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SUMMARY

Glycosylation is ubiquitous and often dysregulated in disease. However, the
regulation and functional significance of various types of glycosylation at cellular
levels is hard to unravel experimentally. Multi-omics, single-cell measurements
such as SUGAR-seq, which quantifies transcriptomes and cell surface glycans,
facilitate addressing this issue. Using SUGAR-seq data, we pioneered a deep
learning model to predict the glycan phenotypes of cells (mouse T lymphocytes)
from transcripts, with the example of predicting b1,6GlcNAc-branching across
T cell subtypes (test set F1 score: 0.9351). Model interpretation via SHAP (SHap-
ley Additive exPlanations) identified highly predictive genes, in part known to
impact (i) branched glycan levels and (ii) the biology of branched glycans. These
genes included physiologically relevant low-abundance genes that were not
captured by conventional differential expression analysis. Our work shows that
interpretable deep learning models are promising for uncovering novel functions
and regulatory mechanisms of glycans from integrated transcriptomic and glyco-
mic datasets.

INTRODUCTION

Glycosylation is a ubiquitous post-translational modification of proteins. Approximately half of all proteins

are glycosylated (Apweiler et al., 1999), influencing their physical properties and biological activities (Varki

et al., 2017; Varki, 2017). Cells utilize glycosylation to control their function and fate. For example, in CD8+ T

lymphocytes, b1,6-branched glycans of CD8+ T cell surface proteins are upregulated following T cell acti-

vation to prevent overstimulation. Downregulation of sialylated core 1O-linked glycans of CD8+ T cell sur-

face proteins induces apoptosis in the absence of activation, maintaining T cell homeostasis (Van Dyken

et al., 2007; Priatel et al., 2000; Smith et al., 2018). Changes in glycosylation have beenmechanistically impli-

cated in cancer, infectious diseases, autoimmune diseases, metabolic disorders, and developmental de-

fects (Demus et al., 2021; Ng and Freeze, 2018; Pinho and Reis, 2015; Qin and Mahal, 2021; Reily et al.,

2019; Sun et al., 2016; Theodoratou et al., 2014; Vosseller et al., 2002).

Despite many observational studies reporting glycosylation changes in diseases, much remains unknown

about the origin of these changes. Glycan biosynthesis is orchestrated in a non-templated manner by

hundreds of enzymes encoded by ‘‘glycogenes’’, including glycosyltransferases (add sugar residues), gly-

cosidases (remove sugar residues), sugar-modifying enzymes (synthesize phosphorylated, sulfated, or

acetylated glycans), enzymes of sugar metabolism pathways, and sugar transporters (Varki et al., 2017;

Neelamegham and Mahal, 2016). Regulation of glycosylation includes transcriptional and post-transcrip-

tional control of glycogenes, substrate availability, and intracellular trafficking of enzymes (Neelamegham

and Mahal, 2016). Therefore, identifying factors driving observed changes in certain glycan structures can

be a formidable challenge.

The functional significance of disease-associated glycosylation changes can also be difficult to ascertain,

due to the multi-modal influences of glycans. Glycans can influence protein structure, interactions between

proteins and receptors, recognition by carbohydrate-binding lectins, resistance to endocytosis and prote-

ase degradation, etc (Varki et al., 2017; Johannes et al., 2018; Mimura et al., 2018). One glycan feature can

thus havemultiple effects. For example, increased a2,3-sialylation of cancer cells contributes to cancer pro-

gression andmetastasis throughmechanisms including (i) immune system evasion by interacting with a2,3-

sialic acid-binding, immunosuppressive Siglec receptors (e.g., Siglec-9), (ii) increasing metastatic potential

via selectins (specific for a2,3-sialic acid-containing sialyl Lewis x and sialyl Lewis a antigens) displayed on
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circulating cells, and (iii) promoting angiogenesis and the epithelial-to-mesenchymal transition (EMT) pro-

cess (Dobie and Skropeta, 2021; Natoni et al., 2016; Pietrobono and Stecca, 2021; Rodriguez et al., 2021).

Analyzing multi-omic data has recently emerged to identify glycosylation-related mechanisms in patho-

genesis. Combining transcriptomic and glycomic data identified factors driving melanoma metastasis,

pancreatic cancer, and HIV persistence (Agrawal et al., 2017; Colomb et al., 2020; Kurz et al., 2021). Agrawal

et al. examined RNA-seq datasets of melanoma and found increased transcript levels of an enzyme synthe-

sizing core-fucosylated glycans in metastasized melanoma, matching melanoma glycosylation profiles.

They also reported more transcripts of transcription factors that directly upregulate the expression of

the core fucose-synthesizing enzyme (Agrawal et al., 2017).

State-of-the-art machine learning (ML) approaches, such as deep learning (DL) algorithms, are increasingly

used to map transcriptomes onto phenotypic differences, such as tissue types, cancer stages and grades,

drug responses, and disease outcomes, to understand and explain phenotypic outcomes on a molecular

systems level (Hanczar et al., 2020; Jia et al., 2021; Smith et al., 2020; Yap et al., 2021). Model explanation

methods such as Integrated Gradients (Dincer et al., 2018), LRP (layer-wise relevance propagation) (Bach

et al., 2015), LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro et al., 2016), DeepLIFT

(Deep Learning Important FeaTures) (Shrikumar et al., 2017), and SHAP (SHapley Additive exPlanations)

facilitated using DL models to shed light on biological questions. SHAP unifies and improves precedent

methods (Lundberg and Lee, 2017). It assigns an ‘‘SHAP value’’ to each input feature, reflecting its impact

on the expected output of a DL model for an input example. Using SHAP to identify biologically relevant

transcripts contributing to phenotypic differences has only been explored recently (Huang et al., 2022;

Withnell et al., 2021; Yap et al., 2021). Traditionally, these were identified by differential expression analysis

(DEA), which is (i) prone to information loss due to arbitrariness regarding p value and fold change thresh-

olds (Bui et al., 2020; Yang et al., 2019) and (ii) biased toward highly expressed genes (Oshlack and Wake-

field, 2009). Yap et al. found predictive genes identified by SHAP that were not identified by DEA (Yap et al.,

2021), indicating that SHAP can detect subtle but important differences.

We hypothesized that we could develop a DL model to differentiate glycosylation states of single cells and

use model interpretation approaches such as SHAP to provide meaningful biological insights into glycan

biosynthesis and function (Figure 1A). To the best of our knowledge, DL algorithms using transcripts as in-

puts have not been employed to study differential glycosylation before. Our model is based on data from a

new technology (SUGAR-seq) that simultaneously measures the transcriptome and glycosylation in single

cells (Kearney et al., 2021). Technologies such as SUGAR-seq capture the microheterogeneity at single-cell

levels, which is inaccessible by bulk omics yet can be valuable for mechanistic interpretation, and also pro-

vide high volume, matched multi-omics data that enable ML modeling. Specifically, the SUGAR-seq data

comprise single-cell transcriptomes of mouse T lymphocytes and the abundance data of surface b1,6-

branched glycans on these cells. Using the transcriptomic data as input to predict the binarized glycosyl-

ation phenotype of the cells, our model achieved an average F1 score of 0.9351 on the test set, with com-

parable performance across cell types. It also outperformed alternative approaches, including Random

Forest and Gradient Boosting. SHAP analysis identified highly predictive genes (‘‘SHAP genes’’) that are

involved in the biology of branched glycans in various ways, including their biosynthesis. SHAP genes

were also enriched in immunosuppression pathways, matching known functions of branched glycans in

T cells. Importantly, SHAP genes included low-abundance genes, such as glycogenes, which were not

captured by DEA. Our work shows that explainable DL models are a promising tool for uncovering novel

functions and regulatory mechanisms of glycans from paired single-cell transcriptomic and glycomic data.

RESULTS

Differential expression of surface b1,6-branched glycans in mouse T Cells

Extractingmechanistic insights into the role of glycans within the context of a cell would be greatly aided by

paired single-cell data combining multiple systems biology modalities. We thus used recently publicly

available single-cell RNA- and lectin-seq data (Kearney et al., 2021), which included two datasets corre-

sponding to mouse (i) tumor-infiltrating T lymphocytes (TIL) and (ii) lymph node T lymphocytes (LN) (Fig-

ure 1B). A well-characterized lectin Phaseolus vulgaris leucoagglutinin (PHA-L) was used for lectin-seq.

PHA-L is highly specific for branchedN-glycans with b1,6-GlcNAc linkage (‘‘b1,6-branched glycans’’), a gly-

coform implicated in tumor progression, tumor metastasis, and immune cell development and functional

regulation (Bojar et al., 2022; Demetriou et al., 2001; Granovsky et al., 2000; Morgan et al., 2004; Mortales
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Figure 1. Different mouse T cells show distinct cell surface glycosylation patterns based on single-cell RNA- and lectin-seq

(A) Graphical summary of workflow.

(B) Composition of the TIL and LN datasets. Left: numbers of cells and genes in each processed dataset. Right: cell type composition as percentages in each

dataset.

(C) UMAP clustering of cells in each dataset.

(D) Boxplots of processed PHA-L data (b1,6-branched glycan abundance) by cell type in each dataset.

(E) Histograms of processed PHA-L data in each dataset. Cell type annotations: Tex, terminally exhausted T cell; Tpex, precursor exhausted T cell. Tfh,

follicular helper T cell; Th1, T helper 1 cell; Treg, regulatory T cell.
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et al., 2020). Importantly, the b1,6-GlcNAc linkage is synthesized by alpha-1,6-mannosylglycoprotein

6-beta-N-acetylglucosaminyltransferase A (MGAT5), allowing PHA-L binding to act as a reliable proxy

for the activity of this enzyme. Based on transcriptomes, T cells were categorized into 9 major subtypes,

including naive/naive-like CD4+ T cells, naive/naive-like CD8+ T cells (may include central memory

T cells), early active CD8+ T cells, effector memory CD8+ T cells, terminally exhausted CD8+ T cells (Tex),

precursor exhausted T cells (Tpex), regulatory T cells (Treg), T helper 1 cells (Th1), and follicular helper

T cells (Tfh) (Figures 1B and 1C). We validated this classification via marker gene expression (Figure S1).

Additionally, TIL composition is highly heterogeneous, comprising activated and regulatory cells.

Conversely, the LN pool mainly contained resting T cells (Figures 1B and 1C). Observed compositions of

T cells isolated from different sites are consistent with previous studies (Kumar et al., 2018; Szabo et al.,

2019).

Surface glycosylation varies by cell type (Agrawal et al., 2014; Holst et al., 2016; Tao et al., 2008). We

observed clear and reproducible differences in surface expression of b1,6-branched glycans across

T cell subtypes in both datasets (Figure 1D). Treg and Tex consistently exhibited the highest expression

of branched glycans, while naive CD4+, naive CD8+, and Th1 exhibited the lowest. Similarly, previous

studies reported greater PHA-L binding to stimulated T cells than to their naive counterparts (Cabral

et al., 2017; Smith et al., 2018). Glycan expression was also more variable in TIL, consistent with its more

diverse composition (Figure 1E). As surface branched glycans seemed to distinguish T cells of different

characteristics and functions, we hypothesized that we could use DL to uncover the biology behind this dif-

ferential glycosylation.

Training a deep learning model to predict glycan phenotypes from the transcriptome

We set out to use DL tomodel surface glycosylation from transcriptome-wide gene expression data.We as-

signedbinary labels to cells based on PHA-L data, corresponding to high and lowends of reads. Specifically,

we made the top 25% cells ‘‘PHA-Lhigh’’ and the bottom 25% ‘‘PHA-Llow’’ to establish robust labels that are

comparable between datasets. This robustly separated biologically distinct populations and enabled sub-

sequent analyses. It also transformedour task into binary classification, with gene expression values as input,

and the probabilities for the positive phenotype (PHA-Lhigh) of the corresponding cells as output.

We developed a neural network classifier comprising four hidden layers (Figure 2A), using data from

either the TIL or the LN dataset. In the TIL hold-out test set, this classifier achieved a 92.17% prediction

accuracy for the PHA-Lhigh phenotype and 95.01% for the PHA-Llow phenotype (AUC: 0.9359, F1 score:

0.9351, Table 1; Figure 2B). In the LN dataset, F1 score was lower, yet still exceeded 0.91. Prediction ac-

curacies for both phenotypes remained greater than 90% (Table 1). This slight decrease in performance

was most likely due to less variance in gene expression of the LN data, which likely stems from the less

diverse cell composition (Figure 1B). Robustness of the classifier was also indicated by non-overlapping

distributions for the predicted probabilities of PHA-Lhigh (Figure 2C). We further observed comparable

performance across different cell subtypes, despite the inherent imbalance in T cell compositions

(Figure 2D).

Using the TIL data, we trained three alternative models (Convolutional Neural Network (CNN), Random

Forest, and AdaBoost) on the same task and compared their performance to the above-mentioned neural

network model (Table 2). For all investigated metrics, our neural network outcompeted alternative models.

Among the alternative models, Random Forest had the highest prediction accuracies (90.34% for

PHA-Lhigh, 95.01% for PHA-Llow) and F1 score (0.9251). In contrast, the CNN model had the lowest

prediction accuracies (89.82% for PHA-Lhigh, 91.60% for PHA-Llow) and F1 score (0.9065), although the

cross-entropy loss was comparable to the standard network. We thus used the neural network model for

all subsequent analyses.

Identification of highly predictive genes using SHAP

Next, we used SHAP to identify genes important for prediction. For each input sample (cell), the SHAP al-

gorithm calculates an ‘‘SHAP value’’ for each feature (gene) that is reflective of the impact of this feature on

the expected model output for this input (Lundberg and Lee, 2017). SHAP values can be positive or nega-

tive, corresponding to additive or subtractive effects on model output. The median absolute SHAP value is

commonly used to assess global feature importance.

ll
OPEN ACCESS

4 iScience 25, 105163, October 21, 2022

iScience
Article



We averaged SHAP values derived from three identical models with comparable performance, separately

trained using different seeds for random splitting of datasets. Then we calculated median absolute SHAP

values for all genes (Table S1), resulting in gene rankings. For both the TIL and the LN model, only a small

portion of genes were highly important (Figure 3A). We chose genes corresponding to the top 10% SHAP

rankings (‘‘SHAP genes’’), yielding 516 genes for TIL and 205 genes for LN (see Figures 3B (TIL) and S2 (LN)

for examples). For most SHAP genes (e.g., Lag3, Ccl5, and Foxp3, Figure 3B), higher expression tended to

favor a PHA-Lhigh prediction, whereas the opposite was true for a smaller subset (e.g., Gm42418, Malat1,

and Klf2, Figure 3B). As glycogenes directly control glycan biosynthesis (Neelamegham and Mahal,

2016), we also examined the glycogenes (Table S2). The top 30 glycogenes, also ranked by median

SHAP value, are shown in Figure 3C, although not all were among the top 10% SHAP genes.

Next, we performed pathway enrichment analysis on the SHAP genes. For both the TIL and LN model, the

most enriched pathways (biological processes) were involved in negative regulation of T cell activity and

T cell differentiation (TIL: Figures 3D; LN: S3), matching known roles of b1,6-branched glycans in T cells dis-

cussed further below. STRING protein interaction analysis also showed the top 10% SHAP genes to be

highly interconnected via functional enrichment, co-expression, or direct interaction, arguing for concerted

biology (Figure 3E).

Next, we investigated the variation of SHAP genes with T cell subtypes, generating cell type-specific lists of

SHAP genes (Table S3). As shown in Figure 4A, the majority of highly predictive genes were shared across

cell subtypes. For example, Ctla4 (cytotoxic T-lymphocyte-associated protein 4) was consistently highly

ranked in all cell subtypes (highest rank-naive CD4+: 13 or top 0.25%; lowest rank-Tex: 165 or top

3.19%). Ctla4 is a Treg marker, with research primarily focusing on its roles in Treg (Rowshanravan et al.,

2018; Sobhani et al., 2021; Zheng et al., 2013). Our analysis showed that Ctla4 expression was predictive

of glycan phenotype and might influence biological pathways mediated by branched glycans in T cells

beyond Treg.

Figure 2. The deep learning model trained on TIL dataset is highly accurate in predicting glycan classes

(A) Graphical description of the neural network structure.

(B) ROC curve (upper) and precision-recall curve (lower) of the model using the test set data.

(C) Histogram of model output (probability for PHA-Lhigh class) using the test set data.

(D) Prediction accuracies by cell types of the test set.
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Nonetheless, we identified some genes that were highly predictive of glycan phenotype only in certain

T cell subtypes. A gene is considered specifically important to a T cell subtype if its ranking percentile in

this subtype is (i) among the top 2% and (ii) greater than the average ranking percentile in other subtypes

by at least 1.25 standard deviations. This identified gene subsets for each cell subtype (Figure 4B, TIL). Treg,

naive CD4, and Tpex exhibited the highest numbers of type-specific highly predictive genes. Some genes

play unique biological roles in their corresponding subtypes and are associated with the biology of

branched glycans. For example, our cell type-specific comparison ranked Lrrc32 (leucine-rich repeat con-

taining 32; also known as glycoprotein-A repetitions predominant,Garp) as particularly high in Treg. Lrrc32

controls the expression of latent TGF-b (transforming growth factor b) in Treg, and TGF-b signaling is sup-

pressed inMgat5 knockout mice (Lehmkuhl et al., 2021; Tran et al., 2009; Zhang et al., 2021). We speculate

that Lrrc32 may mediate this loss of TGF-b signaling, explaining its importance for prediction in this

context. Jund (transcription factor JunD) and Ifngr1 (interferon gamma receptor 1), highly ranked in naive

CD4+ T cells, are important for the activation and differentiation of naive CD4+ cells, usually followed by

upregulating b1,6-branched glycans (Afkarian et al., 2002; Meixner et al., 2004; Morgan et al., 2004).

Jund and Ifngr1 expression may reflect differential levels of activation in naive CD4+ cells, which could

correlate with branched glycan expression. As most other cell subtype-specific genes lack well-character-

ized roles in the corresponding subtypes of T cells, their biological associations with branched glycans are

unclear and constitute opportunities for future research.

SHAP genes explain the biology of b1,6-branched glycans

One of our major goals was to see whether the most predictive SHAP genes, identified by this data-driven

approach, were implicated in the biology of branched glycans. A highly predictive gene can be biologically

associated with b1,6-branched glycans in several ways: (i) encoding a cell surface protein bearing this

glycan; (ii) regulating the expression of MGAT5, the enzyme biosynthesizing the b1,6-branch of N-glycans;

(iii) being itself regulated by MGAT5/b1,6-branched glycan levels; (iv) being functionally synergistic with

b1,6-branched glycans; (v) influencing the biosynthesis of b1,6-branched glycans through, e.g., changing

substrate availability. Indeed, many highly predictive SHAP genes (i.e., SHAP ranking in top 2%) were

already implicated in b1,6-branched glycan biology in at least one of these ways (Figures 5 and 6), arguing

for high biological relevance of SHAP genes. We detail our findings below.

We primarily focused on interpreting SHAP genes from the TIL dataset because the corresponding

model exhibited better prediction, which is likely translated into more reliable interpretations. This

T cell population is also biomedically more interesting as they are directly involved in the tumor micro-

environment. First, we investigated whether TIL SHAP genes encode T cell surface proteins bearing b1,6-

branched glycans, as some glycoproteins are more prone to be modified with this glycoform (Breen,

2002; Li et al., 2013; Wu et al., 2019). Out of the top 50 SHAP genes, Pdcd1 (programmed cell death pro-

tein 1, PD-1), Ctla4, Itgb1 (integrin beta 1), and Itga4 (integrin alpha 4) can be modified with b1,6-

branched glycans (Figure 5A) (Liu et al., 2020; Przybyło et al., 2007; Zhu et al., 2014). Except for Itgb1,

these genes had SHAP values increasing with expression, as expected. Others either lack experimental

glycosylation data or encode non-membrane proteins. Identifying proteins modified with b1,6-branched

glycans among the most predictive genes may inform future investigations on whether other SHAP genes

also encode proteins with this glycoform.

Table 1. Performance metrics of the model

TILa LNa

Training set Validation set Test set Training set Validation set Test set

Prediction Accuracy for PHA-Lhigh 95.21% 90.42% 92.17% 94.93% 93.15% 90.26%

Prediction Accuracy for PHA-Llow 97.85% 91.69% 95.01% 92.26% 93.94% 92.49%

Average Cross Entropy Loss 0.2031 0.2802 0.2485 0.3088 0.3323 0.3346

ROC Curve AUCb (Positive class: PHA-Lhigh) 0.9653 0.9106 0.9359 0.9360 0.9204 0.9137

F1 score (Positive class: PHA-Lhigh) 0.9649 0.9102 0.9351 0.9371 0.9217 0.9131

aTIL: tumor-infiltrating T lymphocyte; LN: lymph node T lymphocyte.
bROC Curve AUC: the area-under-the-curve of the receiver operating characteristic curve.
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Next, we investigated SHAP genes regulating MGAT5 expression. Only three transcription factors seem to

directly upregulate MGAT5 expression: ETS-1, ETS-2, and AP-1 (dimer of c-Jun and c-Fos) (Chen et al.,

1998; Ko et al., 1999; Wang et al., 2018). In our SHAP analysis, Ets1, Jun, and Fos were all ranked among

the top 2% genes (Figure 5B), coinciding with their importance in regulating MGAT5 expression. The

ranking of Ets2 was lower, potentially due to lower expression (Figure S4), but still bordering the top

10% range (Figure 5B). Intriguingly, SHAP values of Ets1 negatively correlated with expression, potentially

due to cell-dependent regulation. Indeed, RNA-seq data showed increased Mgat5 transcripts in T cells of

Ets1�/� mouse (Kim et al., 2018), suggesting ETS-1-mediated downregulation in T cells. Beyond transcrip-

tion factors, we also investigated more upstream cytokine regulators. Three cytokines, interleukin-2 (IL-2),

interleukin-7 (IL-7), and interleukin-10 (IL-10), upregulate b1,6-branched glycans in T cells (Grigorian et al.,

2012; Smith et al., 2018). Correspondingly, Il2ra, Il10ra, Il2rg, and Il7r, encoding components of the mem-

brane receptors of IL-2, IL-10, IL-2/IL-7, and IL-7, are highly ranked at top 0.93%, 0.95%, 3.79%, and 4.18%,

respectively (Figure 5B). They were also the top four ranked genes out of the 29 interleukin receptor genes

here, indicating their strong association with glycan branching. In aggregate, all transcription factors and

cytokine receptors regulatingMGAT5/branched glycan levels were highly predictive SHAP genes, showing

the potency of SHAP analysis to reveal the mechanisms behind the regulation of glycosylation.

Dysregulated T cell-mediated immunity has been identified in Mgat5�/� animals

(Demetriou et al., 2001; Lee et al., 2007; Silva et al., 2020). Therefore, we hypothesized some SHAP genes

could be regulated byMGAT5/branched glycans. DeletingMgat5 decreases surface expression of CTLA-4,

CD8 alpha coreceptor, and CD4 coreceptor in T cells, while upregulating Mgat5/surface b1,6-branched

glycans resulted in increased T cell surface expression of IL-2 receptor (Araujo et al., 2017; Lau et al.,

2007; Zhou et al., 2014). These studies argue MGAT5 upregulate these proteins by rescuing them from

endocytosis. However, whether the mRNA levels of these proteins also changed was not investigated. In

our analysis, the corresponding genes, Ctla4, Cd8a, Cd4, and Il2ra, were highly ranked at 0.41%, 0.19%,

4.95%, and 0.93% (Figure 5C). This suggests that regulation of these proteins by glycan branching may

involve both mRNA expression and endocytosis.

Next, we sought to interpret genes controlling glycan biosynthesis. Out of all 59 detected glycogenes, we iden-

tified four glycogenes, Lfng, St8sia4, St6gal1, andB4galt1, among the top 10% SHAP rankings. ST6GAL1 (Beta-

galactoside alpha-2,6-sialyltransferase 1) is the predominant enzyme adding terminal a2,6-linked sialic acid to

galactose residues in glycans. While this step occurs downstream of N-glycan branching (Petit et al., 2010),

a2,6-sialylation blocks the binding of b1,6-branched glycans to PHA-L and endogenous receptors such as ga-

lectins (Figure 6A) (Bojar et al., 2022; Stowell et al., 2008; Zhuo et al., 2008). Thus, SHAP values of St6gal1 were

negatively correlated with expression (Figure 3C). The samewas found forB4galt1 (beta-1,4-galactosyltransfer-

ase 1), the primary enzyme transferring b1,4-galactose to glycans (Bydlinski et al., 2018). B4GALT1 is indispens-

able for efficient a2,6-sialylation (Figure 6A), potentially explaining the decreasing SHAP values upon B4galt1

expression (Khoder-Agha et al., 2019; Nguyen et al., 2021).

Expression of the fifth-ranking glycogene,Ogt (total rank: 10.06%), decreasedwith SHAP values (Figure 3C).

OGT transfers GlcNAc onto intracellular proteins. The activated sugar donor UDP-GlcNAc is the shared

substrate of MGAT5 and OGT. Supplementing GlcNAc, converted to UDP-GlcNAc in cells, upregulates

both O-GlcNAcylation and b1,6-glycan branching (Araujo et al., 2017; Taylor et al., 2009). Conversely, a

drug-induced decrease in cellular UDP-GlcNAc levels affected both O-GlcNAcylation and b1,6-glycan

Table 2. Comparison of performance metrics of different models to predict glycan classes in the TIL dataset

Standard Neural

Network

Convolutional Neural

Network AdaBoost Random Forest

Training set Test set Training set Test set Training set Test set Training set Test set

Prediction Accuracy for PHA-Lhigh 94.21% 92.17% 91.18% 89.82% 90.09% 90.86% 91.07% 90.34%

Prediction Accuracy for PHA-Llow 97.85% 95.01% 92.93% 91.60% 93.03% 92.91% 96.53% 95.01%

Average Cross Entropy Loss 0.2031 0.2485 0.2035 0.2499 0.6690 0.6556 0.2891 0.2901

ROC Curve AUCa (Positive class: PHA-Lhigh) 0.9653 0.9359 0.9205 0.9071 0.9156 0.9188 0.9380 0.9268

F1 Score (Positive class: PHA-Lhigh) 0.9469 0.9351 0.9200 0.9065 0.9145 0.9182 0.9346 0.9251

aROC Curve AUC: the area-under-the-curve of the receiver operating characteristic curve.
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Figure 3. Model interpretation identifies genes important for predicting TIL cell surface glycosylation

(A) Histogram (left) and scatterplot (right) presentation of the median absolute SHAP values for all genes.

(B) SHAP values of top 30 genes ranked by median absolute SHAP value.

(C) SHAP values of top 30 glycogenes ranked by median absolute SHAP value.

(D) Gene Ontology pathway enrichment analysis of using the SHAP genes.

(E) STRING protein interaction network analysis of the top 10%SHAP genes. Only high confidence (strong evidence)

interactions are shown, and thicker edges denote higher confidence. Genes/proteins without high confidence

interactions with any other genes/proteins are not displayed.
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branching (Ricciardiello et al., 2018). It is therefore possible that OGT may influence substrate availability

for MGAT5, altering abundances of b1,6-branched glycans (Figure 6B) (Biwi et al., 2018). A new study

showed that shRNA knockdown of OGT indeed increased b1,6-glycan branching (Song et al., 2022). None-

theless, given the central role of OGT in cellular metabolism and transcriptional control in T cells (Machacek

et al., 2018; Qiang et al., 2021), the exact mechanism can well be more complicated than substrate compe-

tition. The median SHAP value of O-GlcNAcase (OGA or MGEA5), which catalyzes the reaction opposite to

OGT, was ranked at 24.40% and showed an opposite directionality than OGT (Figure 3C).

Having identified biological associations between highly ranked SHAP genes and branched glycans, we

asked whether we could systematically identify functional roles of glycan branching in T cells. We based

Figure 4. Most of the highly predictive genes are shared across cell types in the TIL dataset

(A) Heatmap of the percentage rankings (by median absolute SHAP value) of genes in each cell type compared to all cell

types combined. Cell types are clustered by Euclidean distance.

(B) Genes uniquely high ranked (median absolute SHAP value among top 2%) in each cell type. Values in tiles are the

rankings of genes (by median absolute SHAP value) in the corresponding cell types. The highest rankings of genes among

all cell types are boxed in red.
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this on previous observations that cells utilize both proteins and protein glycosylation to fulfill their func-

tion. For example, fucosylated glycans and sialyl Lewis x on effector T cell surfaces facilitate homing to

tumor sites, as do mechanisms mediated by chemokine receptors and integrins (Alatrash et al., 2019; Sack-

stein et al., 2017). Work over the past two decades has shown b1,6-glycan branching to play an immuno-

suppressive role in activated T cells. T cell receptor (TCR) activation upregulates MGAT5, yielding more

b1,6-branched glycans on T cells. This promotes binding of the multimeric galectin-3 to T cell surface gly-

coproteins, forming a localized lattice that prevents T cell-activating protein-protein interactions (e.g.,

TCR-CD8 interaction) (Demetriou et al., 2001; Lau et al., 2007; Morgan et al., 2004). Mice deficient in

Mgat5 developed autoimmune disease due to dampened negative regulation of T cell activities (Grigorian

and Demetriou, 2011; Silva et al., 2020). In Treg, surface b1,6-branched glycans were positively correlated

with immunosuppressive marker expression and the suppressive potency of Treg (Cabral et al., 2017). Ye

et al. identifiedMgat5 as one of the four hits in a CRISPR screen for targets that enhance T cell-based cancer

therapy (Ye et al., 2019). Correspondingly, functional enrichment of SHAP genes showed enrichment in

negative regulation of T cell activation (Figure 3D). Well-established suppressive immune checkpoint re-

ceptors were within the top 50 genes, such as Lag3,Ctla4, Pdcd1, and Tigit (Figure 5D). We also found other

highly ranked SHAP genes known for predominantly immunosuppressive roles in T cells, including (i) genes

of the killer cell lectin-like receptor family such as Klrc1 (0.31%) and Klrg1 (0.50%) (Huot et al., 2021; Li et al.,

2016); (ii) chemokines and chemokine receptors such as Ccl5 (0.10%), Ccr5 (0.21%), and Ccr2 (0.33%) (Aldi-

nucci and Casagrande, 2018; Matsuo et al., 2021; Tu et al., 2020; Zeng et al., 2022); (iii) other genes such as

Figure 5. Predictive genes identified by SHAP tend to be involved in the biology of MGAT5/b1,6-branched

glycans

These genes encode proteins that: (A) bear PHA-L binding, b1,6-branched N-glycans that can be important to their

protein functions; (B) regulate the expression of MGAT5/b1,6-branched glycans; (C) are regulated by b1,6-glycan

branching; (D) have immunosuppressive functions that may be synergistic with b1,6-branched N-glycans, which are also

immunosuppressive. Gene names, their rankings (by median absolute SHAP value) and relative rankings (ranking/number

of all genes 3 100%, indicated in parentheses) are shown.
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Fgl2 (0.64%) and Lgals1 (1.06%) (Corapi et al., 2018; Hou et al., 2021) (Figure 5D). Overall, SHAP genes had

substantial overlap with genes known to be implicated in the biology of branched glycans.

Finally, we examined the SHAP genes of the LN dataset (Table S1, Figure S2). More than half (116 genes) of the

205 SHAP genes of the LN dataset were also found among the 516 SHAP genes of the TIL dataset. Examples

includeCd8b1 (0.04% in LN, 0.14% in TIL), Ikzf2 (0.83% in LN, 0.04% in TIL),Gm42418 (0.13% in LN, 0.06% in TIL),

and Ets1 (4.33% in LN, 1.16% in TIL). Notably, the negative correlation between the transcript abundance and

SHAP values of Ets1 was also seen in the LN dataset. Shared high-ranking genes could be associated with the

biology of b1,6-branched glycan in similar ways as discussed above. Some genes had substantially different

rankings, which were anticipated since the two datasets had different compositions of T cell subtypes. For

example, the highest-ranking gene, Lag3 (lymphocyte activation gene 3), in TIL was ranked at 746 (36.30%)

in LN, due to the minimal expression of Lag3 in resting T cells comprising most of the LN dataset (Grosso

et al., 2007). The roles of b1,6-branched glycans in resting T cells are much less understood. Mgat5�/� mice

displayed a lowered T cell activation threshold (Demetriou et al., 2001), suggesting that b1,6-branched glycans

are also immunosuppressive in resting T cells, by desensitizing them to stimulus. Therefore, we again hypoth-

esized that the SHAP genes of the LN dataset are primarily immunosuppressive, synergizing with b1,6-

branched glycans. In line with this, SHAP genes of the LN dataset are functionally enriched in the pathway

of negative regulation of T cell activity (Figure S3). The top 50 SHAP genes of the LN dataset also included

immunosuppressive genes, such as Cxcr6, Socs1, Cd7, and Klrd1 (Heesch et al., 2014; Pace et al., 2000; Sem-

powski et al., 2004; Sheu et al., 2005; Takahashi et al., 2011). Stab1, known for its anti-immunosuppression ac-

tivity in T cells, was ranked at 31 and had SHAP values decreasing with expression (Beyer et al., 2011; Nüssing

et al., 2019; Stephen et al., 2017). One study showed that IL-7 treatment reduced b1,6-glycan branching in

resting T cells, in contrast to its effect in activated T cells (Mkhikian et al., 2011). Aligning with this, the SHAP

values of Il7r (rank 2.29%) anti-correlated with mRNA expression in the LN dataset in contrast to the correlation

observed in the TIL dataset, underscoring the context-aware nature of our approach.

SHAP genes include low-abundance genes that are not captured by differential expression

analysis

SHAP identifies gene subsets that were not captured by differential expression analysis (DEA) (Yap et al.,

2021). We wondered whether this could also be observed here, and whether any SHAP-exclusive genes

were biologically relevant. Using the TIL data, we performed DEA between PHA-Lhigh and PHA-Llow pop-

ulations. Applying a false discovery rate threshold of 0.05, we identified 381 differentially expressed genes

(7.4% of all genes; Table S4), slightly less than the number of SHAP genes (516 genes or 10% of all genes).

Figure 6. SHAP analysis identifies glycogenes that impact b1,6-branched N-glycan levels or PHA-L binding

(A) Partial biosynthetic route of ɑ2,6-sialylated, b1,6-branched glycans and the involvement of B4GALT1 and ST6GAL1

identified by SHAP analysis in this process. ɑ2,6-sialylation abrogates PHA-L binding to branched N-glycans.

(B) Possible interplay between UDP-GlcNAc, O-GlcNAcylation, and N-glycan branching, and the involvement of OGT in

this process. UDP: uracil diphosphate group.
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267 genes were present in both DEA and SHAP genes, with many shared top-ranking genes (e.g., Lag3,

Tigit, and Malat1).

DEA is known for biasing toward highly expressed genes (Bui et al., 2020; Yang et al., 2019). Among the

DEA genes, 18 (4.72%) were highly transcribed ribosomal genes (Petibon et al., 2020), with two even among

the top 50 DEA genes. In contrast, only 8 (1.55%) ribosomal genes were found in the SHAP genes, none of

which were in the top 50. Other high-abundance housekeeping genes were also found only in DEA genes,

such as Gapdh (rank 23), Pgk1 (rank 60), and Actb2 (rank 71). These observations suggest that SHAP is less

prone to biasing toward high-abundance genes. Pointedly, transcription factors Jun and Ets2, known to

upregulate b1,6-glycan branching as discussed above, did not appear in DEA genes. Moreover, glyco-

genes in general were absent from DEA genes. Overall, our results indicate SHAP to be more powerful

than the more conventional DEA in identifying low-abundance genes that are biologically important for

phenotypic glycosylation differences.

Alternative model explaining method resulted in importance genes similar to SHAP genes

To see whether alternative model explaining method can generate similar results to SHAP, we used the

permutation feature importance (PFI) method to determine the gene importance values. PFI is a widely

used, generic approach for most classifiers (Rajbahadur et al., 2021). In brief, we randomly shuffled the

expression values for each gene, while keeping the labels intact. The model then made predictions using

the permuted values. Permutation of important genes should be more disruptive, reflected by increases in

prediction loss. We used the mean loss from all permutations as the metric of gene importance by this

method and generated a ranked list of genes (Table S5). The top 10% genes (517 genes) from this list

largely overlapped with the ones from SHAP analysis, with 318 shared genes (61.5%). Most biologically rele-

vant genes mentioned above, such as Ets1, Jun, and Il2ra, were among the top 10% of the PFI-based gene

list. However, only one glycogene (St6gal1) was found in the PFI top 10%.

The similar results using PFI align with our expectation, as PFI and SHAP are two approaches to assess the

same model. However, SHAP combines global and local explainability, while PFI is a global method and

does not offer information on the importance of a gene for a particular prediction. The conventional PFI

method also does not yield the direction of the prediction impact of a gene and is computationally costly.

DISCUSSION

In contrast with the profusion of genomic, transcriptomic, and proteomic data, matching glycomic data

remain scarce (Qin and Mahal, 2021). Consequently, glycosylation research has long been lacking inte-

grated multi-omics analysis and has not benefited greatly from rapidly evolving computational tools for

mapping molecular interaction networks in health and disease (Kellman and Lewis, 2021). State-of-the-

art artificial intelligence technologies, used widely for drug response prediction or regulatory molecule

identification (Adam et al., 2020; Kim et al., 2021; Zheng et al., 2020), remain rarely used in glycosylation

studies. Single-cell RNA- and lectin-seq technologies such as SUGAR-seq have started to provide new op-

portunities to use DL for studying differential glycosylation, as demonstrated here.

It should be noted that the feasibility of predicting glycan features from single-cell transcriptomics data

cannot be considered a foregone conclusion. Most genes that would seem relevant from a domain

perspective (glycosyltransferases, sugar transporters, etc.) are typically lowly expressed and frequently ab-

sent from single-cell transcriptomics data (Nairn et al., 2008; Qiu, 2020). Nonetheless, we show that it is

feasible to use the sparse nature of single-cell data to predict a glycan feature with high accuracy using

a neural network model. Models predicting ‘‘cross-omics’’, in this case from the realm of the transcriptome

toward the glycome, will be important in the future to aid in multi-omics integration and are particularly

relevant in the context of glycans, as they are technically outside the central dogma of molecular biology.

Our results here, however, yet again demonstrate that glycans can be re-integrated with the rest of the cen-

tral dogma, by using transcriptional information to successfully predict parts of glycan expression.

Using SHAP, we further showed that, next to predicting glycan feature abundance, our model can also be

used to extract, at scale, compelling biological associations between the transcriptome and the glycome.

Tellingly, the genes most important for glycosylation phenotype prediction significantly overlapped with

genes involved in the biology of b1,6-branched glycans. A direct explanation for the high predictivity of

some SHAP genes could be that they encode membrane proteins bearing b1,6-branched glycans.
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Although we only identified four genes with experimental evidence for b1,6-branching glycosylation

among the top 50 TIL SHAP genes (Pdcd1, Ctla4, Itgb1, and Itga4), branched glycans are involved in func-

tions for two of them: In persisting exhausted T cells, PD-1 interacts with galectin-9, which binds to

branched glycans displayed on PD-1, to inhibit galectin-9-mediated cell death (Yang et al., 2021). Integrin

beta 1 is an essential component of a series of integrin complexes that are critical mediators of T cell adhe-

sion and signaling, and its activities are regulated by b1,6-branching of glycans (Bellis, 2004; Jankowska

et al., 2018). We expect that more highly predictive SHAP genes will be discovered to bear b1,6-branched

glycans in immune cells, influencing protein function. Lag3, a heavily glycosylated immune checkpoint re-

ceptor implicated in many diseases (Graydon et al., 2021), was the most predictive gene in the TIL dataset.

Although the glycosylation profile of this protein has not yet been determined, LAG3 binds galectin-3 in

T cells, an immune system lectin with similar binding specificity as PHA-L (Demetriou et al., 2001; Kouo

et al., 2015). This indicates that LAG3 function may be regulated by b1,6-branched glycans. Thus, our

DL-based approach can inform future investigations on whether other SHAP genes encode proteins

with this glycoform and whether it might impact protein function.

While most SHAP genes do not encode surface glycoproteins, they can still be associated with the

biology of b1,6-branched glycans in multiple ways, as discussed above. We note that all known transcrip-

tion factor- and cytokine-regulators of MGAT5/b1,6-branched glycans, as well as some glycogenes im-

pacting b1,6-branched glycan synthesis, were among the top ranked SHAP genes. This emphasizes

the potential of a DL-based approach to identify regulatory mechanisms of glycosylation. Examining

the top ranked SHAP genes also yielded new candidates for potential regulators of b1,6-branched gly-

cans. The chemokine receptor CCR2 (C-C chemokine receptor type 2; rank 0.33%), when bound to its

ligand CCL2 (C-C motif chemokine 2), upregulates the transcription factor AP-1 that increases MGAT5

expression (Fei et al., 2021; Lin et al., 2012). In turn, AP-1 also enhances CCL2 expression (Deng et al.,

2013; Fei et al., 2021; Novoszel et al., 2021). Therefore, the CCL2/CCR2 axis may be an alternative mech-

anism to regulate MGAT5/b1,6-branched glycans in immune cells. In line with the immunosuppressive

role of b1,6-branched glycans, CCL2 secreted by cancer cells contributes to an immunosuppressive tu-

mor microenvironment, and blockade of CCR2 in mice improved the efficacy of immune checkpoint ther-

apy (Matsuo et al., 2021; Tu et al., 2020), suggesting a direct biomedically relevant role of this glycan

feature.

Our work showed that (i) glycosylation phenotypes can be modeled by neural networks from transcrip-

tomic data, (ii) biological processes linked to post-translational modifications such as glycosylation can

be deciphered by DL model-explaining methods such as SHAP, and (iii) this combined approach may

facilitate the discovery of new regulators of branched glycans and downstream effectors of branched

glycan-mediated pathways. We note that this single model essentially recapitulates decades of experi-

mental work on this aspect of biology, including generated hypotheses for future work. While we report

largely overlapping regulatory associations in our set of immune cell types, future work could also

compare these results with the regulation and function of b1,6-branched glycans in other cell types or

other species, to develop a global understanding of the diverse roles of this glycan feature. We also

note that our method yields regulators of b1,6-branching even in the absence of a clear signal for the

main enzyme Mgat5, which had low SHAP values (ranked 37.76% in TIL dataset), due to its very low

expression level.

We envision a pipeline in which this explainable DL approach is used to analyze data generated by SUGAR-

seq or similar technologies, to decode the biology of less well-studied glycoforms (e.g., high-mannose

glycans, sulfated glycans, and I-branched glycans) and their importance in disease (Chuzel et al., 2021; Di-

mitroff, 2019; de Leoz et al., 2011; Loke et al., 2016; Sun et al., 2022). For this, future work needs to expand

the capabilities of the associated lectin-seq, similar to the already reported Glycan-seq technology (Oinam

et al., 2021). We also anticipate the integration of more data modalities besides transcriptomes. In RNA-

seq, measurement of glycogenes and other low-abundance genes is less accurate, potentially skewing

the interpretation of the importance of these genes (Tarazona et al., 2011). Adding proteomic or miRNA

data (important regulators of low-abundance genes) to the DL model input may provide a more accurate

account of the regulation of glycosylation mediated by low-abundance genes (Schmiedel et al., 2015; Thu

and Mahal, 2020). We envision that this combination of systems biology and artificial intelligence will pro-

vide fresh insights into the complex, interleaved biosynthesis and functional role of glycans in various bio-

logical contexts.
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Limitations of the study

It should be carefully considered that our model was trained on a specific kind of cells, murine immune cells,

and a specific lectin, PHA-L.We do not expect the trainedmodel as such to immediately generalize to other

cell types or lectins, presenting a limitation of this work. For new cell types and/or lectins, the model has to

be trained on new data, albeit we envision the same model architecture to be useful for this purpose. As

already mentioned, results of our model (SHAP values etc.) will also likely vary with sequencing depth,

as important-but-lowly-expressed genes might not always be measured. Lastly, as pointed out in the

case of OGT, we are currently unable to conclusively deduce causal mechanisms from these analyses

and view the work presented here rather as a method for hypothesis-generation and the synthesis of exist-

ing knowledge about a biological process from a systems-perspective.
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Daniel Bojar (daniel.bojar@gu.se).

Materials availability

This study did not generate new unique reagents.

Data and code availability

d Unprocessed single-cell RNA-seq data were retrieved from GEO (accession numbers: GSE166325,

GSE166326). The matrices of processed RNA and PHA-L reads have been uploaded to https://github.

com/BojarLab/scGlycomics_b16_branching

d The codes for single-cell RNA-seq data processing, deep learning model training, and SHAP analysis

have been deposited at https://github.com/BojarLab/scGlycomics_b16_branching

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

METHOD DETAILS

Dataset, data processing, and T cell subtype classification

10X sequencing data of mouse tumor infiltrating T lymphocytes (TIL) and mouse lymph node T lympho-

cytes (LN) were downloaded from Gene Expression Omnibus (GSE166325, GSE166326). Single-cell data

processing was performed with the Seurat package (version 4.0.6) in R (Hao et al., 2021). For each data-

set, downloaded raw data were initialized with the Read10X function of Seurat. Doublets were removed

with the HTODemux function of Seurat. Next, RNA counts were normalized and scaled with the SCTrans-

form function of Seurat, in which the mitochondrial genes, ribosomal genes, and cell cycle phase scores

(computed with the CellCycleScoring function of Seurat) were regressed out. The default residual vari-

ance cut-off (1.3) of SCTransform was used and the low variance genes were removed. PHA-L reads

were processed with the Normalize function of Seurat, using the centered log ratio transformation

method.

T cell subtype classification was performed with the multi-dataset reference atlas-based mouse T cell clas-

sifier ProjecTIL (version 2.0.0) in R (Andreatta et al., 2021). ProjecTIL categorized the remaining T cells into 9

major subtypes, including naive and naı̈ve-like CD4+ T cells (naı̈ve CD4+), naı̈ve and naı̈ve-like CD8+ T cells

(naı̈ve CD8+), early active CD8+ T cells (early active CD8+), effector memory CD8+ T cells (effector memory

CD8+), terminally exhausted CD8+ T cells (Tex), precursor exhausted T cells (Tpex), regulatory T cells (Treg),

T helper 1 cells (Th1), and follicular helper T cells (Tfh). Cell subtype was confirmed by comparing marker

gene expressions (Figure S1).

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

PyTorch (1.10.0) (Paszke et al., 2019) https://github.com/pytorch/pytorch

Scikit-learn (1.0.2) (Pedregosa et al., 2012) https://github.com/scikit-learn/scikit-learn

SHAP (0.40.0) (Lundberg and Lee, 2017) https://github.com/slundberg/shap

Seurat (4.0.6) (Hao et al., 2021) https://github.com/satijalab/seurat

ProjecTIL (2.0.0) (Andreatta et al., 2021) https://github.com/carmonalab/ProjecTILs
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Model training

To generate input data from the exported matrix of transcript and PHA-L reads, cells of PHA-L reads within

the upper quartile range (top 25%) were assigned the label 1 (PHA-Lhigh), and cells of PHA-L reads within the

lower quartile range (bottom 25%) were assigned the label 0 (PHA-Llow). Other cells were removed. Input

data was randomly split into a training set (72%), validation set (18%), and test set (10%). All models (stan-

dard neural network, convolutional neural network, Random Forest, and AdaBoost) were trained using the

same training, validation, and test set in Python 3.8.

For the standard neural network, models were trained using the PyTorch framework. Models were trained

in mini-batches of size 128. For the best performing model, the neural network consisted of 4 hidden layers

(the 1st, 2nd, 3rd, and 4th hidden layer, in the direction of forward propagation), which had 128, 64, 16, and 8

nodes, respectively. The 1st, 2nd, and 3rd hidden layers were each followed by leaky ReLU activation layers

(negative slope 0.01), dropout regularization layers (dropout probability 0.4, 0.4, and 0.2, respectively), and

batch normalization layers. The fourth hidden layer was followed by a sigmoid activation layer. Starting

learning rate was 0.0001. Binary cross entropy loss function and cosine annealing learning rate scheduler

were used for model optimization.

For the convolutional neural network, models were trained using the PyTorch framework, in mini-batches of

size 128. For the best performing model, the neural network consisted of 4 hidden convolutional layers and

2 hidden fully connected layers. The first convolutional layer (6 filters; filter size:1; stride:1) was followed by a

batch normalization layer. Other convolutional layers (6 filters; filter size:4; stride:4) were each followed by

batch normalization layers, leaky ReLU activation layers (negative slope 0.01), and max pooling layers (filter

size:2; stride:2), The first fully connected layer (16 nodes) was followed by a leaky ReLU activation layer

(negative slope 0.01) and a batch normalization layer. The second fully connected layer was followed by

a sigmoid activation layer. Starting learning rate was 0.001. Binary cross entropy loss function and cosine

annealing learning rate scheduler were used for model optimization.

Random Forest and AdaBoost classifiers were trained with the scikit-learn (version 1.0.2) library

(Pedregosa et al., 2012). Grid searches were performed via 5-fold cross-validation to optimize

the accuracy. The best performing Random Forest classifier had 500 estimators and a maximum depth

of 2. The best performing AdaBoost classifier had 300 estimators and was trained with a learning rate

of 0.1.

Model interpretation with SHapley additive exPlanations (SHAP)

SHAP analysis was performed with the DeepExplainer function of the SHAP library (version 0.40.0)

(Lundberg and Lee, 2017). We generated three models with similar performances, using different seeds

for random splitting of the datasets. Based on our computational resources, we used these models to

compute SHAP values of 1000 cells randomly selected from the whole dataset. SHAP values used for

biological interpretation were computed by averaging the SHAP values derived from the three models.

For cell subtype-specific SHAP analysis, we computed SHAP values of 1000 randomly selected cells cor-

responding to each cell subtype, or all cells of that subtype if their total number was less than 1000.

It should be noted that, since the model operates on single cells for prediction, dataset size for SHAP

value generation is less important, as long as a sufficient number of randomly selected cells are used

to achieve representativeness of the resulting SHAP values for the dataset. As for any machine learning

endeavor, the more similar the dataset used for SHAP value generation is to the dataset used for training

the model, the better the results that can be expected.

Pathway enrichment analysis and protein interaction network analysis

Gene Ontology pathway enrichment analysis was performed in the online portal of ShinyGo version

0.76 (http://bioinformatics.sdstate.edu/go/) (Ge et al., 2020). Genes with the top 10% (90th percentile) me-

dian absolute SHAP values were compared to all genes in the dataset (background genes; top 10% genes

included). False discovery rate cut-off was set to 0.05.

Protein interaction network analysis was performed in the online portal of STRING version 11.5 (https://

string-db.org/) (Szklarczyk et al., 2019). Genes with the top 1% (99th percentile) median absolute SHAP

values were analyzed using the ‘‘Multiple proteins’’ entry. To select only the high confidence interactions,

the minimum required interaction score was set to 0.7.
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Differential gene expression analysis

Differential gene expression analysis was performed with the FindMarkers function of Seurat. By default,

absolute log2(fold change) threshold was 0.25 and Wilcoxon Ranked Sum test was used to determine p

values.

Permutation feature importance analysis

Each feature (gene) column was randomly permuted while the labels were kept intact. The model made

predictions using the permuted expression values and the prediction loss was computed using the binary

cross entropy loss function. 25 permutations were performed and the mean loss from all permutations was

computed for each gene. The permutation feature importance for a gene is the mean model loss sub-

tracted by the original model loss (i.e., themodel loss whenmaking predictions with the original expression

values).

QUANTIFICATION AND STATISTICAL ANALYSIS

For differential gene expression analysis, two-tailed Wilcoxon Ranked Sum test was used to determine

p values (see Table S4).
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