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Abstract

Objective: We evaluated a two-step method to improve control accuracy for a powered prosthetic 

leg using machine learning and adaptation, while reducing subject training time.

Methods: First, information from three transfemoral amputees was grouped together, to create 

a baseline control system that was subsequently tested using data from a fourth subject (user-

independent classification). Second, online adaptation was investigated, whereby the fourth 

subject’s data were used to improve the baseline control system in real-time. Results were 

compared for user-independent classification and for user-dependent classification (data collected 

from and tested in the same subject), with and without adaptation.

Results: The combination of a user-independent classifier with real-time adaptation based on a 

unique individual’s data produced a classification error rate as low as 1.61% [0.15 standard error 

of the mean (SEM)] without requiring collection of initial training data from that individual. 

Training/testing using a subject’s own data (user-dependent classification), combined with 

adaptation, resulted in a classification error rate of 0.9% [0.12 SEM], which was not significantly 

different (P > 0.05) but required, on average, an additional 7.52 hours [0.92 SEM] of training 

sessions.
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Conclusion and Significance: We found that the combination of a user-independent dataset 

with adaptation resulted in error rates that were not significantly different from using a user-

dependent dataset. Furthermore, this method eliminated the need for individual training sessions, 

saving many hours of data collection time.
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I. INTRODUCTION

IT HAS been estimated that there will be approximately 2.2 million amputees in the United 

States by 2020, and that number is expected to continue to rise [1]. Transfemoral amputees

—individuals who have lost their limb due to vascular disease, trauma, congenital disorders, 

or cancer [1]–[3]—constitute a large portion of this group. Despite the potential benefits of 

a prosthesis, a large number of these individuals stop using their devices [4], [5]; one study 

estimates that 11–22% lower limb amputees abandon their prosthesis within one year, with 

transfemoral amputees being twice as likely to abandon their device as transtibial amputees 

[6]. Improved prosthetic leg options that both provide greater functionality and are reliable 

and straightforward to use may help to reduce device abandonment.

Powered prostheses produce positive net power for the user, potentially reducing the effort 

and metabolic cost of ambulation activities [7]–[9]. These devices can enable (or enhance) 

the user’s ability to perform more complex activities, such as stair ascent, and often have 

pre-programmed modes such as ‘level-ground walking’ and ‘ramp descent’. However, 

switching between these modes can be cumbersome for the user. Various methods have 

been introduced to avoid this problem, such as a manual compensatory movement (e.g., 

fast, exaggerated movements from the hip or knee to lock joints into place for stair ascent) 

[10], or the use of an external control device (e.g., a switch or smartphone application) 

[11]. However, these approaches are inconvenient and do not allow seamless, automatic 

transitions between ambulation modes.

Machine learning approaches have shown promising results for powered prosthesis control, 

both in offline analyses and in real-time applications [12]–[20]. Many methods make 

use of supervised learning, whereby sets of new observations are grouped into labelled 

categories. The wide range of available algorithms—from the simplistic and computationally 

efficient [15], to complex deep-learning methodologies [21]—are all subject to the same 

limitation: they require properly labelled data to train the classification model. User-

dependent classification, whereby data is collected from a single user to train the algorithm, 

which is subsequently tested against that user, has been found to be the most accurate 

method [22]. However, this approach is also the most time consuming for the user. Data 

collection session(s) can last hours and spread across days, often requiring repeated actions 

in a controlled environment, overseen by a trained investigator. In previous studies, we 

have investigated using an algorithm trained using a grouped dataset, comprising data 

from numerous users, and then applied to a unique individual, which we refer to as user-

independent classification [22]–[24]. Although this approach often produces less accurate 
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results than the user-dependent model, it removes the need for data collection sessions from 

the individual subject, and thus is faster and less burdensome to implement.

The work presented here extends this idea, whereby a trained ‘baseline’ classifier built on 

a user-independent dataset is further improved, or ‘adapted,’ using an individual’s unique 

data, during real-time use. We compare user-dependent and user-independent classification 

methods and analyze the effects of adaptation. The objective of this study was to determine 

if real-time adaptation of a user-independent dataset provides a significant improvement 

in classification accuracy. Furthermore, we examine the benefits of user-independent 

classification with adaptation against user-dependent classification, taking into consideration 

time requirements and other ‘real-world’ considerations.

II. METHODOLOGY

A. Experimental Protocol

Four individuals (2 male (both K-level 3) and 2 female (one K-level 3, one K-level 4)) with 

unilateral transfemoral amputations (one left leg, three right leg), aged between 32 and 69 

[53.25 mean, 7.98 SEM], time since amputation between 17.1 and 48.6 years [34.13 mean, 

7.09 SEM], height between 165 and 180 cm [173 mean, 3.14 SEM], and weight between 

66 and 86.2 kg [76.53 mean, 5.01 SEM] participated in this study, with approval from 

the Northwestern University Institutional Review Board. Written and verbal consent was 

obtained from each participant.

All participants were fitted with a second-generation powered knee and ankle prosthesis 

developed at Vanderbilt University [25] (Fig. 1). The participants had previously used this 

leg and were familiar with its functionality. Prior to this study, the parameters for the 

powered prosthesis were configured for each subject using a method previously described in 

detail [26].

This study was conducted in a controlled laboratory environment. Participants were asked to 

attend training sessions of between 2–4 hours each day, for four days. For the remainder of 

this article, consecutive days will be referred to as consecutive sessions. A full break down 

of the times required for each session is shown in Table I. Each session involved several 

repeated tasks, including standing, walking, ascending and descending ramps, and ascending 

and descending stairs. Furthermore, each session included donning/doffing of the device 

and practice using the device, as well as unscheduled events such as fatigue (and need for 

breaks) or fitting/technical issues; these episodes caused corresponding variations in session 

lengths. This protocol has been described in detail in a previous study [27].

An experienced investigator used a wireless key-fob to transition the prosthesis between 

tasks (e.g., level-ground walking to stair ascent), and to label the activity that the user 

was performing. This was used as the ground truth for classification. Data from several 

mechanical sensors were also collected, including relative knee and ankle positions, knee/

ankle velocities, and commanded joint torques. Furthermore, a one degree of freedom 

(DOF) load cell and a six DOF inertial measurement unit (IMU), mounted midway through 

the shank, were sampled. A complimentary filter was used to compute the angle of the thigh 
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and the angle of the shank relative to vertical. Axial load information was used to segment 

the gait into stance and swing phases, and a corresponding trigger vector was produced as 

the state machine transitioned through states. All sensors were situated on the prostheses, 

with no additional sensors on the contralateral leg or the thigh. The electronics partially 

visible on the subject’s prosthetic socket in Fig. 1 are the embedded system and its battery.

B. Signal Processing

The powered leg was controlled by a Linux-based embedded system with a Logic PD 

SOMDM3730 running at 600 MHz. Data were sampled at 500 Hz and were stored 

onboard a solid-state memory card. However, signal information—including state-machine 

transitions, which occurred at 30 ms frame increments—were streamed wirelessly to a 

laptop for real-time viewing and verification.

Offline data processing was performed using Python with the NumPy and SciPy packages. 

Data were normalized between subjects to account for side of amputation: for the subject 

with a left leg amputation, the appropriate mechanical channels were transformed (sign 

reversed) prior to processing. Online data processing was also performed using Python, 

albeit on the embedded system detailed above.

We processed the data in two stages. First, a ‘baseline’ classifier was created through offline 

analysis. In this stage, data from sessions 1–3 were organized, windowed, processed, and 

classified. This stage was performed using a personal computer, and the resulting classifier 

weights were saved for use in real-time processing, including adaptation. The second stage 

was a simulated online analysis that used the remaining data from session 4, and the 

previously saved classifier weights from the offline analysis. This stage processed data in 

two separate ways. First, the session 4 data were passed through the classifier using only 

feedforward estimation, and the collective results were reported as the control (i.e., no 

adaptation applied). The second method, ‘adaptation,’ attempted to improve the classifier 

and update the weights by classifying newly available data in real-time. Both stages are 

described in detail below. It is important to note that this study performed pseudo-online 

analysis, in that classification was performed in real-time on the embedded system, with 

real subject data from an existing dataset; however, the classifier estimate had no control 

influence on the powered prosthesis and therefore the classification occurred in an open-loop 

configuration.

C. Feature Extraction

1) Forward Prediction: Fig. 2 shows a visual representation of the feature extraction 

process for forward prediction, the process whereby data windows were used to estimate 

future gait activity, as intended by the user.

During key stages of gait, as the prosthesis transitioned through its state-machine, triggers of 

interest (TOI) were thrown that identified a pre-set list of gait events (Fig. 2(1)). From the 

TOI, working backwards, a 300 ms window of raw mechanical sensor data was binned (Fig. 

2(2)). Six features were extracted from each sensor channel within this window, including: 

mean, standard deviation, min, max, initial value, and final value [15], [27]. These six 
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features, multiplied by the 17 mechanical channels, produced a 1×102 feature vector per 

bin (Fig. 2(3)). Finally, these features were labelled with a ground-truth locomotion mode 

obtained from the trigger information and saved for classification (Fig. 2(4)). Labels were 

either standing (ST), level-ground walking (LW), stair ascent (SA), stair descent (SD), or 

ramp descent (RD). For these data, the prosthesis used the same impedance parameters for 

ramp ascent as level-ground walking [26], therefore all ramp ascent triggers were reassigned 

as level-ground walking. Furthermore, the data were labelled based on their step-type, to 

indicate if the step changed from one mode to another (transitional [T]) or remained in the 

same mode (steady-state [SS]).

2) Backward Estimation: To adapt the classifier in real-time, a technique called 

‘backward estimation’ was used [24]. This technique extracted features from a larger 

data window during gait, which allowed for more accurate estimations of previous gait 

activity when classified. Although key-fob information was available, which influenced the 

state-machine that generated the trigger vectors used as ground-truth in our offline training, 

this data would not be available in a real-world scenario and therefore estimations during 

backward estimation were used as classifier targets in our pseudo-online study. Fig. 3 shows 

a visual representation of the feature extraction process for backward estimation.

Like feature extraction for forward prediction, trigger information was used to initiate the 

data windowing for backward estimation; however, for this technique, a group of sequential 

triggers were used, instead of just one (Fig. 3(1)). If these triggers, which spanned a 

complete stride (from heel-contact to heel-contact), were also determined to be a TOI, a 

data window, which varied in size between 300 and 3000 ms (larger and smaller windows 

were rejected), was binned (Fig. 3(2)). Despite the variable sizes of these raw data windows, 

the same features were extracted as for forward prediction, which resulted in the same 

1×102 feature vector (Fig. 3(3)). Finally, these feature vectors were paired with a label for 

classification, which was obtained from the trigger information (Fig. 3(4)). These labels 

represented the same locomotion modes as described for forward prediction.

D. Classification

1) Offline Analysis: Both the forward prediction and backward estimation feature 

windows were classified using a Scaled Conjugate Gradient (SCG) Artificial Neural 

Network (ANN) [28]. Previous work has shown that, compared to a linear discriminant 

analysis method, a SCG ANN has a lower estimation error and is more computationally 

efficient [23]. The SCG ANN had one hidden layer and 20 hidden neurons with a hyperbolic 

tangent activation function. Each classifier was trained over 1000 epochs with a break 

clause once the training error improvement plateaued at a precision of 0.001. Weights were 

initialized randomly between a range of:

−1
fv, 1

fv (1)
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Where fv represents the number of inputs, which in this case is 102, resulting in initial 

weights between ±0.099. Through trial and error, it was found that there was no benefit from 

dimensionality reduction using principal component analysis, therefore this was not used.

Feature vectors were split into 85/15% datasets, for training/testing, respectively. The 

weights produced from the offline analysis were saved and used in our pseudo-real-time 

application. For brevity, the results of the offline analysis are not presented here.

2) Online Analysis: Estimation of locomotion modes was achieved by a feedforward 

neural network with the same structure as the SCG ANN detailed above. However, 

adaptation was performed using a gradient descent (GD) ANN with one hidden layer, 20 

hidden neurons, a three-epoch break clause, and a learning rate of 0.01. The three-epoch 

break clause, found through trial-and-error, allowed for the best ratio of classification 

performance to computational speed on our embedded system. As the GD ANN had an 

identical layer/neuron hierarchy to the SCG ANN, this more simplified neural network could 

be used in lieu of the SCG for adaptation.

E. Real-Time Adaptation

For the online analysis, data from session 4 were used in a pseudo-real-time test. To 

determine the effects of adaptation, data were processed both with and without adaptation.

With no adaptation (control), the online analysis was simply a feed forward estimation, 

using the classifier weights saved during the offline analysis for classification. Fig. 4 shows 

a visual representation of control methodology in the forward prediction segment (red 

background)—data were windowed, features extracted, and features passed through an ANN 

for estimation (Fig. 4(1–3)). Estimation results (Fig. 4(4)) were saved, and their accuracy 

was compared against a ground truth which was logged by an investigator using a key-fob. 

In the hypothetical example in Fig. 4(4), the classifier has made an incorrect estimation of 

stair ascent, when the actual ambulation mode is level-ground walking.

In the adaptation methodology, the activity estimation classifier is reinforced in real-

time through additional learning. Fig. 4 shows a visual representation of the adaptation 

methodology in both the forward prediction segment and backward estimation segment (blue 

background). In the same way as described for the control methodology, forward prediction 

data windows were formed, their features extracted, and an estimation predicted (Fig. 4(1–

3)). However, for the adaptation methodology the feature windows were saved for future 

processing.

A backwards estimation window was formed between two sequential heel strikes (Fig. 

4(5)). Features were extracted from these windows and passed through the ANN to obtain a 

more robust estimation (Fig. 4(6–8)). As previously mentioned, the broader data window in 

backward estimation allows for a more accurate classifier, and, in the example shown in Fig. 

4(8), the ANN predicted the hypothetical correct activity: level-ground walking.

Adaptation was performed using a GD ANN and three key in put components : the saved 

features during the forward prediction stage as the input data (Fig. 4(2)), the activity 
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estimation from the backward estimation ANN as the training target (Fig. 4(8)), and the 

classifier weights. Following three training epochs, the GD ANN produced updated weights, 

as seen in Fig. 4(9). This cycle was repeated, and the updated weights used in future 

estimations to allow the classifier to adapt to new data.

It is important to note that the goal of the backwards estimation stage is to produce an 

accurate ground truth label, which the saved forward prediction features are trained against

The forward predictor and backward estimation have separate classifiers, and the 300–3000 

ms backward estimation feature windows—swhich contain both swing and stance phase 

information—should not be directly compared to the forward predictor windows, which only 

contain swing phase information.

F. Embedded System Real-Time Speed Test

To determine the suitability of running the full adaptation process with the GD ANN 

in real-time, computational processing time was recorded while classifying and adapting 

using the embedded system. This process was repeated three times, on three different tasks/

activities with in the same collection session, including a file containing just stair activity, 

a file containing just level-ground walking activity, and a file containing a combination of 

gait types (a circuit), which included stair ascent/descent, walking, ramp ascent/descent, and 

standing.

The test was performed in three configurations:

• No classifier running: All system functions to control the powered leg, including 

data acquisition, state machine operations, and motor outputs (although not 

physically connected to motors).

• Classifier running; control mode: All system functions as above, with the 

classifier running, albeit only running the control methodology.

• Classifier running; adaptation mode: All system functions as above, with the 

classifier running, with adaptation processing enabled.

The average sample processing time for no classification should be approximately 30 ms, 

which is the length of each frame increment on our embedded system. The addition of 

classification with adaptation should not substantially increase that sample time, otherwise a 

computational bottleneck would occur.

G. Performance Evaluation

For each participant, sessions one to three were used as training data, whereas session four 

was used in testing. The dataset Blocks were created by sequentially grouping sessions:

• Block1: Information from session one.

• Block2: Information from sessions one and two.

• Block3: Information from sessions one, two, and three.
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These Blocks were processed using two classification methods that have been used 

previously by our group [22]:

• User-Dependent Classification: Classifier was trained and tested using the 

subject’s own data. Training data were grouped by session, creating three dataset 

Blocks. This method is shown in Fig. 5.

• User-Independent Classification: Data were grouped between participants to 

create dataset Blocks. Like the User Dependent Classification mode, data were 

first grouped by session for each participant, before being grouped across 

participants using a leave-one-out method. Three dataset Blocks were created 

from three subjects and were tested against data from a fourth subject. This 

method is shown in Fig. 6.

Classification error rates for all blocks, groups, and control/adaptation methodologies were 

determined using a ground truth, obtained by an investigator using a key-fob. Furthermore, 

classification processing times on the embedded system were compared to establish whether 

this proposed adaptation methodology impedes real-time performance.

H. Statistics

Statistical analysis was performed in Minitab (version 18.1), using a mixed effects model 

with population subject identifier as a random factor, and session blocks(Block1,Block2, 

Block3), data processing type (user-dependent classification or user-independent 

classification), and adaptation type (no adaptation [control] or adaptation), as fixed factors. 

The model was performed with 3rd order interactions, restricted maximum likelihood 

variance estimation, and a Kenward-Roger approximation test method for fixed effects. 

Pairwise comparisons were performed using a Bonferroni (95% confidence level) method.

III. RESULTS

Table II and Fig. 7 shows the results from all dataset groups, including subject grouping 

(user-dependent classification and user-independent classification), session blocks (Block1, 

Block2, and Block3), and with or without adaptation. Results are presented as the collective 

classification error (%) and standard error of the mean (SEM), while Table II also separates 

results into steady-state and transitional errors, as well as the combined weighted average. 

Confusion matrices showing the classification error rates across locomotion modes can be 

found in Table III.

Offline classification required 16.65, 38.29, and 57.62 minutes to process data from all four 

subject for block configurations 1, 2, and 3, respectively (Intel i5 3570 K, 8 GB RAM, 

AMD RX 480). Computational processing times on the embedded system for ‘no classifier 

running,’ ‘classifier running; control mode,’ and ‘classifier running; adaptation mode,’ all 

had an average sample run time of 30 ms ± 50 μs. Nominal real-time classifier processing 

times were 1.69 and 3.66 ms, for ‘classifier running; control mode’ and ‘classifier running; 

adaptation mode’ mode, respectively.
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Statistical results are shown in Table IV, with a Standard Error of the Estimate of 0.015 and 

an R2 of 26.84%. The fixed effects of Blocks (P < 0.05) and adaptation (P < 0.01) were 

found to be significant, however, none of the interactions or other fixed effects were found to 

have statistically significant effects (P > 0.05).

IV. DISCUSSION

For both classification models (user-dependent or user-independent) and adaptation types 

(control or adaptation), addition of more training data improved classifier accuracy (as 

shown by differences between Block groups in Fig. 7), with lower classification error rates 

and decreased SEM.

The user-dependent control group showed the biggest improvements, for both error rate 

and SEM, with consecutive Block groups. In Block1, with a training to testing dataset size 

ratio of 1:1, any physiological change or difference in gait performance between sessions 

impacted testing performance far greater than in Block2 (2:1 training to test ratio) or Block3 

(3:1 training to test ratio), therefore a larger training dataset containing more varied data 

across different sessions is advantageous.

Applying adaptation to user-dependent classification resulted in a noticeable decrease 

in classification error and SEM. Although an improvement was also seen as session 

information was increased between Block groups, a single session of training data (Block1) 

resulted in lower classification error rates than those from Block2 of the user-dependent 

control group.

The user-independent control group also saw improvements in both error rate and SEM 

as training data were increased across Blocks. However, due to increased variability in 

the data—likely the result of each subject’s unique gait characteristics—the improvements 

in classification accuracy from Block1 to Block3 were less pronounced than in the user-

dependent classification control model, with a corresponding reduced improvement in SEM. 

Likewise, although adaptation reduced classification error rates and SEM across each Block, 

the improvement between Blocks was limited in the user-independent classification model, 

perhaps because a saturation point was reached, which restricted further improvement of the 

classifier.

Error rates were expectedly higher in transitional steps, when compared to steady-state. Due 

to known additional complexities in the transition kinematics [29] and because far fewer 

transition steps were available for classification, transitional estimation errors were often a 

magnitude higher than steady-state, as seen in Table II. However, because transitional steps 

comprise only a sub-set of the entire dataset, their higher error rates have a minimal impact 

on the collective average error.

Error rates were also expectedly higher in locomotive modes which occurred less frequently, 

such as the stairs and ramp modes. While standing (ST, 38%) and level-ground walking 

(LW, 46%) made up the majority of the total gait activity, there was far less training data 

available for stairs ascent (SA, 5%), stairs descent (SD, 7%), and ramp descent (RD, 5%). 

Because of this, SA/SD/RD often had higher errors than ST/LW, as seen in Table III. 

Woodward et al. Page 9

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



However, they also typically showed greater improvements through an increase in training 

data (Blocks) and with adaptation applied.

Collectively, these results show that the best scenario was to train, test, and adapt using the 

subjects’ own data (user-dependent classification), which resulted in a 0.9% [0.12 SEM] 

error rate (with three days of training data), although this requires the user to provide all 

the necessary training data themselves. Alternatively, using a user-independent classification 

model with adaptation resulted in a comparable1.61%[0.15SEM] error rate (with three 

days of training data), while also potentially saving hours of individual training time. User-

independent classification Block1 with adaptation produced lower classification and SEM 

errors than user-dependent classification Block2 without adaptation. Furthermore, our results 

show that one session of data collection with adaptation can outperform two sessions of data 

collection with no adaptation, which could greatly improve intent recognition with limited 

datasets. These results suggest that training a classifier after a single collection session, then 

adapting it during a second online collection session, could reduce error rates by 0.65% and 

1.28% for user-dependent classification and user-independent classification, respectively.

While certain expectations can be made from individual subject performance in the user-

dependent classification model, due to the similarity of training and testing datasets, the 

performance of a user-independent classification model is largely reliant on the individuals 

within the dataset. While a user-independent dataset consisting of individuals with similar 

physiological characteristics is likely to work well for other users with comparable 

characteristics, this same dataset may not work well for users with vastly different attributes. 

Although a varied user-independent dataset is not likely to be a perfect match for any 

individual subject, it is possible to create a suitably good ‘baseline classifier’ for a wider 

array of individuals, which we believe is the best course of action when combined with 

the novel adaptation method described here. In theory, a large enough dataset from enough 

subjects should work for any unique subject, regardless of their characteristics. However, the 

optimal number of subjects and variety of subject characteristics necessary to create such a 

dataset is currently unknown.

Although difficult to compare across studies, due to variability in algorithms used, 

numbers of subjects, and locomotive modes identified, the results presented here are 

similar to those reported in recent literature. Liu et al. used both mechanical channel 

information and electromyography in their online adaptation classification strategy. Their 

study recommended an entropy-based adaptation method for a real-time human-in-the-

loop study, showing a classification error as low as 4.80% [30]. Bhakta et al. used 

the XGBoost algorithm and split their analysis into user-dependent and user-independent 

subject grouping. They reported classification error rates of 3.81% and 10.11%, respectively, 

although their study did not include online analysis [31].

When compared against prior results from our own group, similarities and improvements 

can be seen. In earlier work (n=6, same powered prosthesis, same ANN, single 

collection session, user-dependent and user-independent classification methodology, offline 

analysis), we reported an average error of 1.12% and 3.25% for user-dependent and 

user-independent classification, respectively, with no adaptation [23]. Although reporting 
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a higher classification error rate of 4.03%, Spanias et al. (n=8, same powered prosthesis, 

LDA classifier, two collection sessions, user-dependent classification methodology, online 

analysis) used a ‘true’ online study, which adds an additional level of complexity, although 

it is more realistic than the present study [32]. Young et al. (n=8, same powered prosthesis, 

dynamic Bayesian Network classifier, one collection session, user-dependent and user-

independent classification methodology, offline analysis) showed a steady decrease in 

classification error from 18% and 12% as the number of subjects included in the user-

independent dataset increased from one to seven, respectively [22]. Simon et al. (n=2, 

same powered prosthesis, ULDA classifier, up to four collection sessions, user-dependent 

classification methodology) reported improved classification errors when increasing the 

number of training sessions for intent recognition [33], which is comparable to that seen in 

the present study.

Although individually the fixed effects of adaptation (P < 0.01) and Blocks (P < 0.05) were 

statistically significant, no interactions between the groups shown in Fig. 7 were found to 

be statistically significant. The results of the mixed effect model were compelling, because 

while the fixed factor terms of adaptation and Blocks do significantly affect the response, 

the other factors (including 2nd and 3rd order interactions) did not. This is especially 

important for the ‘Classification’ fixed term, as that would suggest that there was no 

significant difference between user-dependent and user-independent processing types, and 

could indicate a benefit in grouping user data, regardless of additional adaptation.

This study showed that combining a user-independent classification model with 

individualized adaptation had the biggest reduction in participation time. Each collection 

session in this study varied between two and four hours (Table I), and Block3, which 

contained three sessions of training data, averaged a total of 7.52 [0.92 SEM] hours of data 

collection across all subjects.

A unique subject, using the powered prosthesis for the first time, with no prior training 

sessions, could expect a suitable baseline classification error rate of 2.93% (Control Group, 

IC Block3 - Fig. 7), before adaptation. With adaptation, over a single session (approximately 

two hours), this error rate could reduce further to 1.61% (Adaptation Group, IC Block3 

- Fig. 7). This error rate sits between those of Block2 and Block3 of the user-dependent 

classification control group, saving the user multiple hours of data collection sessions. 

Realistically, however, an individual with no prior experience with powered prostheses 

would have to overcome a large learning curve during their first use, which must be taken 

into consideration when applying these results to real-world scenarios. All subjects tested 

within this study had prior experience with this powered prosthesis.

Although this study demonstrated improvements in classification accuracy with up to three 

sessions of training data, it is unclear if more sessions would further improve results. 

Furthermore, the results seen here are based on data collected entirely in a controlled 

laboratory environment, and therefore it is possible that data collected in the home or other 

uncontrolled settings, with increased variability, may affect these findings. We speculate that 

a greater number of subjects would provide more robust results, however, it is also possible 
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that a saturation point was reached, in that further improvements are limited by the current 

methodology.

The GD ANN was chosen for use in real-time adaptation due to the limited computational 

power on the embedded system, and the need to process adaptation within 30 ms sample 

windows. The GD method could perform much faster than the SCG method; a three-epoch 

loop of a GD ANN could be run comfortably given the hardware and time constraints. 

Results from the real-time analysis of the embedded system showed that the classifier 

performed efficiently. The difference between no classifier, and the classifier running 

with adaptation, was less than 50 μs, and therefore our GD ANN added no noticeable 

computational bottleneck and did not impact any operation of the powered prosthesis.

Although this study used a proprietary Linux-based embedded system, there are no foreseen 

reasons why real-time feature extraction, forward prediction, and adaptation could not be 

performed on alternative commercial systems, such as the Raspberry Pi or BeagleBone 

platforms - both of which are also capable of running a Linux operating system.

This study has some limitations. Although physiological characteristics (height, weight, 

gender) of subjects were not subjectively similar, they all exhibited similar activity levels 

(K3/K4 ambulators) and had similar amounts of experience with the powered prosthesis. 

Subject numbers were also quite low (n=4). Due to this study’s ‘pseudo’ real-time 

application, the classifier had no influence on the activity of the prosthetic limb. Conversely, 

the subject’s reaction to the change in gait, which is expected to impact performance in a 

true real-world scenario, is also not accounted for in our results. Another limitation is that 

the backward estimation was used as a ground truth in training, and this may not always be 

correct. Although the backward estimation is far more accurate than the forward prediction, 

it is not entirely error-less and could train new observations with an incorrect target.

The classification results presented here are comparable to those seen in recent publications, 

however, this study has further demonstrated that such results are potentially achievable 

with far fewer training requirements for unique users. This article has established a training/

testing model that is easy to apply to new subjects, is computationally efficient to run on 

non-specialized embedded hardware, and is potentially both practical and feasible for use 

across diverse environments.

V. CONCLUSION

This study shows that pairing a user-independent classification model with real-time 

adaptation results in comparable classification accuracies to user-dependent classification, 

but with a substantial reduction in individual training time.

With a reasonable baseline classification accuracy, we have demonstrated that adaptation 

using newly available data from a unique subject results in improvements in gait estimation 

over a short period of time in a single data collection session. This methodology has 

the potential to enable transfemoral amputees to use their powered prosthesis with fewer 

training sessions, without sacrificing safety or control accuracy.
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We have also established that an ANN can comfortably operate and adapt new data in 

real-time on an embedded system; however, future work is necessary to apply this technique 

to real-world use and operation of a powered prosthesis.
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Fig. 1. 
Participant using the second-generation powered knee/ankle prosthesis from Vanderbilt 

University.
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Fig. 2. 
Visual presentation of feature extraction for forward prediction. (1) A trigger of interest is 

thrown. (2) A raw data window, comprising 300 ms of data (backwards, from the trigger 

point) and information from 17 mechanical sensors, is binned. (3) Features are extracted 

from the raw data window, resulting in a 1×102 feature vector. (4) Feature vectors are saved 

for future processing, labelled with a ground truth obtained from the trigger information.
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Fig. 3. 
Visual presentation of feature extraction for backward estimation. (1) A sequence of triggers 

is thrown. (2) A raw data window, between the first and last trigger in the sequence, is 

binned. This window varied between 300 and 3000 ms and consisted of information from 

17 mechanical sensors. (3) Features are extracted from the raw data window, resulting in 

a 1×102 feature vector. (4) Feature vectors are saved for future processing, labelled with a 

ground truth obtained from the trigger information.
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Fig. 4. 
Visual presentation of the real-time evaluation. Forward Prediction: (1) A raw data window 

is binned, comprising 300 ms of data and information from 17 mechanical sensors. (2) 

Features are extracted from the raw data window and saved for future processing. (3) 

The saved feature vector, as well as the saved classifier weights from offline processing, 

are passed to a feedforward neural network (FF ANN). (4) The FF ANN estimates a 

locomotive mode. In the hypothetical example shown here, the algorithm has made an 

incorrect estimation of ‘stair ascent’. Backward Estimation: (5) Between two sequential heel 
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strikes, another (larger) raw data window is binned, varying in size between 300 and 3000 

ms. (6) Features are extracted from the larger raw data window. (7) The new feature vector is 

passed to an FF ANN, along with the same weights used in step 3. (8) Another (theoretically 

more accurate) estimation is made for locomotive mode. In this hypothetical example, the 

correct mode of ‘level-ground walking’ is estimated. (9) The feature vector from step 2 is 

trained, using the estimation from step 8 as the training target, and the same weights used 

in steps 3 and 7. This training process results in updated weights, which are used in future 

classification. Only steps 1–4 were run during data processing in the control methodology 

(forward prediction; red background), whereas all steps (1–9) were run in the adaptation 

methodology (forward prediction and backward estimation; red and blue backgrounds).
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Fig. 5. 
Example of the training/testing permutations when classifying in User-Dependent 

Classification (DC) mode. The figure shows an example of creating user-dependent dataset 

blocks from a single subject to be tested against the same subject.
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Fig. 6. 
Example of the training/testing permutations when classifying in User-Independent 

Classification (IC) mode. The figure shows an example of grouping data from three subjects 

to create user-independent dataset blocks, to be tested with data from a unique fourth 

subject.

Woodward et al. Page 21

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 April 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Bar graph showing the results from all dataset groups, including subject grouping (user-

dependent classification (DC) and user-independent classification (IC)), session blocks 

(Block1, Block2, and Block3), and without adaptation (control) or with adaptation. Error 

bars are the standard error of the mean (SEM).
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TABLE I

BREAKDOWN OF THE TME REQUIREMENTS (HOURS(H)MINUTES) FOR EACH PARTICIPANT IN THIS STUDY. SESSIONS ONE TO 

THREE WERE USED FOR TRAINING THE CLASSIFIER, SESSION FOUR WAS USED FOR REAL-TIME TESTING/ADAPTATION

Subject 01 02 03 04

Session 1 2h30 2h00 2h45 2hl5

Training
Session 2 2h45 2h00 4h00 2hl5

Session 3 2h20 2h00 3h20 lh55

Total 7h35 6h00 10h05 6h25

Testing Session 4 2h05 2h00 2h00 2h05
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TABLE IV

MIXED MODEL RESULTS FOR FIXED EFFECTS. BLACK BACKGROUND INDICATES SIGNIFICANCE OF P < 0.01, GRAY 

BACKGROUND INDICATES SIGNIFICANCE OF P < 0.05, AND WHITE BACKGROUND INDICATES NO SIGNIFICANCE (P > 

0.05). ‘BLOCK’: BLOCK1, BLOCK2, BLOCK3; ’CLASSIFICATION’: USER-DEPENDENT CLASSIFICATION, USER-INDEPENDENT 

CLASSIFICATION; ‘ADAPTATION’: CONTROL GROUP, ADAPTATION GROUP

Tests of Fixed Effects

F-Value P-Value

Block 3.31 0.048

Classification 3.62 0.065

Adaptation 12.13 0.001

Block*Classification 0.57 0.572

Block* Adaptation 1.90 0.164

Classification*Adaptation 0.22 0.640

Block*Classification*Adaptatio n 0.35 0.704
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