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Predicting the frequencies of drug side effects
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A central issue in drug risk-benefit assessment is identifying frequencies of side effects in
humans. Currently, frequencies are experimentally determined in randomised controlled
clinical trials. We present a machine learning framework for computationally predicting
frequencies of drug side effects. Our matrix decomposition algorithm learns latent signatures
of drugs and side effects that are both reproducible and biologically interpretable. We show
the usefulness of our approach on 759 structurally and therapeutically diverse drugs and
994 side effects from all human physiological systems. Our approach can be applied to any
drug for which a small number of side effect frequencies have been identified, in order to
predict the frequencies of further, yet unidentified, side effects. We show that our model is
informative of the biology underlying drug activity: individual components of the drug sig-
natures are related to the distinct anatomical categories of the drugs and to the specific drug
routes of administration.
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ARTICLE

he estimation of the frequencies of the side effects is crucial

in drug risk-benefit! assessment. Currently, these fre-

quencies are estimated using intervention and placebo
groups during randomised controlled trials. Although these trials
are limited by sample size, time frame and lack of accrual?, they
are the standard approach to eliminate selection bias in clinical
medicine?.

However, it is well recognised that numerous side effects are
not observed during clinical trials* but are only identified after the
drug has reached the market>~7. For this reason, drug side effects
remain a leading cause of morbidity and mortality in healthcare,
with an annual loss of billions of dollars®-10, Several computa-
tional approaches have been proposed for predicting side effects
of a given drug!!-1, Yet, the application of these methods in drug
risk-benefit assessment is limited, as they can only predict the
presence or absence of a drug side effect, not its frequency.

While the accurate estimation of the frequencies of side effects
is vital to patient care in the clinical practice, it is also essential for
pharmaceutical companies as it reduces the risk of drug with-
drawal from the market!”18 or of a costly reassessment of side
effect frequencies through new clinical trials!.

Here we present a machine learning approach for predicting
the frequencies of drug side effects. We show the usefulness of our
approach for drugs from multiple therapeutic classes and side
effects belonging to all physiological systems. Given a small
number of experimentally determined side effects, our method
predicts the frequencies of a broader range of unknown side
effects. To our knowledge, this is the first computational method
that successfully addresses the problem of predicting the fre-
quencies of drug side effects. A critical application of our
approach is in the early phase of clinical trials, where computa-
tional predictions can be used as complementary hypotheses to
set the direction of the risk assessment in later phases of clinical
trials. Our approach for predicting the frequencies of drug side
effects is to use a matrix decomposition algorithm that learns a
small set of latent features (or signatures) that encode the bio-
logical interplay between drugs and side effects. Our model is
inspired by movie recommendation systems?0-22 that recom-
mend movies to users: our recommendation system recommends
side effects to drugs. Importantly, we constrain our matrix
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decomposition to be non-negative; this has the advantage of
making explicit the parts-based representation?? thus offering
biological interpretability. In other words, drugs are characterised
by a set of learned non-negative features that, when additively
combined, account for the side effect frequencies across the entire
repertoire of drugs. Consequently, our predictions are explain-
able, and the individual features can be interpreted in terms of
drug effects on specific human physiological systems. Here we
also show that these features are related to different routes of
administration and that they capture shared drug clinical activity,
drug targets and anatomy/physiology of side effect phenotypes.

Results

The matrix decomposition model. We used the Side effect
Resource (SIDER) 4.1 database?* to obtain the frequencies of drug
side effects and analysed drugs with known Anatomical, Ther-
apeutic and Chemical (ATC) code (see Methods). Following com-
mon practice in clinical trials?>, we used five frequency classes to
quantify the occurrence of side effects—the standardisation of fre-
quency formats is explained in Supplementary Note 1 (Supple-
mentary Fig. 1). By coding side effect frequency classes with integers
between 1 and 5 (Supplementary Table 1)—very rare = 1, rare = 2,
infrequent = 3, frequent =4, very frequent = 5—we assembled an
n x m matrix R, containing 37,441 frequency class associations for
n=759 drugs and m =994 unique side effects (Supplementary
Data 1). The remaining entries in R were filled with zeros.

The average frequency value in R is 3.52, indicating that
frequencies from clinical trials are biased towards frequent side
effects. This has been attributed to the limitation of clinical trials
at detecting side effects of rare occurrence?®. Popular side effects,
such as headache, account for most of the non-zero entries in R,
indicating that there are specific side effects that are reported on
most drugs. Indeed, our analysis of R showed that drug side
effects follow a long-tailed distribution (Supplementary Fig. 2),
where about 30% of the side effects are responsible for 80% of the
associations (Fig. 1a). Figure 1b shows that the distribution of
frequency classes in R is zero-inflated, meaning that about 95% of
the associations are unobserved.

The long-tailed distribution of side effects resembles the
distribution of the ratings previously found in movie datasets,
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Fig. 1 Distribution of drug side effects in our data set. a Long-tailed distribution of side effects. Side effects in y-axis are ordered in decreasing order of
popularity, i.e. the number of drugs in which a side effect appear. Inset. Word cloud of the 15 most popular side effects. The size of the word is proportional
to its popularity; the five most popular ones are coloured in orange. b Histogram of side effect frequency classes. The frequency of a drug side effect in the
population can be very rare (<1in 10,000), rare (1in 10,000 to 1in 1000), infrequent (1in 1000 to 1in 100), frequent (1in 100 to 1in 10) or very frequent
(>1in 10)—shown in shaded red bars. The remaining of the associations are unobserved (grey bar).
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such as Netflix or Movielens?” (Supplementary Fig. 3). One
widely studied group of methods for movie recommendation
systems is based on matrix decomposition techniques?$. Their
fundamental assumption is that both users and movies can be
represented as latent feature vectors in a low-dimensional space
and that a rating value for a specific user-movie pair is obtained
by the dot product of the corresponding feature vectors. The
assumption is reasonable for movie datasets, where latent features
can be thought of as modelling both movie genres and user
preferences (e.g. thriller, romance, sci-fi).

We realised that this assumption is also reasonable for our task:
drugs and side effects can be represented as latent feature vectors
in a low-dimensional space where the latent features might
capture specific molecular or cellular mechanisms that elicit side
effects??. Therefore, our idea is to learn a low-dimensional latent
representation for each drug—that we shall call drug signature,

w e R*—and a low-dimensional representation for each side

effect—side effect signature, h € R¥—such that the frequency of
a drug-side effect pair is obtained by the dot product of the two
feature vectors. This amounts to decomposing R into a product of

two matrices as R ~ WH, where W € R™* (each row is a drug

signature), H € R¥™ (each column is a side effect signature)
and k << min(n, m) is the number of latent features in our model
(see Methods). Our matrix decomposition algorithm learns the
matrices W and H by minimising the following loss function:

(WH);

. 1 o
min (W, H) =2 > (R;— (WH);)" +2
’ (i) Ry {0})

{iIRyea)
(1)

subject to the non-negative constraints W, H>0.

The first summation in our model is the fitting constraint on
the observed entries, which aims at reconstructing R for the
known frequency classes in Q € {1,2,3,4,5}. This term is
commonly used in collaborative filtering models to learn from
users’ ratings on movies. The second term in Eq. (1) is the fitting
constraint on the zeros, which aims at reconstructing the zeros
found in R, and we introduced it here because our data set is
fundamentally different from movie ratings. While in the movie
rating matrix a zero entry is simply a missing value that needs to
be filled in, for our problem, a zero entry indicates that a specific
side effect was not detected for a given drug—which could either
mean that the drug does not cause the side effect or that it does,
but it could not be detected. The parameter « € [0, 1] controls the
relative importance of the zeros during learning; in other words, it
represents our confidence in their correctness. Observe that the
second term also acts as a regularisation factor, so no additional
regularisation term is required (Supplementary Note 2). Finally,
we impose non-negative constraints on our solution as it favours
biological interpretability since only additive combinations of the
latent features are allowed30.

An overview of our approach for predicting the frequencies of
drug side effects is presented in Fig. 2 (and Supplementary
Notes 4 and 5). The starting point is the matrix R containing an
encoding of the side effect frequency classes for each drug
(Fig. 2a). We learn the matrices W and H that minimise the loss
function in Eq. (1), by employing an iterative algorithm that uses
a simple multiplicative update rule (Fig. 2b, see Methods). Our
algorithm, inspired by the diagonally rescaled principle of non-
negative matrix factorisation?, is fast, it does not require setting a
learning rate nor applying a projection function and it satisfies the
Karush-Kuhn-Tucker (KKT) complementary conditions of
convergence (proof in Supplementary Note 3). Having learned
W and H such that R =~ WH, we calculate the matrix R = WH.
Notice that, while R contains integers in the range [0, .., 5] that

are our original data, R contains real positive numbers that are
our predicted scores. Finally, to assign specific frequency classes
to the predicted scores in R, we apply a thresholding operation
(Fig. 2¢). The methodological details are given in the next
sections.

Predicting frequencies of side effects for multiple drugs. We
started by analysing the performance of our method at recovering
missing associations in the matrix R. To do this, we held-out 10%
of the observed associations in our data matrix R for testing. The
remaining 90% were used in a tenfold cross-validation procedure
to set the two parameters of our algorithm: k (the number of
latent features) and « (confidence in the zeros)—see Methods.
During cross-validation, we assessed the prediction performance
using both the root mean squared error (RMSE) on the frequency
classes and the area under the receiver-operating curve (AUROC)
obtained when predicting the presence/absence of the associa-
tions (binary classification problem)—the latter has been pre-
viously used by Cami et al.!! for the same problem. Here the first
metric measures distance from the correct frequency class values
while the second one guarantees the detection of correct asso-
ciations. We obtained an excellent performance with « = 0.05 and
k=10; mean and s.t.d. RMSE =1.372+0.021, and mean and
s.t.d. AUROC =0.920 + 0.003 (Supplementary Fig. 4). The per-
formance of the algorithm is robust with respect to the setting of
the parameters « and k (Supplementary Figs. 5 and 6). Given that
our data set is highly imbalanced, we also analysed the binary
classification performance of our method using the area under the
precision-recall curve (AUPRC). Following the procedure in Luo
et al31, we calculated the AUPRC when the ratio between the
binary classes in the test set varies from 1 to 10. Supplementary
Fig. 7 shows that the mean AUPRC varies from 0.914 + 0.003 to
0.594 + 0.0084.

On the held-out test set, our model scored an RMSE of 1.32 and
an AUROC of 0.932 (and an AUPRC of 0.59 for a class imbalance
ratio of 10; PR curves shown in Supplementary Fig. 8). Figure 3a
shows, for each of the five frequency classes in the test set, the box
plots of the distribution of the values that were predicted for that
class (Supplementary Fig. 9). The Pearson correlation between the
predicted scores and their corresponding frequency classes was
p = 0.47 (significance, P < 2.40 x 107209). The differences between
the distributions of scores for the five frequency classes were
statistically significant (Kruskal-Wallis one-way analysis of
variance significance at 1%, P < 1.15 x 107193),

To predict the specific frequency class of a given association,
we need a way to assign predicted scores to frequency classes. Due
to incomplete data and biases on the observed entries, we cannot
obtain reasonable estimates for the priors for each class.
Therefore, we assigned scores to classes based on maximum
likelihood using the distributions obtained from the validation
sets during cross-validation (see Fig. 2¢c, see Methods). Further-
more, due to the lack of experimentally validated zero values, in
order to discriminate the zero associations, we followed an
approach similar to the one used by Cami et al.!! and chose a
threshold using the ROC curve at a sensitivity of 0.97 given a
specificity of 0.57.

Figure 3b, ¢ shows the accuracy at predicting side effect
frequency classes on the held-out test set. For any given class, the
most predicted class is the correct one, and the prediction
accuracy ranges from 552 to 75.5% when including the
contiguous lower class and 67.8 to 94% when both contiguous
classes are considered. Looking at the first column in the figure,
we notice how our system rarely (0.72%) fails to detect a very
frequent side effect and seldom misses side effects in the frequent
(2.68%), infrequent (2.52%) and rare (3.11%) classes. The number
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Fig. 2 Overview of our approach. a Thirty-seven thousand four hundred and forty-one known frequency associations for 759 therapeutically diverse drugs
and 994 side effects from all human physiological systems were collected from the SIDER 4.1 database. The associations were standardised into the five
frequency classes commonly used in randomised controlled trials and arranged into an n x m matrix R by encoding them using integers: very rare (=1), rare
(=2), infrequent (=3), frequent (=4) and very frequent(=5). Unobserved associations were encoded with zeros. Our algorithm decomposes the matrix R
into the product of two matrices, W (of size n x k) and H (of size k x m). By multiplying the matrices W and H, we obtain R, which models R, and where all
the integers are replaced by real numbers—these are our predicted scores. Note that values that replace the zeros in R will constitute our predictions. Rows
of W are the drug feature vectors (drug signature); columns of H are the side effect feature vectors (side effect signature). The lower illustration depicts
how our model discovers a low-dimensional signature vector for the anti-diabetic drug Metformin and a low-dimensional signature vector for the side

effect diarrhoea, such that the dot product of these two signatures models the frequency of diarrhoea in patients on Metformin. The body parts infographic
vector was created by macrovector—www.freepik.com. b Starting from non-negative initial conditions for W and H, iterations of these update rules find W
and H, an approximate factorisation for R by converging to a local minimum of the objective function in Eq. (1). ¢ Frequency classes were obtained from R
using a thresholding operation. Thresholds are set by maximum likelihood using likelihood density functions for each class that are estimated during cross-
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of undetected side effects only increases for the very rare class
(16.94%) (Supplementary Fig. 10), probably due to the small
number of known associations in this class. As illustrative
examples, Fig. 3d (and Supplementary Figs. 11 and 12) presents
the predicted scores and the exact frequency classes for the side
effects of the anticonvulsant drug Gabapentin, a top-50
prescribed drug in the U.S.32, and for the side effect arrhythmia,
critical in cardiotoxicity assessment33.

We also tested the accuracy of our method when the
percentage of associations that were removed (and predicted
back) from R varied from 10 to 70%. We found that the mean
accuracy of our method is very robust when increasing amounts
of data are randomly missing from the matrix R (Supplementary
Fig. 13).

We further tested the performance of our system at
predicting the frequencies of side effects that were discovered
after the drug entered the market (post-marketing side effects,
hereafter). This amounts to a prospective evaluation where
post-marketing data appear only in the test set—it is a realistic
scenario that preserves the chronological order in which the
information becomes available!!. We collected two indepen-
dent post-marketing test sets: (i) the post-market SIDER?* test
set containing 9387 post-marketing associations; and (ii) the
post-market OFFSIDES3* test set containing 36,032

associations (see Methods; Supplementary Data 2). The SIDER
test set corresponds to post-marketing side effects reported
in drug leaflets, whereas the OFFSIDES test set corresponds
to statistically significant side effects reported in the Adverse
Event Reporting System (AERS)3. Arguably, the associations
provided in the SIDER database extracted from drug
leaflets are more reliable because they are curated by
pharmacological experts. Importantly, both post-marketing
sets only inform us about the presence or absence of the side
effects, not its frequency. Yet, post-marketing side effects
are typically regarded as side effects of very rare occurrence in
the population?%34 because they are not detected in clinical
trials.

Strikingly, the statistical analysis of the distribution of scores
predicted for the SIDER post-market test set showed no
significant differences from the scores predicted for the very rare
class in the held-out test set (Fig. 3a, one-tailed Wilcoxon sum-
rank significance, P >0.936), indicating that our method
predicted, on average, very rare scores for these post-marketing
side effects despite the small number of very rare associations in R
(only 3.2% are very rare). This was not the case for the OFFSIDES
test set, which ranked significantly lower (Fig. 3a, one-tailed
Wilcoxon sum-rank significance, P<6.25x1078). Figure 3e
shows that a large percentage of the post-marketing associations
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on the exact class together with the mean accuracy at predicting the exact class or one of the neighbouring classes. d lllustrative examples from the held-
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in both test sets were predicted either as rare or very rare
(44-55%).

To check whether the predicted scores for the post-market test
sets was simply due to random chance, we selected a randomised
test set of the same size of the SIDER post-market test set, by
sampling entries from the R matrix corresponding to zero-value
entries in the matrix R that had been used for training. We found
that the distribution of scores predicted for this randomised test
set was significantly lower than any of the post-marketing test sets
(OFFSIDES test set vs randomised set, one-tailed Wilcoxon sum-
rank significance, P<1.45x107177; SIDER post-marketing vs
randomised set, P<2.23 x 107398). This means that many of
these very rare side effects, which were discovered from post-
market observational databases, could have been systematically
predicted by our approach.

Predicting frequencies of side effects for single drugs. A key
question for the real applicability of our approach concerns its
ability to predict the frequency of side effects for single drugs. In
practice, for a given drug, frequencies of side effects are dis-
covered incrementally in a specific chronological order during
phases I, IT and IIT of clinical trials. We realised that we could
simulate this incremental discovery process by randomly
removing (and predicting back) an increasing percentage of
associations for a single drug (see Methods). Figure 4a shows the
mean accuracy at predicting the exact class together with the
accuracy at predicting the exact class or one of the neighbouring
classes. The figure shows that our method’s accuracy is robust
even when a high percentage of associations for a given drug is
missing—the mean accuracy only drops by 4.69% (exact class)
when 50% of the associations for each drug are removed. Notice
also that the results when removing 10% of the associations from
each drug are not very different from our earlier results (in
Fig. 3b), obtained by removing randomly 10% of associations
from the entire matrix R.

During clinical trials, typically, more frequent side effects are
discovered first, in earlier phases of clinical trials, while more rare
side effects are discovered in later phases. We performed a more
realistic simulation that takes this chronology into account where,
for each drug, we removed side effects belonging to an increasing
number of classes. First, we removed only the very rare side
effects (test set A in Fig. 4b), then we repeated the procedure by
removing together very rare and rare associations (test set B in
Fig. 4b) and finally we repeated the procedure by removing
together very rare, rare and infrequent side effects (test set C in
Fig. 4b)—see ‘Methods’. Figure 4b shows the mean accuracy of
our method at predicting the exact frequency class and the
accuracy at predicting the exact class or one of the neighbouring
classes. The figure shows that our method can accurately predict
more rare side effects for single drugs even when only more
frequent side effects are available. These results suggest the
potential usefulness of our method for predicting frequencies of
side effects using data from early phases of clinical trials.

To further prove this concept in a real case study, we used the
outcomes of clinical trials for the y-secretase inhibitor Semagacestat,
the only drug for which we could find detailed information on the
outcome of each phase of clinical trials. We manually curated the
data on the frequencies of side effects from randomised controlled
trial phases 136, 1137 and 11138, conducted for Semagacestat in 2005,
2008 and 2013, respectively (Fig. 4c and Supplementary Data 3).
Only a small number of relevant frequent and very frequent side
effects were reported in detail for each clinical study, and after
filtering placebo side effects of higher frequency, the number of side
effect associations in phases I, II and III were 8, 25 and 15,
respectively. We then added Semagacestat side effects from phase I

to our data matrix R by adding a new row in the matrix
(Supplementary Fig. 14 and Supplementary Note 4) and then
trained our method using all the available data (with « = 0.05 and k
=10). After ranking all the 986 unobserved side effects for
Semagacestat, we measured the performance of our method at
recovering the new frequent side effects that were observed in
phases II and III, obtaining an AUROC of 0.853 and 0.810,
respectively—see Fig. 4c for the ROC and PR curves. This indicates
that our method would have been able to suggest many of these side
effects already after the results of clinical trial phase I.

The small number of side effects available for Semagacestat in
phase I of clinical trials prompted us to ask how much the
accuracy of our method for a given drug depends on the total
number of side effect associations already known for that drug.
To assess this accurately, we used a leave-one-out procedure, in
which for each association in our data matrix: (i) we removed it
from the matrix; (ii) we trained our model with the remaining
associations; (iii) we predicted the frequency class for that
missing association. The number of known side effects for the
different drugs varies greatly, and thus this experiment allowed
us to analyse the dependency between accuracy and number of
side effects. We observed that the accuracy of our method is very
robust to variations in the number of side effects available for
each drug. Our method predicts accurately the frequency of the
side effects even for drugs with only 8-10 known side effect
frequencies (Supplementary Fig. 15).

Finally, we checked whether the chemical similarity between
drugs was somehow affecting our evaluations of the method’s
accuracy. To do this, we measured the performance of our method
for sets of drugs with different range of chemical similarities. We
performed this analysis on 754 drugs in our data set. For each drug,
we tested the performance of our method at predicting 10% of the
associations that were held out in a test set, while varying the level
of chemical similarity with other drugs in the training data sets (the
percentage of drugs that are kept for training for distinct thresholds
of chemical similarity is shown in Supplementary Fig. 16).
Supplementary Fig. 17 shows that the performance of our method
is very robust with respect to the amount of chemically similar
drugs present in the training data set. The values for the similarity
thresholds used in these experiments were motivated by a
comparative analysis of the chemical diversity of our data set
performed using compounds from the Drug Repositioning Hub3°
(see Supplementary Note 6 and Supplementary Fig. 18).

Drug signatures are informative of main drug activity. The
effectiveness of our model at predicting the frequency of side
effects prompted us to analyse whether the learned signatures are
informative of the biology underlying drug activity.

We began by analysing whether the signatures were repro-
ducible across independent runs. Using all the available data in R,
we followed the reproducibility procedure used by Alexandrov
et al. to study cancer mutational signatures®#! (see Methods).
We found that eight out of the ten components of the signatures
have a median reproducibility score >80% (Supplementary
Figs. 19 and 20). Hereafter, we report the results found for the
best solution over multiple runs (Supplementary Data 9 and 10).

Having shown that the features were highly reproducible
allowed us to investigate the link between drug signatures and
drug clinical activities. We hypothesised that the signature for two
drugs should be similar when they share clinical activity. Clinical
activity for drugs was defined based on their main ATC class level
(Supplementary Table 2 and Supplementary Data 4)—a five-level
hierarchical organisation of terms where lower levels of the
hierarchy contain more specific descriptors of clinical activity.
Figure 5a shows that the similarity between the signature of drugs
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Fig. 4 Evaluation of our method on single drugs. a Mean accuracy at predicting the exact class (light grey) and the exact class or one of the neighbouring
classes (dark grey) for varying percentages of randomly chosen associations. b Mean accuracy at predicting the exact class (light colour) and the exact
class or one of the neighbouring classes (dark colour) for test sets A, B and C. Set A (blue bars) =1190 very rare associations, 126 drugs; set B (green
bars) = set A + 4203 rare associations, 237 drugs; set C (red bars) = set B + 10,027 infrequent associations, 473 drugs. Each test set is represented with
circles, circle size represents the number of associations in each test set. ¢ A case study for the y-secretase inhibitor Semagacestat, an investigational small
molecule for the causal treatment of Alzheimer's disease. Side effect frequencies from three chronologically different phases of randomised controlled
trials were collected: phase | (2005), phase Il (2008) and phase Il (2013). Only 8 (2 frequent and 6 very frequent) associations from phase | were used to
train the model and the remaining associations of phases Il (13 frequent and 7 very frequent), and Il (13 frequent and 2 very frequent) were used
separately to test the model. Scores generated by the model for the 986 unobserved side effects were assessed against the known associations from

phases Il and Ill using the receiver-operating characteristic curve and precision-recall curves (inset bar plots of AUROC and AUPRC).

within an ATC class is higher than the similarity between classes

(Supplementary Fig. 21a, see Methods).
We then formulated a simple binary classification

the signature similarity was used to predict drugs that shared the

same clinical activity at each level of the ATC hierarchy

(see Methods). We observed that the prediction performance

task in which
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Fig. 5 Drug signatures capture drug clinical and molecular activity. a Heat maps of mean drug signature similarities per anatomical class. Each (x, y) tile
represents, for each main Anatomical, Therapeutic and Chemical (ATC) drug category, the mean similarity of drug pairs where one drug belongs to
category x and the other to category y. The value ranges from 0.27 (Nervous system—dermatological) to 0.55 (Nervous system—nervous system). The
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0.475 (V)) set to 0.466. Inset: the average intraclass similarity is significantly higher than the average inter-class similarity (t test significance, P <2.62 x
1013, b ROC curve representing the ability of the drug signature similarity to discriminate pairs of drugs that share Anatomical, Therapeutic and Chemical
(ATC) category at each of the different levels in the ATC taxonomy. Drug signature similarity was predictive of clinical drug activity at different levels:
anatomical class (38,711 pairs share vs 248,950, AUROC = 65.33%), therapeutic subclass (11,960 pairs share vs 275,701, AUROC = 69.51%),
pharmacological subclass (5,522 pairs share vs 282,139, AUROC = 71.54%) and chemical subclass (1,736 pairs share vs 285,925 do not, AUROC =
76.05%). ¢ ROC curve representing the ability of the drug signature similarity, side effect similarity and Tanimoto chemical similarity scores to discriminate
pairs of drugs that share targets. For 435 drugs in our data set, 2,808 pairs were known to share molecular targets, whereas 91,587 pairs were unknown.

correctly reflect the fact that drug clinical activity becomes more In a similar way, we checked whether the drug signature for
similar as we move to lower (more specific) levels of the ATC two drugs is more similar when they share drug targets
hierarchy. (see Methods, Supplementary Fig. 22). We found that drug
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signature similarities are predictive of shared protein targets
between drugs (AUROC = 68.38%; Fig. 5c). Interestingly, the
predictions are better than baselines previously used
elsewhere3442, such as the two-dimensional (2D) Tanimoto
chemical similarity (AUROC =59.26%) and the Jaccard side
effect similarity (AUROC = 61.07%).

We also analysed side effect signatures attempting to reveal a
link between these signatures and the anatomy/physiology of the
side effect phenotypes. Side effects were grouped based on their
system organ classes according to the Medical Dictionary for
Regulatory Activities (MedDRA) terminology (Supplementary
Table 3 and Supplementary Data 5 and 6). We found that
signatures for two side effects tend to be more similar when they
are phenotypically related (Supplementary Fig. 23). Moreover, the
similarity between side effect signatures is predictive of shared
MedDRA category at each of the different levels of the MedDRA
hierarchy, and predictions improve as we move to more specific
terms in the hierarchy (Supplementary Fig. 24).

It is important to note that in these analyses we formulated
binary classification problems merely to assess whether drug
signatures (or side effect signatures) are informative of the
biology underlying drug activity. We are not introducing here
new methods for predicting drug targets or drug indications.
These experiments show that there is a relation between similarity
between drug signatures and similarity between drug activities at
the anatomical and molecular level—the formulation of binary
classification problems has been used before to verify a relation-
ship between a specific feature and a property under study>44243,

Interpreting the meaning of the signature components. We
have shown that the signatures of drugs and side effects, as a
whole, encode meaningful biological information of drug mole-
cular and clinical activity. A further important question is whe-
ther the individual components of the signatures are
interpretable, ie. have any biological or pharmacological
interpretation.

We grouped drugs and side effects according to their main
anatomical classes, and we looked for significant activations of
individual components of the signatures for each group. The
groups were obtained using top-level terms in ATC and MedDRA
hierarchies, respectively. Significant relationships are provided in
Supplementary Data 11-16. Strikingly, we observed that, often,
specific components of the signatures were significantly activated
for drugs and side effects that were anatomically related—Table 1
summarises the correspondences that we found to be statistically
significant  (one-tailed =~ Wilcoxon rank-sum test with
Benjamini-Hochberg adjusted significance, P < 0.01).

We investigated some entries of the table in detail. Component
1 of the signature is significantly associated with the sex hormone
drugs and with the breast disorder-related side effects (adjusted
significance, P<4.01 x 10712). When we performed a more in-
depth pharmacological analysis by looking at lower levels in the
ATC hierarchy (finer granularity), our analysis revealed that this
correlation mostly comes from sex hormones and modulators of
the genital system (G03) drugs and endocrine therapy (L02) drugs
(adjusted, P<4.06 x 107% and P < 1.24 x 109, respectively).

Another notable example is component 8 of the signatures.
This component is specific to neurological drugs (adjusted, P <
3.48 x 10731, but P> 0.05 for all other drug classes) and to side
effects related to the nervous system and psychiatric disorders. In-
depth pharmacological analysis reveals that this component is
linked to antipsychotics and anxiolytics drugs and with
psychiatric side effects (mood and sleep disorders). Conversely,
component 5 of the signatures, which is also specific to
neurological drugs (adjusted, P<1.82x 10712, P>0.05 for all

other drug classes), has more balanced neurological and
psychiatric side effect profiles.

In some cases, the signature components can be associated
with more than one anatomical class, and the connection between
the classes becomes only apparent after considering the off-target
or off-tissue effect of the drugs. As an example, consider
component 2 of the signatures, which is strongly associated with
both cardiovascular system drugs (adjusted, P < 7.13 x 10719) and
cardiac and vascular-related side effects (adjusted, P < 5.24 x 10~*
and P<2.56x 10717, respectively). There is, however, an
unexpected link with nervous system drugs. In-depth pharmaco-
logical analysis reveals that component 2 is linked to anaesthetic
drugs (NO1)—the only neurological drugs associated with this
component (adjusted, P<1.25x 1072). Conversely, anaesthetic
drugs are not statistically significantly associated with any other
components—including components 5 and 8, which are neuro-
logical specific, as we described above. Anaesthetic drugs
reportedly affect the regular cardiac electrical activity by
interacting with the ion channels—the component 2 of the
signatures is indeed strongly associated with arrhythmias
(adjusted, P< 8.88 x 10~10),

Furthermore, it is well known that drug route of administration
affects the side effects. We tested whether components in the
signatures can capture this relation (data provided in Supple-
mentary Data 7). We found that specific components of the drug
signatures are significantly associated with several routes
(Supplementary Data 17). Component 6 of the signatures—
associated with the respiratory system—is associated with
inhalation and nasal administration. Component 4—associated
with the dermatological system—is also associated with nasal
administration and transdermal delivery administration, which is
typically known to cause adverse skin reactions. Finally, we found
that component 8—associated with the nervous system—was
associated with oral administration. We note, however, that this
last association could be due to a large number of nervous system
drugs in our data set (see Supplementary Table 2).

Discussion

The correct identification of frequencies of drug side effects is
critical to avoid clinical trial failures#4 or the withdrawal of drugs
from the market. In this paper, we introduced an interpretable
machine learning approach to predict the frequencies of
unknown side effects for drugs with a small number of deter-
mined side effect frequencies. Our model learns a low-
dimensional representation of drugs and side effects that we
called signatures. We showed that these signatures encode
meaningful biological information about drug activity at the
anatomical and molecular level.

We envision the use of our system by safety professionals
working in pre- and post-marketing drug development: in the
premarketing phase, to assist in the design of clinical trials by
generating a hypothesis on the frequencies of certain side effects;
in the post-marketing phase, to complement the evidence from
observational databases for the early discovery of side effects of
very rare occurrence—this requires an analysis of the low scores
predicted by our system (Supplementary Note 5). The inter-
pretability of our model can also assist policymakers and reg-
ulatory agencies when assessing the safety of candidate
compounds or of drugs that are already in the market. To assist in
this task, we provide the complete set of predictions by our model
in Supplementary Data 8.

To the best of our knowledge, this is the first method that can
predict the frequencies of drug side effects in the population.
Earlier methods can predict the probability of a given drug side
effect association, but these probabilities are only weakly
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Table 1 Statistically significant associations with each signature component.
Signature Anatomical drug ATC category Physiological side effect Comments
component MedDRA category
1 Genitourinary and sex hormones (G),  Reproductive system and breast, Strongly associated with endocrine therapy drugs
antineoplastic and immunomodulating  musculoskeletal and connective ~ (LO2) and sex hormones and modulators of the genital
agents (L) tissues system (GO3) drugs. Weakly with NO6
(psychoanalytic)
2 Cardiovascular (C) Cardiac, vascular and respiratory, Also associated with anaesthetics (NO1). Strongly
thoracic and mediastinal associated with arrhythmias
3 Nervous system (N) Respiratory, thoracic and A weak, less stable signature. Associated with
mediastinal antimycotics (JO2) and psychoanalytic (NO6)
4 Dermatological (D), sensory organs (S)  Skin and subcutaneous tissue, Strongly related to epidermal and dermal conditions,
eye and immune system ocular infections, irritations and inflammations,
including allergic conditions. Also associated with the
nasal and transdermal delivery administration
5 Nervous system (N) Nervous system, psychiatric Specific to nervous system drugs. It is associated with
disorders many subcategories of nervous system drugs, except
anaesthetics (NO1). Also, only weakly associated with
psycholeptics (NO5). Equal neurologic and psychiatric
side effects
6 Respiratory system (R) Respiratory, thoracic and Also associated with drugs used in diabetes (AO1),
mediastinal, infections and lipid-modifying agents (C10) and urological (G04),
infestations highlighting some interactions with metabolism/
haemostasis. Also associated with inhalation and nasal
administration
7 Anti-infectives for systemic use (J) Gastrointestinal Also linked to drugs for acid-related disorders (A02)
8 Nervous system (N) Nervous system disorders, Specific to nervous system drugs. Specifically,
psychiatric disorders antipsychotics and anxiolytics (NO5A/B). More
psychiatric side effects. Prominently associated with
mood and sleep disorders and disturbance. Associated
with oral administration
9 Antineoplastic and immunomodulating Metabolism and nutrition, It is associated with antineoplastic agents (LO1),
agents (L), anti-infective for systemic  investigations, blood and antimycotics and antivirals, both for systemic use
use (J) lymphatic system (J02/05). Also, with immunosuppressant drugs (L04).
Associated with electrolyte and fluid balance
conditions and hepatobiliary investigations
10 Antineoplastic and immunomodulating Blood and lymphatic system, Strongly associated with antineoplastic agents (LO1)
agents (L) vascular disorders and weakly with antithrombotic (BO1). Associated with
haemorrhagic vascular disorders

correlated with the side effect frequencies and therefore they
cannot be used effectively for the prediction of frequency classes
—we verified this for the scores obtained by the predictive
pharmaco-safety networks (PPN-NET)!!  (Supplementary
Fig. 25).

An innovative technical aspect of our matrix decomposition
algorithm is that it can take into account different levels of
uncertainty associated with the data. The underlying assumption
of our model is that the matrix is fully—rather than partially—
observed but that a well-defined set of entries are noisy—in our
problem, these are the zeros, corresponding to unobserved drug
side effect associations. Earlier matrix decomposition methods,
such as singular value decomposition or non-negative matrix
factorisation (NMF)30, do not explicitly account for different
levels of uncertainty in the data. Our multiplicative learning rule
is simple, computationally efficient and has theoretical guarantees
of convergence. We envisage its use for other problems in which
there is prior knowledge on the uncertainties associated with
distinct subsets of associations in the data (see our detailed dis-
cussion in Supplementary Note 2)—for example, for the problems
of predicting protein-RNA interaction®> and disease gene pre-
diction#®, as well as in social network analysis, and recommen-
dation systems for e-commerce.

The seminal work of Campillos et al.?® had shown that drug
side effects are predictive of drug targets. More recently, Wang
et al¥’ had shown that drug side effects are predictive of

therapeutic indications. Therefore, one interesting question was
whether our model’s signatures were able to capture these bio-
logical relationships. We found that drugs with similar signatures
were more likely to share a protein target and to belong to the
same anatomical, therapeutic, pharmacological and chemical
category.

The non-negative constraints in our model favour a part-based
representation®? in the signatures. Thus importantly, the side
effects of a given drug become explainable in terms of a combined
chemical perturbation on the different parts of the human phy-
siological system. This representation of drug activity makes sense
in the context of network pharmacology*®4°: the observed side
effect patterns for a given drug can be explained by a combination
of perturbations in distinct organ system networks. Figure 6
shows signature components with significant activations for
anatomically related groups of drugs and physiologically related
side effects. Specific components of the signatures are strongly
associated with specific anatomical classes. These relationships
could be useful to researchers to formulate biological hypotheses
relating drugs, side effects, molecular mechanisms and human
anatomical systems. The signatures could also be useful in other
pharmacological research, such as in the study of frequencies of
side effects produced by drug combinations.

To be used in practice, our method requires a small number of
available side effects for each drug or compound. This is usually
the case during clinical drug development or after the drug has
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Fig. 6 Summary of statistically significant signature activations. Drugs were grouped based on their main Anatomical, Therapeutic and Chemical (ATC)
classes while side effects were grouped by their System Organ Class (SOC) categories in MedDRA. Only statistically significant associations (one-tailed
Wilcoxon sum-rank test with Benjamini-Hochberg adjusted significance, P < 0.05) are shown. The size of the circle represents the significance (P value),
and the colour encodes the effect size of the association—the difference between median in the group compared to the median of all drugs (or side

effects).

entered the market. It would be important to extend our
approach to predict the frequencies of side effects from com-
pound features directly (e.g. chemical structure). This has already
been attempted for the problem of predicting the presence or
absence of drug side effects>%>1.

There are limitations and biases in public databases of drug
side effects. For instance, we observed that the reported fre-
quencies of side effects are biased towards frequent ones (Fig. 1b).
Recent studies also indicate that clinical trials are biased towards
male gender and certain ethnicity groups: 86% of clinical trial
cohorts were Caucasian dominated in 2014°2. Numerous pre-
vious works also reported divergent drug responses in subjects
with a different genetic background>3. We envision extending our
model to integrate additional metadata from clinical trials to
tailor the prediction for gender- or ethnic-specific clinical groups.

Methods
Data sets. Frequencies of drug side effects: We used the SIDER database version
4.12%25 to extract the frequencies of drug side effects. In SIDER, around 40% of the
pairs have frequency information and each side effect term is mapped to the
MedDRA vocabulary®®. We used side effects that were MedDRA preferred terms.
Frequencies of side effects were expressed in three different ways: exact values,
range of values, and frequency classes. We standardised exact values and range of
value formats into frequency classes according to the values in Supplementary
Table 1 and then assigned an integer value to each class, as follows: very rare (=1),
rare (=2), infrequent (=3), frequent (=4), and very frequent (=5). In total, our
data set contains 37,441 frequency classes that cover 759 drugs and 994 side effects.
Each drug in our data set has known monotherapy ATC code. A detailed expla-
nation of the data processing is presented in Supplementary Note 1.
Post-marketing side effects: Two test sets of post-marketing side effects were
collected. The first set was obtained from the SIDER 4.12* database, from which we
retrieved 9,387 post-market associations (labels ‘post-marketing’ in SIDER)—it

corresponds to side effects reported in the post-marketing section of the drug’s
leaflets. The second set was obtained from the OFFSIDES database34, from which
we retrieved 36,032 significant associations—it corresponds to statistically
significant post-marketing side effects reported in the AERS. Post-marketing side
effects do not have frequency classes associated with them.

Drug-protein target associations: We retrieved the known drug-target
interactions from DrugBank release 5.0.5 (2016-08-17)%. We mapped the drugs
from SIDER to DrugBank using the PubChem IDs and the mapping provided in
DrugBank. We retrieved molecular targets (section ‘targets’ of DrugBank) for 435
drugs in our data set. In total, 1,759 associations were found between the 435 drugs
and 590 unique protein targets.

Drug chemical fingerprints: We retrieved the known drug SMILES notations
from DrugBank release 5.0.5 (2016-08-17) and PubChem (by using the PubChem
IDs provided in SIDER 4.1). For 754 drugs in our data set, we could obtain a binary
fingerprint. We then computed the 2D Tanimoto chemical similarity from the
fingerprints, using the Open-Source Cheminformatics (RDKit) package in python.
We used an RDKit-specific fingerprint that is inspired by public descriptions of the
well-known Daylight fingerprint. The RDKit-specific algorithm is based on hashing
molecular subgraphs. A detailed explanation of how this is computed can be found
in the RDKit book in the documentation online. To compute the chemical
fingerprint of each drug, we used the default set of parameters: minimum path size:
1 bond, maximum path size: 7 bonds, fingerprint size: 2,048 bits, number of bits set
per hash: 2, minimum fingerprint size: 64 bits, target on-bit density 0.0.

ATC categories and route of administration. ATC codes and route of
administration of drugs were obtained from the ATC codes WHO 2018 release.
The routes of administration are defined as follows: implant, inhalation,
instillation, nasal (N), oral (O), parenteral (P), rectal (R), sublingual/buccal/
oromucosal (SL), transdermal (TD), and vaginal (V).

Matrix decomposition model. We modelled the estimation of the frequency of a
drug side effect as a linear combination of drugs and side effects activation patterns
over a set of latent representations, that we called signatures. To predict a side effect
frequency score, each of the k components in the drug signature are multiplied by
the corresponding component of the side effect signature, and then the products
are summed together. Thus the frequency score of a side effect j for a given drug i
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can be expressed as a combination of k components as follow,

k
Ry = Z Wipy; = wi - by,
=

where Wi, indicates the (i, p) element of matrix W whose row i, w;, is the signature
for drug i and Hj; indicates the (p, j) element of matrix H whose column j, h;, is the
signature for side effect j.

The objective function and decomposition algorithm. Let us denote our drug
side effect matrix for # drugs and m side effects with the matrix R € N"*™, where
R;=1 if the drug side effect pair (i, j) is very rare, R; =2 (rare), R;=3 (infre-
quent), Rij = 4 (frequent) or Rij =5 (very frequent) and Rij = 0 otherwise. We
denote the set of frequency classes with Q € {1,2,3,4, 5} and the set of zero values
with O € {0}. Our matrix decomposition model approximates the data matrix R
by the product of two low-rank matrices, as follows:

R=WH, (2)

where W € R™¥ is the matrix of drug signatures (each row contains a drug
feature vector) and H € R¥*™ is the matrix of side effect signatures (each column
contains a side effect feature vector). The rank of R is k << min(n, m), that is, the
number of components in the signatures. To learn our model in Eq. (2), we
minimise the following loss:

1
minimise £(W, H) = 2 [|M® o (R— WH)|} + T |IM© o (WH)I}  (3)

subject to non-negative constraints W, H >0,

where ||.||% is the Frobenius norm and o indicates element-wise matrix
multiplication, M?, M© € R"*™ are projection functions to discriminate between
the observed and unobserved entries in R, that is, Mj} = 1 if R; € Q or M) =0
otherwise; MY = 1 if R; € Oor MY = 0 otherwise. Our matrix decomposition
model assigns different levels of confidence associated with the data. & € [0,1] is a
model parameter that is set to account for the lower confidence on the unobserved
associations in the matrix.

To minimise Eq. (3) subject to non-negative constraints, we developed an
efficient multiplicative learning algorithm inspired by the diagonally rescaled
principle of non-negative matrix factorisation®®. The algorithm consists of
iteratively applying the following multiplicative update rules:

(RHT),
W. — W. o Ud
i ? 7 (Mo WH)HT + a(M® o WH)H™ +¢),,
4
; . (WTR),, (4)
P T i ©

(WT(M® o WH) + aWT(M® o WH) +¢),,;

Following the guidelines to implement NMF?7, a small number ¢ = 10710 was
added to the denominators in Eq. (4) to prevent division by zero, and we initialised
W and H as random dense matrices uniformly distributed in the range [0, 0.1].
Furthermore, to avoid the well-known degeneracy® associated with the invariance
WH under the transformation W — WA and H — A™'H, for a diagonal matrix A,
we normalised H at each iteration as follows:

H,.
H, — & 5
7 Tyl ®)
where h,, denotes the vector corresponding to the pth row in H.

The stopping criteria of our algorithm was based on the maximum tolerance of
the relative change in the elements of W and H. The default value was TolX < 1073,
which occurred typically in about 2,000 iterations for k = 10.

We proved that the iterative application of Eq. (4) converges to a local optimal
solution point by showing that the multiplicative learning rule satisfies the KKT
supplementary conditions of convergence (proof in Supplementary Note 3). The
algorithm implemented in Matlab R2018a is provided (see ‘Code availability’).

Cross-validation procedure and model selection. We randomly selected 10% of
the associations in R, and these were set aside for testing (held-out test set). We
then used a tenfold cross-validation procedure on the remaining 90% of the
associations for setting the model parameters k and a. To do this, we framed the
problem as simultaneously predicting the frequency classes and the presence/
absence of the associations. Therefore, we used two evaluation metrics:

(a) RMSE. To quantify the average performance of our model at predicting the
frequency class values.

(b) AUROC. Following Cami et al!l, we used AUROC to quantify the
performance of our model at predicting the presence or absence of drug side
effect associations.

The overall performance of our model in the cross-validation was quantified
using the mean RMSE and AUROC over the tenfolds. To select the model
parameters, we first chose a based on a good binary classification performance
(AUROC) while ensuring a good RMSE (see Supplementary Figs. 5 and 6). We

found that a good choice of & was 0.05. We then chose the value of k that
minimised the mean RMSE, which occurred for k =10 (Supplementary Fig. 4).

Thresholding operation by maximum likelihood estimates. For each validation
set in the tenfold cross-validation procedure, we collected the frequency classes and
their corresponding predicted scores. Then, for each of the five frequency classes,
we fitted a normal kernel smoothing function to the predicted scores and obtained
a probability density function (pdf) for each of the five classes. The pdfs built for
each frequency class defined boundaries for the classification decision by maximum
likelihood. The thresholds obtained were: 1.26, 2.43, 3.25, and 3.93. To set a
threshold for the zeros, we used the ROC curve obtained when assessing the binary
classification performance in the held-out test set. Given a specificity of 0.57, we
obtained a sensitivity of 0.97 for a threshold value of 0.426.

To summarise, given a predicted score x, a frequency class was chosen using the
following thresholds:

Zero if x <0.426
very rare if 0.426 < x<1.26
. rare if1.26 < x<2.43
Predicted frequency class (x) = { )
infrequent if2.43 < x<3.25
frequent if 3.25 < x<3.93
very frequent if x>3.93

This thresholding operation (see Fig. 2c) was applied in all the experiments that
required the prediction of the specific frequency classes.

Accuracy at predicting the specific frequency classes for single drugs. When
evaluating the performance of our method on single drugs, we removed only
associations for one drug at a time, using the following procedure: (a) we placed the
associations that were removed in a test set and then set the corresponding entries
in the matrix R used for training to zero; (b) we trained our method with all the
remaining associations in the training matrix R, with parameters k=10 and a =
0.05, and (c) we stored the predicted frequency class. Steps (a)-(c) were repeated
for each drug.

The mean accuracy of our model at predicting the frequency classes for single
drugs was then calculated by the ratio of the number of correct predicted
associations and the total number of associations. The accuracy for the exact or
neighbouring classes was calculated similarly.

The similarity between drug and side effect signatures. The similarity between
two drug or side effect signatures was calculated using the cosine similarity over the
set of latent features. That is, given two drug signatures w; € R'** and w; € Rk
(rows vectors in W), the drug signature similarity is given by the dot product of the
vectors divided by the product of the norm of each vector.
wleT
S(w,-. wj) =
[Iwil[]w; |

where ||.|| indicates the vector norm. The similarity for non-negative signatures
ranges from 0 to 1.

Drug signature similarity to capture molecular and clinical drug activity. In
our experiments, we trained our model using all the available data and used the
best solution of 10,000 independent runs of our algorithm (the solution is provided
in Supplementary Data 9 and 10). We formulated three binary classification
problems:

Drug target experiments. Drug signature similarities were used as scores to
predict the binary labels determined by drugs sharing protein targets (1: shared, 0:
otherwise; Supplementary Fig. 22). For 435 drugs (for which we could collect
protein targets from Drug Bank), 2808 drug pairs were known to share molecular
targets, whereas 91,587 were unknown.

Drug clinical activity experiment. Drug signature similarities were used as scores
to predict the binary labels determined by drugs sharing an ATC category at a
given level of the taxonomy (1: shared, 0: otherwise). We tested the performance of
the binary classification using the AUROC at each of the ATC levels. Each of the
759 drugs in our data set is annotated in all the levels of the ATC taxonomy. The
binary labels used for the assessment on each ATC category were: (anatomical)
38,711 shared vs 248,950 do not share; (therapeutic) 11,960 shared vs 275,701 do
not share; (pharmacological) 5,522 shared vs 282,139 do not share and; and
(chemical) 1,736 drug pairs shared vs 285,925 do not share.

Side effect MedDRA category experiment. Side effect signature similarities were
used as scores to predict the binary labels determined by side effects sharing a
MedDRA category at a given level of the hierarchy (1: shared, 0: otherwise). We
tested the performance of the binary classification using the AUROC. Each of the
994 side effects in our data set is annotated across three description levels of the
MedDRA terminology hierarchy. The binary labels used for the assessment on each
MedDRA category were (i) level 1 or System Organ Class: 57,076 side effect pairs
shared the same category vs 436,445 that do not, (ii) level 2 or High-Level Group
Term: 12,097 vs 481,424 and; (iii) level 3 or High-Level Term: 2312 vs 491,209.
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Reproducibility procedure. Following Alexandrov et al. 04!, we used these steps
to evaluate the reproducibility of the components of the signatures. (Step 1) Train
the model 10,000 times using all the available data in the matrix R with the
parameters k = 10 and « = 0.05. Each independent run of the algorithm gives a
solution {W”,H"},r € {1,2, ... ,10000}. (Step 2) Select the 100 solutions that
gives the smallest values of the cost function at convergence and aggregate them
into the 7 x 1000 matrix WP and the 1000 x m matrix H'™P. These aggregation
matrices now contain the signatures of 100 independent runs of our algorithm.
(Step 3) Apply a partition clustering algorithm on the rows of W™P and on the
columns of H™P using cosine distance as the metric. We used the k-means++
algorithm by setting the number of clusters to 10. The reproducibility of the
signature component was then measured by the tightness and separation of the
clusters obtained. We used the cosine similarity-based average silhouette width>® of
each cluster as a measure of reproducibility of each component in the signature.
The silhouette value ranges from —1 to +1. A value close to +1 indicates that a
component is very similar to other components in its cluster but very dissimilar to
neighbouring clusters.

Statistical analysis. One-tailed Wilcoxon sum-rank test significance was used in
the reported P values. To associate a given drug or side effect category to a given
component of the signature, we adjusted the P values using the
Benjamini-Hochberg method> to keep the overall significance level <0.01.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data availability are as follows: frequency classes of drug side effects (Supplementary
Data 1), post-marketing side effects (Supplementary Data 2), curated frequencies of
Semagacestat side effects from clinical trials I, II and III (Supplementary Data 3), ATC
code for each drug (Supplementary Data 4), MedDRA categories for each side effect
(Supplementary Data 5 and 6), and drug routes of administration (Supplementary
Data 7). The data can also be accessed at https://paccanarolab.org/drug-signatures. Any
other relevant data are available from the authors upon reasonable request.

Code availability
The code of our matrix decomposition model is provided in https://github.com/
paccanarolab/Side-effect-Frequencies.
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