution of 380 × 380. As the data are highly imbalanced
with ALS as major class and control as minor class, we see higher sensitivity with little
variations as compared to specificity for all image resolutions. SPE increases continuously
with higher image resolution with a highest value of 0.706 for 380 × 380. The ability of our
model to correctly identify minor class which is control in our case improves significantly
with higher resolution images. For PPV on the other hand, there is a slight improvement
with a highest value of 0.963 for 380 × 380. The highest value for NPV however occurs at a
resolution of 180 × 180, which is 0.790. Moreover, with higher resolutions, the standard
deviation for 12 folds increases, as shown by the black error bars in Figure 5.
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3.3. Comparison with Classical Models

In order to investigate the effectiveness of our method, we compared its results with
classical machine learning methods such as random forest, support vector machine and
fully connected neural networks. As shown in Table 1, our method performs significantly
better in most of the classification metrics. Specifically in classifying the control class
correctly, our method proves to be very robust as shown by SPE value in Table 1. Both RF
and SVM achieves very poor performance for classifying the minor class correctly. FCNN
performs relatively well though as compared to RF and SVM for SPE. A relatively higher
value of AUC for RF and SVM is strongly influenced by the major class, which is most of
the time predicted correctly. AUC for our method is the highest as compared other classical
methods. Nearly all the methods are performing well for classifying the major class as
shown by the SEN value in Table 1. SVM achieves the highest NPV followed by RF, FCNN
and our method, respectively. For PPV, ACC, MCC and F1, our methods achieves 3.54%,
20.37%, 33.68% and 12.44% improvement over the second-best FCNN method.

Table 1. 12-fold cross-validation performance comparison with classical machine learning methods such as random forest
(RF), support vector machines (SVM) and fully connected neural network (FCNN). For our method while comparing with
classical methods, we used images with resolution of 380 × 380 and all 33,153 RNA expression features of autosomal genes.

Method AUC SPE SEN NPV PPV ACC MCC F1

Our method 0.917 ± 0.03 0.707 ± 0.11 0.947 ± 0.04 0.671 ± 0.18 0.963 ± 0.01 0.827 ± 0.05 0.639 ± 0.11 0.813 ± 0.06

RF 0.831 ± 0.04 0.155 ± 0.05 0.994 ± 0.00 0.798 ± 0.19 0.906 ± 0.00 0.575 ± 0.02 0.319 ± 0.09 0.602 ± 0.04

SVM 0.866 ± 0.05 0.083 ± 0.03 1 ± 0 1 ± 0 0.899 ± 0.00 0.541 ± 0.01 0.270 ± 0.04 0.549 ± 0.02

FCNN 0.805 ± 0.04 0.4 ± 0.12 0.974 ± 0.02 0.692 ± 0.20 0.930 ± 0.01 0.687 ± 0.06 0.478 ± 0.15 0.723 ± 0.07

3.4. Case Study of Classification Performance with High Count and Protein-Coding Genes

In the initial phase of this study, we used expression values of all available 33,153 auto-
somal genes to train our pipeline with 380 × 380 image resolutions. We observed that even
though higher resolution of images give better classification performance, it also increases
the computational complexity and run-time of the pipeline. Therefore, we chose the resolu-
tion of 350 × 350 for two case studies to investigate the effectiveness of high-expression
genes and protein-coding genes.

• High-expression genes: Many of the 33,153 autosomal genes only express in very
few samples and carry little information; thus, we filtered out those genes with low
expression and only included genes with a high read count in a certain number of
samples. For that purpose, we used a threshold of 10, i.e., at least 10 samples across
our training data have a read count of 10 or higher. Through this filtering strategy, we
obtained a total of 18,194 high expression genes. The RNA expression values of these
high read count genes were converted into 350 × 350 images and subsequently used
in CNN training for classification.

• Protein-coding genes: As including non-protein-coding genes in the training data
may only increase the model complexity but bring little benefit to the model, thus in
the second case study, we also selected RNA expression data of 19,724 protein-coding
genes, converted them into images with resolution of 350 × 350 and evaluated the
performance of CNN model trained with those images.

As shown in Table 2, for all the metrics, RNA features for high-expression genes
substantially improve the classification performance as compared to 33,153 autosomal gene
expression results shown in Table 1. Protein-coding genes however show a slight decrease
in the classification performance.
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Table 2. 12-fold crossvalidation classification performance with a resolution of 350× 350 high-expression and protein-coding
genes RNA features.

RNA Features AUC SPE SEN NPV PPV ACC MCC F1

High count genes 0.964 ± 0.04 0.776 ± 0.12 0.978 ± 0.00 0.809 ± 0.00 0.973 ± 0.01 0.877 ± 0.06 0.767 ± 0.10 0.882 ± 0.05

Protein-coding genes 0.910 ± 0.04 0.646 ± 0.13 0.968 ± 0.02 0.720 ± 0.12 0.957 ± 0.01 0.807 ± 0.07 0.643 ± 0.13 0.819 ± 0.06

3.5. SHAP Interpretation

We used SHAP interpretation [24] to investigate the role of each gene in classifying
ALS samples using our developed model. It should be noted that each pixel of the im-
age may contain one or more gene expression values. It should be noted that for SHAP
interpretation, we used the model obtained with high-count gene RNA expression fea-
tures with image resolution of 350 × 350. For each prediction of our model discussed
previously, we identified top 10 pixels having highest SHAP values. We identified 12
genes (Table S3) which appeared in the top 10 pixels in more than 200 samples. We are
currently investigating 10 of the genes further; however, two genes in our dataset, Survival
of motor neuron-1 (SMN1) and SMN2, have been previously classified as associated with
disease in ALS [52]. SMN1 and SMN2 are paralogous genes as the result of an inverted
duplication [53]. The SMN protein has a myriad of roles in motor neuron function and is
critical for the regulation of transcription and RNA maturation, axonal trafficking of RNA
transcripts, facilitating the binding of RNA-binding proteins to mRNA transcripts and
regulating cytoskeletal dynamics [54]. In addition, SMN is involved in protein degradation
pathways by its actions in autophagy and the ubiquitin-proteasome system (UPS) and may
contribute to mitochondrial function through regulation of splicing, translation or mRNA
transport of genes crucial for mitochondrial homeostasis [54]. Therefore, the SMN protein
encoded by SMN1 and SMN2 contributes to many distinct pathways implicated in the
pathology of ALS.

In addition, SMN interacts with, and its properties are modulated by, other proteins
known to contribute to ALS pathogenesis, such as FUS, SOD1 and TDP-43 [55]. The interac-
tion between ALS and FUS is enhanced by ALS-associated mutations in FUS, causing these
proteins to form a stable complex [56]. As a result, SMN is mislocalized and sequestered
into cytoplasmic FUS aggregates, leading to a decrease in SMN in the axons of neurons and
subsequent axonal defects [56]. These aberrations also result in the loss of small nuclear
bodies, dysregulated small nuclear ribonucleoprotein (snRNP) assembly and defects in
downstream RNA processing [57,58]. Similarly, SOD1 variants cause the mislocalization of
SMN and disrupt the formation of nuclear bodies [59,60]. In vitro over-expression of SMN
enhances chaperone activity and protects cells from mutant SOD1 toxicity [61]. Further-
more, over-expression of SMN in SOD1 or TDP-43 mutant mice ameliorates disease [62,63],
while SOD1 mutant mice exhibit accelerated disease severity when SMN is depleted [64].
Therefore, the currently available evidence indicates that, in addition to its function in
relevant biological pathways affected during ALS, the SMN protein may cooperate with
other ALS-associated genes to coordinate and modify the disease phenotype of ALS. It
should be noted that there are changes in cell-type composition in ALS as found in previ-
ous studies [20,65]; therefore, in the interpretation of top genes found in our model, we
should be cautious that they can arise from this confounding factor. Taken together, our
preliminary analysis of the genes identified by SHAP interpretation demonstrate the value
of utilizing Machine Learning to perform molecular classification of ALS and uncover
potential disease-associated genes.

4. Conclusions

In conclusion, we developed a deep learning framework, which took full advantage
of image recognition ability of convolutional neural network by transforming the gene
expression data of ALS into images and then used them for neural network training. We
showed that the model effectively extracted disease associated features and learned the



Genes 2021, 12, 1754 11 of 14

nonlinear gene-disease relationship in highly noisy, heterogeneous and imbalanced data,
and we also showed its superior performance in disease clarification over other machine
learning algorithms. We interpreted the model with SHAP and successfully identified
known disease associated genes, and some potential new disease genes, which demon-
strated the potential of our model in the new biomarker and drug target identification in
complex disease research.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes12111754/s1, Table S1: Principal investigators of the NYGC ALS Consortium. Table S2:
Statistic of samples and tissue sources. The samples used in the study are from multiple postmortem
tissues. Table S3: List of genes identified by our machine learning pipeline. Table S4: Composition
of tissues for ALS and Control samples. Figure S1: Distribution of RNA Integration Number (RIN)
values in studied samples. Figure S2: RIN value comparison between ALS and control group.
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