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Introduction: Stem cell therapy with mesenchymal stem cells (MSCs) has been widely used in many
clinical trials, and therapy with MSC sheets shows promise for patients. However, there are few reports
characterizing MSC sheets. In the present study, the properties of MSC sheets derived from bone marrow,
adipose tissue, and umbilical cord were evaluated.
Methods: Cell sheets were fabricated with MSCs from different tissue origins in temperature-responsive
cell culture dishes with and without pre-coating of fetal bovine serum (FBS). MSC adhesion behavior in
the culture dish was observed. Secretion of cytokines related to cell proliferation and immune regulation
fromMSC sheets was investigated by ELISA. The adhesion properties of the MSC sheets were investigated
by time-lapse microscopy.
Results: Different cell adhesion and proliferation rates in temperature-responsive cell culture dishes
were observed among the three types of MSCs. FBS pre-coating of the dishes enhanced cell attachment
and proliferation in all cell types. Harvested cell sheets showed high attachment capacity to tissue
culture polystyrene dish surfaces.
Conclusions: MSC sheets can be fabricated from MSCs from different tissue origins using temperature-
responsive cell culture dishes. The fabricated MSC sheets could be useful in cell transplantation thera-
pies by choosing appropriate types of MSCs that secrete therapeutic cytokines for the targeted diseases.
© 2019, The Japanese Society for Regenerative Medicine. Production and hosting by Elsevier B.V. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
1. Introduction

Recently, mesenchymal stem cell (MSC) products have been
approved for the purpose of cell therapy worldwide, and great
expectation has been placed on their therapeutic effect [1]. MSCs
have the ability to self-proliferate and show multipotency to
differentiate into various cell types such as adipose, nerve, bone,
and cartilage cells [2]. MSCs can be collected from several tissues
and are frequently isolated from umbilical cord, bone marrow,
and adipose tissue because of their high proliferation ability and
easily accessible cell sources [3]. In MSC therapy, the paracrine
effect is considered the main underlying mechanism [4,5]. In the
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effect, MSCs secrete soluble factors (cytokines) at the injured site
and mediate therapeutic effects such as anti-inflammatory, anti-
fibrotic, and anti-apoptotic effects. MSCs also transdifferentiate
and regenerate to directly repair the injured site. Also, the effect
of MSCs involves secretion of soluble factors (cytokines) into
vessels and homing to distant injured tissues. To achieve the ef-
fect, cells are required to survive in the long term. MSCs are
known to enhance angiogenesis and suppress immune systems
through secretion of cytokines. Angiogenesis is mediated by
growth factors (e.g., vascular endothelial growth factor (VEGF),
hepatocyte growth factor (HGF)) and immune suppression is
mediated by the secretion of prostaglandin E2 (PGE2), trans-
forming growth factor (TGF)-b, and interleukins (ILs; e.g., IL-6, IL-
10) [4e6].

On the contrary, to improve cell transplantation therapy,
various cell transplantation methods have been investigated [7,8].
In most cases, cell transplantation was performed by direct in-
jection into the affected area. However, the injected cells were not
effectively transplanted because they did not survive in the host
sting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
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tissue [9]. To overcome this issue, cell transplantation using cell
sheets was developed. These cell sheets are fabricated using
unique cell culture dishes modified with thin grafted layers of a
temperature-responsive polymer, poly(N-isopropylacrylamide)
(PNIPAAm) [10e15]. PNIPAAm is well-known to have an aqueous
lower critical solution temperature of 32 �C, close to body tem-
perature [16]. Thus, the polymer has been widely utilized in
biomedical applications, including drug delivery [17e20], bio-
sensors and imaging agents [21e24], bioseparations [25e30],
and temperature-responsive cell culture dishes [10e15,31e34].
Temperature-responsive cell culture dishes change rapidly from
hydrophobic to hydrophilic as the aqueous temperature is reduced
below 32 �C. Using this approach, adherent cells cultured on
temperature-responsive cell culture dishes can be harvested
without any enzyme treatment as a contiguous intact viable cell
sheet. Aqueous medium spontaneously penetrates into the PNI-
PAAm polymer interface between the adherent cells and the
temperature-responsive cell culture dish surface at temperatures
below 32 �C, thus expanding the PNIPAAm chains by hydration
and physically separating the cell surfaces from the temperature-
responsive cell culture dish surface [10,35,36]. This cell sheet
technology represents a unique method for gentle and non-
destructive harvesting of cells, thereby enabling adherent cells to
be harvested from temperature-responsive cell culture dishes with
maintained cell activity and no destruction of the extracellular
matrix (ECM) [37e39].

Thus, cell sheets can be easily transplanted into patients
without sutures because the ECM proteins remaining in the cell
sheets act as a tissue-adhesive glue. Using these properties,
various types of cell sheets have been applied to tissue engineer-
ing and regenerative medicine [40e54]. Among these approaches,
therapy with MSC sheets shows promise because of the thera-
peutic effect of MSCs described above. However, there are few
reports on the characterization of MSC sheets, and the cell sheet
properties require further investigation for improved trans-
plantation. In addition, MSCs can be obtained from various tissues,
including bone marrow, adipose tissue, and umbilical cord. The
differences in properties of the resulting MSC sheets require
clarification.

In the present study, the properties of MSC sheets derived from
umbilical cord, bone marrow, and adipose tissue were evaluated.
Specifically, cell adhesion and proliferation on temperature-
responsive cell culture dishes were investigated, and cytokine
secretion fromMSC sheets wasmeasured. The attachment behavior
of the MSC sheets was also observed.

2. Materials and methods

2.1. Cell culture

Human MSCs derived from umbilical cord (UC-MSCs) and bone
marrow (BM-MSCs) were obtained from PromoCell (Heidelberg,
Germany). Human adipose tissue-derived MSCs (AD-MSCs) were
obtained from Lonza (Basel, Switzerland). All cells were cultured
in standard culture medium comprising Dulbecco's modified Ea-
gle's medium (DMEM) (Gibco, Rockville, MD, USA) supplemented
with 10% fetal bovine serum (FBS) (BIOSERA, Ringmer, UK), 1%
GlutaMAX (Gibco), 1% MEM non-essential amino acids (Gibco),
100 U/mL penicillin, and 100 mg/mL streptomycin (Gibco). The
cells were cultured at 37 �C under 5% CO2 in a humidified
chamber and passaged upon reaching confluency. For passaging,
the cells were treated with cell dissociation buffer (TrypLE; Gibco)
for 5 min and subcultured in standard culture medium at
4000 cells/cm2. Cells at passages 3 (BM-MSCs) and 4 (UC-MSCs,
AD-MSCs) were used.
2.2. Cell sheet fabrication

Temperature-responsive cell culture dishes were coated with
1 mL of FBS for 1.5 h before cell seeding of all three MSC types.
Specifically, the MSCs were seeded on 35-mm diameter
temperature-responsive cell culture dishes (UpCell; CellSeed,
Tokyo, Japan) at a density of 2 � 105 cells/dish and cultured until
they reached confluency (Fig. 1A). The above-described standard
culture medium containing 20% FBS was used for cell sheet fabri-
cation. At day 5, all MSC cultures were harvested as intact mono-
layer sheets from the culture dishes within 30 min by reducing the
temperature to 20 �C. The total cell numbers in the cell sheets were
counted by trypan blue exclusion assays using a Vi-Cell XR (Beck-
man Coulter Inc., Brea, CA, USA) every 24 h after cell seeding.

2.3. Detection of cytokine secretion by enzyme-linked
immunosorbent assay (ELISA)

All three types of MSCs were cultured for 5 days to fabricate cell
sheets, and the medium was changed to standard cell culture me-
dium (DMEM containing 10% FBS). The cells were incubated for a
further 24 h and their supernatants were collected and stored
at �80 �C until analysis by ELISA. The cells were then detached and
counted by trypan blue exclusion assays. The levels of HGF, IL-6, IL-
10, and TGF-b1 in the supernatants from the three types of cell
sheets were determined by ELISA kits (Qutantikine ELISA, R&D
Systems, Minneapolis, MN, USA) according to the manufacturer's
recommendations. The level of PGE2 in the supernatants was also
determined by an ELISA kit (Prostaglandin E2 ELISA kit e mono-
clonal, Cayman Chemical, Ann Arbor, MI, USA) The cytokine levels
were calculated based on a standard curve constructed for each
assay. DMEM containing 10% FBS was used as a negative control.
The cytokine levels in a negative control were subtracted from each
sample value. All samples were run in duplicate at three different
times.

2.4. Time-lapse microscopy

The cell adhesion properties of the cell sheets were analyzed by
time-lapse microscopy (Fig. 1B). The cell sheets were detached by
reducing the culture temperature to 20 �C for 30 min, and then
were transferred to 35-mm diameter tissue culture polystyrene
(TCPS) dishes (Thermo Fisher Scientific, Waltham, MA, USA) that
had been pre-coated with FBS (Gibco) for 1 h prior to cell sheet re-
attachment. The cell sheets were incubated for 15 min before im-
ages were obtained to allow cell focusing. Images of the cell sheets
were taken every 1 min for 6 h using a BZ-9000 microscope
(Keyence, Osaka, Japan). The cell sheets were cultured in a thermo-
stated incubation system for the microscope (Tokai Hit, Shizuoka,
Japan) while images were acquired.

3. Results and discussion

3.1. Cell adhesion and cell sheet fabrication with UC-MSCs, BM-
MSCs, and AD-MSCs

To fabricate cell sheets, UC-MSCs, BM-MSCs, and AD-MSCs were
seeded at a density of 2 � 105 cells on temperature-responsive cell
culture dishes. The cell morphologies of the three types of MSCs on
the culture dishes were observed during cell culture (Fig. 2). All
three types of MSCs were cultured for 5 days on the dishes to reach
confluency (Fig. 2A1e5, B1e5, C1e5). The cell morphologies of BM-
MSCs and UC-MSCs at day 1 differed from that of cells cultured on
TCPS dishes regularly used for cell expansion and subculture
(Fig. 2Ae1, B-1). All cell types were able to be detached as



Fig. 1. Illustration of the cell sheet fabrication process. UC-MSCs, BM-MSCs, and AD-MSCs were seeded on 35-mm diameter temperature-responsive cell culture dishes and cultured
for 5 days to reach confluency. (A) FBS was pre-coated prior to cell seeding. MSCs were cultured for 5 days to reach confluency, and then harvested from the temperature-responsive
cell culture dishes as monolayer cell sheets by reducing the temperature (37 �Ce20 �C). (B) The detached cell sheets were transferred to TCPS dishes and incubated for 15 min before
observation. Images of cell attachment and cell migration from cell sheets were obtained by time-lapse microscopy.

Fig. 2. Fabrication of cell sheets using temperature-responsive cell culture dishes without FBS pre-coating. The morphologies of UC-MSCs, BM-MSCs, and AD-MSC on temperature-
responsive cell culture dishes without FBS pre-coating were observed for 5 days after cell seeding. (AeC) The morphologies of UC-MSCs, BM-MSCs, and AD-MSCs were observed by
phase-contrast microscopy (A1e5, B1e5, C1e5). The cells were then detached from the temperature-responsive cell culture dishes by reducing the temperature, and gross
appearance was observed (A-6, B-6, C-6). Scale bars: 200 mm in A1e5, B1e5, C1e5; 10 mm in 2 Ae6, B-6, C-6.
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monolayer cell sheets by reducing the temperature to 20 �C for
30min (Fig. 2Ae6, B-6, C-6). UC-MSC, BM-MSC, and AD-MSC sheets
gradually became detached from the walls of the temperature-
responsive cell culture dishes and shrank (10-mm diameter) upon
full detachment from the dishes. This occurred because of the loss
of focal adhesion sites between the cell sheets and the cell culture
dish surfaces. Furthermore, the retained cellecell bonds provided
cytoskeletal contractile force in the sheets.

To compare fabrication methods for the cell sheets, BM-MSCs,
UC-MSCs, and AD-MSCs were seeded on temperature-responsive
cell culture dishes that had been pre-coated with FBS for 1.5 h
(Fig. 3A1e5, B1e5, C1e5). Cell attachment was enhanced using the
FBS-coated dishes. UC-MSCs, BM-MSCs, and AD-MSCs were able to
attach and change their morphology from round- to spindle-
shaped at day 1. All three types of MSCs were able to be detached
as cell sheets using FBS-non-coated temperature-responsive cell
culture dishes (Fig. 3Ae6, B-6, C-6). BM-MSCs showed lower cell
adhesion to the temperature-responsive cell culture dish surfaces
than UC-MSCs and AD-MSCs. In fact, the total numbers of BM-MSCs
were lower than those of UC-MSCs and AD-MSCs for 48 h after cell
seeding. The time for cell sheet detachment showed no significant
differences among the cell types for both FBS-non-coated and FBS-



Fig. 3. Fabrication of cell sheets using temperature-responsive cell culture dishes with FBS pre-coating. The morphologies of UC-MSCs, BM-MSCs, and AD-MSCs on temperature-
responsive cell culture dishes with FBS pre-coating were observed for 5 days after cell seeding. (AeC) The morphologies of UC-MSCs, BM-MSCs, and AD-MSCs were observed by
phase-contrast microscopy (A1e5, B1e5, C1e5). The cells were then detached from the temperature-responsive cell culture dishes by reducing the temperature, and gross
appearance was observed (A-6, B-6, C-6). Scale bars: 200 mm in A1e5, B1e5, C1e5; 10 mm in A-6, B-6, C-6.
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pre-coated temperature-responsive cell culture dishes. These
findings suggest that the adhesion properties were similar among
UC-MSCs, BM-MSCs, and AD-MSCs.

The total numbers of cells attached to FBS-pre-coated tempera-
ture-responsive cell culture dishes were counted every 24 h after cell
seeding for all three cell types. BM-MSCs reached confluencyonday4,
while UC-MSCs and AD-MSCs reached confluency on day 5 (Fig. 4A).
BM-MSCs showed the highest proliferation rate (6.0 � 105 cells/dish
at day 5) compared with UC-MSCs (4.7� 105 cells/dish at day 5) and
AD-MSCs (3.3 � 105 cells/dish at day 5). These findings differ from
those in previous studies showing that UC-MSCs had higher prolif-
eration rates than BM-MSCs [55,56]. These differences inproliferation
may be related to the passage numbers of the cells and the prolifer-
ative ability within the tissues of origin. AD-MSCs had relatively low
ability on population doubling compared to BM-MSC and UC-MSC.
This is consistent with manufacturer's information, since duration
time for subculture of AD-MSCs were 6e7 days.

The total cell numbers of MSCs on day 5 of culture on
temperature-responsive cell culture dishes with or without FBS
pre-coating were counted by trypan blue exclusion assays (Fig. 4B).
The total cell numbers were higher when MSCs were cultured on
Fig. 4. Proliferative properties of UC-MSCs, BM-MSCs, and AD-MSCs. Total cell numbers we
24 h during culture on FBS pre-coated temperature-responsive cell culture dishes for 120 h. (
between cells cultured with and without FBS pre-coating.
FBS-pre-coated dishes. These results suggest that coating of
temperature-responsive cell culture dishes with FBS enhanced cell
attachment and proliferation in MSC sheets with UC-MSCs and AD-
MSCs.

3.2. Cytokine expression in cell sheets fabricated from UC-MSCs,
BM-MSCs, and AD-MSCs

The paracrine effect of MSCs involving cytokine secretion is
required for long-term stable therapeutic effects. Identification of
the cytokines secreted by MSCs is necessary to understand and
improve stem cell therapy. To clarify the paracrine effect of cyto-
kines secreted by cell sheets composed of UC-MSCs, BM-MSCs, and
AD-MSCs, the protein levels of HGF, TGF-b1, IL-6, IL-10, and PGE2 in
supernatants from the cell sheets were analyzed by ELISA
(Fig. 5AeE). HGF is known to support cell survival, proliferation,
and migration and to suppresses inflammation [57e60]. AD-MSCs
showed relatively high levels of HGF secretion, while UC-MSCs
produced low levels (Fig. 5A). HGF was also shown to mediate
functional recovery of MSCs in animal models of diseases such as
multiple sclerosis and COPD [61,62], suggesting that the cell origin
re counted by trypan blue exclusion assays. (A) The cell numbers were counted every
B) The total cell numbers of UC-MSCs, BM-MSCs, and AD-MSCs at day 5 were compared



Fig. 5. Comparison of cytokine expression levels from cell sheets composed of UC-MSCs, BM-MSCs, and AD-MSCs. The secreted cytokine levels from UC-MSCs, BM-MSCs, and AD-
MSCs were evaluated by ELISA. To determine the cytokine expression levels, the cell culture medium was changed at 24 h prior to sampling. (AeE) The protein levels of HGF (A),
TGF-b1 (B), PGE2 (C), IL-6 (D), and IL-10 (E) were measured. Standard culture medium (DMEM containing 10% FBS) was used as a negative control.
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of MSCs may affect therapeutic efficacy in some diseases. TGF-b1,
PGE2, IL-6, and IL-10 are related to the anti-inflammatory response
and immune regulation by MSCs, which is important for cell sur-
vival of transplanted MSCs [57]. TGF-b1 down-modulates the in-
flammatory response by dampening macrophage activity and
proinflammatory cytokine secretion [63]. TGF-b1 levels in the su-
pernatants were in the order of BM-MSCs > UC-MSCs > AD-MSCs
(Fig. 5B). TGF-b1 exerts pleiotropic effects on processes such as cell
proliferation, differentiation, migration, and death [64]. TGF-b1was
also shown to exhibit T cell suppression activity [65], suggesting
that the secretion level of TGF-b1 may affect the cell survival of
transplanted MSCs. The secretion levels of PGE2 were relatively
high in both BM-MSCs and UC-MSCs and decreased in AD-MSCs
(Fig. 5C). PGE2 functions in the anti-inflammatory response
through binding to its receptors, EP1eEP4 [66]. PGE2 was also re-
ported to enhance the therapeutic effect of MSCs in traumatic brain
injury [67], premature ovarian aging [68] suggesting that BM-MSCs
and UC-MSCs may show higher therapeutic effects in these con-
ditions. MSC-derived IL-6 was also reported to regulate immune
activity and functions as an anti-inflammatory cytokine [69,70]. IL-
6 polarizes monocytes toward anti-inflammatory IL-10-producing
M2 macrophages [70,71]. IL-10 secreted by MSCs was shown to
suppress T cell proliferation [72] and inflammation [73,74]. The
anti-inflammatory function of IL-10 occurs through inhibition of
Th1 and Th17 cell proliferation and activation and by promoting the
development of M2 macrophages [75,76]. IL-6 levels were rela-
tively high in both UC-MSCs and BM-MSCs, while IL-10 levels were
relatively high in BM-MSCs and AD-MSCs (Fig. 5D and E),
suggesting BM-MSCs may show higher cell engraftment rates
compared with UC-MSCs and AD-MSCs.

All cell types secreted HGF, TGF-b1, PGE2, IL-6, and IL-10, which
are important for cell transplantation. Although the cytokine
secretion properties differed among the cell types, the required
cytokine levels necessary for successful cell transplantation remain
to be established.
3.3. Cell adhesion properties of cell sheets

The adhesion properties of the cell sheets were investigated by
time-lapse microscopy. Cell sheets composed of UC-MSCs, BM-
MSCs, and AD-MSCs were re-attached to TCPS dishes (Fig. 6 and
Supplementary Movie). The dishes were also coated with FBS to
enhance cell sheet attachment to the TCPS surface. After 15 min of
incubation, the cell sheets were gently washed with phosphate-
buffered saline to confirm cell attachment to the TCPS surface.
Cell sheets fabricated from UC-MSCs, BM-MSCs, and AD-MSCs
attached to the TCPS surface within 15 min of incubation. When
cells are attached to the surface of a cell culture dish, the cells are
stretched and exhibit a spindle shape, while non-attached cells are
rounded or cannot be brought into focus using a microscope with a
fixed focal lens. Time-lapsemicroscopy confirmed the cell adhesion
of UC-MSC, BM-MSC, and AD-MSC sheets to the TCPS surface. Cells
localized to the edges of the UC-MSC, BM-MSC, and AD-MSC sheets
were already attached and starting to stretch and migrate (Fig. 6
and Supplementary Movie). The cell attachment and migration



Fig. 6. Cell adhesion property of cell sheets. The cell adhesion properties of cell sheets were analyzed by time-lapse microscopy. (AeC) Cell sheets were placed on TCPS plates and
live cell images were obtained by time-lapse microcopy. Cells at the edges of cell sheets were evaluated.
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properties were similar among the three cell types, suggesting that
their cell attachment rates would be similar upon transplantation.
The migration properties may differ over longer periods, because
the proliferation rates of UC-MSCs, BM-MSCs, and AD-MSCs were
different (Fig. 4A).

These results demonstrate that the three types of MSC sheets
would be useful for cell transplantation therapy because of the
therapeutic effect of MSCs and the attachment properties of MSC
sheets. Because these properties differed slightly among the MSC
lines, the MSC sheets should be selected for individual therapeutic
applications.

4. Conclusions

In the present study, characterization of cell sheets composed of
UC-MSCs, BM-MSCs, and AD-MSCs was performed. Different cell
adhesion and proliferation behaviors in temperature-responsive
cell culture dishes were observed among the MSC types, probably
arising from the cell proliferation abilities within the tissues of
origin. Cytokine secretion from the cell sheets was observed. All
three types of MSC sheet secreted cytokines with important roles in
anti-inflammation, immunosuppression, proliferation, and migra-
tion, although slight differences in the secretion of individual cy-
tokines were observed among the different types of cell sheets. The
harvested MSC sheets were re-attached on TCPS dishes. The re-
attached cell sheets showed rapid adherence to the TCPS surfaces
and the cells at the edges of the sheets exhibited migration, sug-
gesting that the fabricated cell sheets retained cellular activity and
adhesion ability, which are important for engraftment after cell
transplantation. These results demonstrate that MSC sheets can be
fabricated from UC-MSCs, BM-MSCs, and AD-MSCs using
temperature-responsive cell culture dishes. The MSC sheets could
be useful in specific cell transplantation therapies by utilizing
appropriate types of MSCs that secrete therapeutic cytokines for
the targeted diseases.
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