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Abstract: A novel type of phosphazene containing an additive that acts both as a catalyst and as a
flame retardant for benzoxazine binders is presented in this study. The synthesis of a derivative of
hexachlorocyclotriphosphazene (HCP) and meta-toluidine was carried out in the medium of the
latter, which made it possible to achieve the complete substitution of chlorine atoms in the initial
HCP. Thermal and flammability characteristics of modified compositions were investigated. The
modifier catalyzes the process of curing and shifts the beginning of reaction from 222.0 ◦C for pure
benzoxazine to 205.9 ◦C for composition with 10 phr of modifier. The additive decreases the glass
transition temperature of compositions. Achievement of the highest category of flame resistance
(V-0 in accordance with UL-94) is ensured both by increasing the content of phenyl residues in the
composition and by the synergistic effect of phosphorus and nitrogen. A brief study of the curing
kinetics disclosed the complex nature of the reaction. An accurate two-step model is obtained using
the extended Prout–Tompkins equation for both steps.

Keywords: benzoxazines; phosphazenes; curing kinetics; flammability; flame retardant; catalysis;
m-toluidine

1. Introduction

Nowadays, it is impossible to imagine human life without polymer matrix composite
materials (PMCs). The unique combination of polymer matrix and filler works together
to provide it unique properties; the key among them are high physical and operational
characteristics, often exceeding the values of traditional materials (metals and their alloys,
wood) in a wide temperature range, with low specific gravity combined with high strength,
moisture and chemical resistance, radio transparency, excellent dielectric properties, dura-
bility, resistance to significant cyclic loads, etc. [1–3]. The abovementioned properties
allowed polymer composite materials to take their place in our daily life; PMCs are used in
automotive and shipbuilding industries, aircraft, sports, medical applications and many
other fields [4–6]. One of the main disadvantages of most polymers and many composites
based on them is their high flammability due to the organic nature of the matrix, which
limits wider application of PMCs.

The common way to reduce the flammability of polymer composites is to introduce
flame retardants, which can be divided into two groups: additive and reactive [7,8]. Addi-
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tive flame retardants are not capable of chemically binding to the polymer matrix of the
composition; therefore, either the phenomenon of exfoliation of the flame retardant or the
phase inversion binder-modifier may occur, and, as a result, deterioration of the physical,
mechanical and operational properties of products may take place. Reactive, as opposed
to additive, flame retardants have functional groups in their structure that can interact
with the reaction centers of the binder during the curing process and thereby incorporate
into the polymer matrix network. The application of these flame retardants reduces the
flammability of the material and could increase mechanical properties.

Phosphorus-containing compounds are widespread flame retardants. Phosphazene-
based retardants can be either additive or reactive. The main chain of organophosphazenes
consists of alternating phosphorus and nitrogen atoms, and at the phosphorus atom, there
are organic radicals introduced by the substitution of halogen in halogen phosphazenes.
The nature of organic substituents can vary within wide limits and determines the proper-
ties of the resultant polymer. For example, aryloxyphosphazenes, in comparison with other
organophosphorus compounds, have higher thermal stability and chemical resistance and
are known as fire retardants [8,9], characterized by the synergistic effect of phosphorus and
nitrogen [10]. The other example is hexaphenoxycyclotriphosphazene, which is used as a
highly effective flame retardant for a large number of synthetic polymers. A number of
effective flame-retarded functional epoxy resins, amine curing agents and benzoxazines
with a phosphazene core have been proposed [11–21]. Carboxyl-containing epoxyphosp-
hazenes and their use as a catalyst for the polymerization of benzoxazines have also been
reported [22].

Benzoxazine monomers, as a novel class of binders, are currently commercialized by
many leading manufacturers, such as Huntsman Advanced Materials, Kaneka Aerospace,
Gurit, etc. Due to the special molecular structure of benzoxazine and its corresponding
outstanding properties, five different types of benzoxazine binders are present in the
market for aerospace, electronic or civilian use.

The high curing temperature of benzoxazines is one of the problems that limits their
widespread application [23]. The main way to solve this problem is to use catalysts [24–33]
such as phenols [24,25], strong acids [26], carboxylic acids [27,28] and Lewis acids [29–33].
All listed compounds are effective catalysts for the homopolymerization of benzoxazines;
however, due to their high catalytic efficiency, one cannot use them in a mixture with the
most common reactive compounds, such as epoxy resins, since they cause earlier curing
of epoxy oligomers, thereby complicating the polymerization of benzoxazine. Among
other things, the use of carboxylic acids as catalysts is complicated by the process of
decarboxylation at high temperatures, which is accompanied by the release of carbon
dioxide, and, as a rule, an increase in the porosity of the composition during curing.

Base catalysts such as amines, imidazoles and organophosphorus compounds, which
exhibit a weaker catalyzing effect in comparison with acidic ones, are less applicable.
Although commercial polybezoxazines are effective flame retardants in comparison with
other polymers, they usually do not reach the UL-94 V-0 rating, so the development of
halogen-free flame retardants that are well compatible with base benzoxazine is an urgent
task. Variability in the molecular design of phosphazenes allows one to use them as a base
of new flame retardants for benzoxazines. However, the known phosphazene components
are difficult to synthesize, and, therefore, their industrial applicability may be limited.
Thus, the unique properties and widely variable molecular design of organophosphazene
allowed us to use it in our work as a base of a flame retardant and catalyst.

This paper describes the synthesis of a new halogen-free phosphorus-containing
flame retardant based on hexachlorocyclotriphosphazene and m-toluidine, its effect on the
kinetics of thermal curing and the flammability of a benzoxazine polymer. It is assumed
that in addition to low flammability, the resulting phosphazene can catalyze the thermal
curing of benzoxazines due to the presence of secondary hydrogen atoms in the m-toluidine
residue of phosphazene in its structure.
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2. Materials and Methods
2.1. Starting Materials

Hexachlorocyclotriphosphazene—a white crystalline substance with m.p. of 113 ◦C;
nuclear magnetic resonance (NMR) 31P-singlet spectrum with δP = 19.9 ppm was obtained
by the method in [34]. M-toluidine (Acros Organics, Geel, Belgium), a colorless liquid, was
distilled twice under vacuum before use, b.p. 203–204 ◦C. Solvents were purified according
to known methods, and their physical characteristics corresponded to literature data [35].

2.2. Synthesis of Hexakis-(3-methylphenylamino)cyclotriphosphazene (PN-mt)

A three-necked 500 mL round bottom flask equipped with a top-drive agitator, reflux
condenser and an inert gas supply system was charged with 25.00 g (0.072 mol) of hex-
achlorocyclotriphosphazene (HCP) and 247.25 g of m-toluidine (2.311 mol). The reaction
mixture was refluxed under intensive stirring at a temperature of 100 ◦C for 1 h; after that,
the temperature was increased to 180 ◦C and refluxed for the next 2 h. Then, the excess of
m-toluidine was distilled off using a vacuum rotary evaporator. First, the remaining dark
gray mass was repeatedly washed with 0.1 M aqueous solution of hydrochloric acid and
washed until neutral. The resulting product was dried in a vacuum until a constant mass
was achieved. The product was a gray crystalline powder. The yield was 44.02 g (80%).

2.3. Preparation of Benzoxazine Monomer Based on Bisphenol A, M-Toluidine and
Paraphormaldehyde (BA-mt)

The benzoxazine monomer BA-mt (bis(3-(m-tolyl)-3,4-dihydro-2H-1,3-benzoxazine)
was selected as the main component of the composition. It was synthesized using the
method reported in the literature [36]. In contrast to the commercially available monomer
BA-a (bis (3-phenyl-3,4-dihydro-2H-1,3-benzoxazine)), which has a glass transition temper-
ature of 173 ◦C, BA-mt is characterized by 217 ◦C for completely cured samples by mode
2 h 180 ◦C, 4 h 200 ◦C, 1 h 210 ◦C.

2.4. Composition Preparation

In order to determine the effect of the synthesized phosphazene compound on the
flammability and thermal properties of benzoxazine, the compositions presented in Table 1
were prepared and studied.

Table 1. Formulation of mixtures in parts by weight (bpw).

Formulation Number BA-mt 1, pbw PN-mt 2, pbw

1 100 0
2 100 10
3 100 20
4 100 30

1 bis(3-(m-tolyl)-3,4-dihydro-2H-1,3-benzoxazine, 2 hexakis-(3-methylphenylamino)cyclotriphosphazene.

The calculated amount of BA-mt and PN-mt was mixed on a magnetic stirrer at
120 ◦C for 10 min to achieve a uniform distribution of powdered PN-mt in the benzoxazine.
Subsequent degassing of the systems was performed at 120 ◦C for 15 min at a residual
pressure of 1.0 kPa. At the end of the degassing process, the resulting compositions either
were used as received for the curing study or were cured at 180 ◦C for 6 h for glass transition
and flammability measurements.

2.5. Measurements

The 1H, 31P and 13C NMR spectra were obtained in DMSO-d6 solutions with a Bruker
AV-600 spectrometer (Bruker Corporation, Bremen, Germany) operating at 600, 133 and
81 MHz, respectively. The signals, due to the deuterated solvents, were used as internal
references. The chemical shifts of the signals were calculated relative to the signals of
tetramethylsilane (1H, 13C) and phosphoric acid (31P), which were used as references. The
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spectra were processed with the help of the MestReNova Lab software package (version
12.0.4, MESTRELAB RESEARCH, S.L, Santiago de Compostela, Spain).

Differential scanning calorimeter DSC 204 F1 Phoenix (Netzsch, Selb, Germany) was
used for monitoring the curing kinetics in dynamic mode [37]. The temperature character-
istics of the curing and glass transition temperatures of cured samples were determined
according to ISO 11357-5:1999 [38] and ISO 11357-2:1999 [39], respectively. The heating
rate for all measurements was 10 ◦C/min. All tests were performed in the temperature
range 50–300 ◦C in a nitrogen atmosphere at a rate flow of 50 mL/min. The weight of the
samples ranged from 5 to 10 mg. For data processing, Proteus Thermal Analysis version
5.2.1. software (Netzsch, Selb, Germany) was used.

Fourier transform IR (FTIR) spectra were recorded on a Magna-IR-750 spectrometer
Nicolet FTIR (Labx, Midland, ON, Canada) Center using KBr pellets. The spectra were
processed using the Omnic software version 9.2.8.6 Thermo Fisher Scientific Inc (LabX,
Midland, ON, Canada).

An elemental analyzer for sulfur, chlorine, nitrogen and carbon Multi EA 5000
was used.

Flammability tests were carried out in accordance with UL-94 [40]; the size of the
samples was 127 mm × 12.7 mm × 2 mm.

3. Results and Discussion

One of the main disadvantages of benzoxazines that limits their use is a long and
“hard” curing mode, whose temperatures can reach 220 ◦C. To achieve this temperature,
special expensive high-temperature equipment is required in industry, which significantly
complicates and increases the cost of benzoxazine binder processing. In practice, the
maximum temperature for polymer matrix composite (PMC) molding in manufacturing is
about 180 ◦C or less.

Thus, it becomes relevant to search for the possibility to reduce the final curing
temperature of a new type of phenol-formaldehyde oligomer to a temperature of no more
than 180 ◦C with the achievement of maximum performance characteristics. That is why
PN-mt seems to be a unique and the most versatile modifier of its kind.

3.1. Synthesis and Characteristics of Hexakis-(3-methylphenylamino)cyclotriphosphazene (PN-mt)

Preparation of PN-mt was carried out according to the following scheme (Figure 1):

Figure 1. Synthesis of hexakis-(3-methylphenylamino)cyclotriphosphazene.

The obtained product was characterized by 31P, 1H and 13C NMR spectroscopy
(Figures 2–4), differential scanning calorimetry (Figure 5) and elemental analysis (Table 2).

It can be seen from the 31P NMR spectrum (Figure 2) that all the chlorine atoms
in the phosphazene cycle were completely replaced by m-toluidine. Analyzing the 1H
NMR spectrum, it can be assumed that the signal of the proton of the amine group is
superimposed on the signal of one of the protons of the aromatic ring, giving a singlet of
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double intensity. Thus, we can conventionally assume that the intensity of the signals of
the protons of the amine group is equal to 1 and, accordingly, the ratio of protons of the
P-NH group to methyl protons of m-toluidine is 1:3 as calculated. The structure of radicals
in the side chain is also confirmed by the 13C NMR spectrum, which contains signals of all
characteristic carbon atoms (Figure 4).

The melting point of PN-mt, determined by the DSC method as a peak temperature, is
239.4 ◦C and presented on the DSC curve (Figure 5). The phase transition is characterized
by a significant endothermic effect and equal to 84.8 J/g.

The results of the element analysis are consistent with theoretical calculations for the
content of elements in the resulting compound (Table 2).

Figure 2. NMR 31P spectrum of hexa-(m-toluidine)cyclotriphosphazene (PN-mt).

Figure 3. NMR 1H spectrum of PN-mt.



Polymers 2021, 13, 263 6 of 15

Figure 4. NMR 13C spectrum of PN-mt.

Figure 5. DSC curve of PN-mt melting.

Table 2. Elemental composition of PN-mt.

C, % H, % N, % Cl, % P, %

Calculated 65.36 6.27 16.33 0 12.04
Found 65.21 6.21 16.39 0 12.19

3.2. Synthesis and Characteristics of BA-mt

Preparation of BA-mt was carried out according to the following scheme (Figure 6):

Figure 6. Synthesis of BA-mt.

The synthesis was carried out in a toluene medium at the temperature of 80–90 ◦C
with a 10% excess of paraformaldehyde. The product yield was 95%.

The obtained product was characterized by 1H NMR spectroscopy (Table 3) and
differential scanning calorimetry (Figure 7, curve 1; Table 4, №1).
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Table 3. The results of 1H NMR spectroscopy of BA-mt.

Sample

Proton Chemical Shifts δH (ppm)

Oxazine Ring Amine Diphenol

CH2N CH2O CH3– CH3– CH (Ar)

BA-mt 4.56 5.30 2.30 1.57 6.62–7.29

Figure 7. DSC curves of formulations 1–4 cure.

Table 4. Characteristic temperatures of DSC curves of uncured and cured samples for formulations 1–4.

Formulation №
Uncured Samples (Figure 6) Cured Samples (Figure 7)

Tonset, ◦C Tpeak, ◦C Tend, ◦C ∆H, J/g Tg(middle), ◦C ∆Hres, J/g

1 222.0 231.9 242.4 346.2 206.5 23.87
2 205.9 220.3 238.2 268.6 164.9 3.18
3 195.8 217.0 247.4 260.9 162.3 0
4 184.8 209.9 255.7 252.0 160.1 0

The 1H NMR spectrum contains signals of the oxazine ring in the region δH = 4.56
and 5.30 ppm, as well as signals of the methyl groups of aromatic amine and bisphenol a in
the region δH = 2.30 and 1.57 ppm, respectively.

3.3. Polymerization of BA-mt in Presence of PN-mt

Polymerization of BA-mt in the presence of PN-mt was monitored by DSC. Character-
istic temperatures of curing and glass transition temperatures of the resulting compositions
are presented in Figures 7 and 8 and in Table 4.

DSC results show a significant shift of the onset of curing to the lower temperatures
when modifier is added. The catalytic effect is quite explicit. For 10 pbw (formulation 2),
this shift appears to be 16.1 ◦C; for 30 pbw (formulation 4), the apparent shift is 37.2 ◦C.
Here, we can see a decrease in the heat release during curing from 346.2 J/g for unmodified
BA-mt (formulation 1) to 252.0 J/g for 30 pbw (formulation 4). This may be due to the
possibility of a nucleophilic attack of the lone electron pair of the nitrogen atom in PN-mt
on the methylene bridge connecting the oxygen and nitrogen atoms in the benzoxazine
ring (Figure 9).
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Figure 8. DSC curves of cured formulations 1–4.

Figure 9. Proposed mechanism of benzoxazine polymerization catalyzed by PN-mt.

The degree of curing under the given conditions increases with an increase in the
concentration of PN-mt in the compositions. The presence of residual enthalpy indicates the
incomplete cure of compositions. It should be noted that an increase in the concentration
of PN-mt in the mixture, starting from 10 pbw, leads to the appearance of an endothermic
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peak in the region of 240 ◦C, corresponding to the melting point of neat PN-mt. It indicates
incomplete compatibility of the modifier with the matrix. This is one of the explanations
for the significant decrease in the glass transition temperature when more than 10 pbw
of PN-mt is added to the composition. The glass transition temperature dramatically
falls from 206.5 ◦C for unmodified composition (formulation 1) to 164.9 ◦C for 10 pbw
(formulation 2) and does not significantly differ within the modification. The difference in
Tg between formulations 2 and 4 is only 4.8 ◦C.

Another reason for the decrease in the above-described characteristic is the significant
size of the modifier molecules, which is comparable to nanoparticles with a diameter of
1–2 nm. It results in a change in the spatial regularity of the formed polybenzoxazine
network and a decrease in the number of hydrogen bonds between hydrogen atoms in
phenolic groups and nitrogen in polymerized benzoxazines.

Secondly, in contrast to the classical understanding of a catalyst, which only reduces
the activation energy of the reaction without being affected by itself, the synthesized
PN-mt could be simultaneously both a catalyst and a comonomer that participates in the
polymerization of the benzoxazine monomer BA-mt and is then embedded in a three-
dimensional structure. This effect is associated with the increased reactivity of the ortho
and para positions in the m-toluidine substituent of PN-mt, due to the presence of a methyl
substituent in the meta-position, which has an electron-donating effect. This assumption is
intended to be investigated more thoroughly in our further study.

DSC curves of cured samples could also indicate the stability of the materials. The heat
release at elevated temperatures usually corresponds to the thermal destruction. The slight
rise of the heat flow appears at the end of the runs (Figure 8). Thus, we expect materials to
be stable approximately up to 300 ◦C.

The curing process of the composition was also characterized using FTIR spectroscopy.
Figure 10 shows the FTIR spectra of the initial flame retardant PN-mt and benzoxazine
monomer BA-mt, as well as four samples of cured compositions, both without using a
flame retardant and with its addition in various ratios.

Figure 10. FTIR spectra of PN-mt (a), BA-mt monomer (b), cured BA-mt (c) and cured compositions containing 100 pbw of
BA-mt and 10 (d), 20 (e) and 30 (f) pbw of PN-mt.
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Analyzing the FTIR spectrum of the PN-mt compound, we can conclude that it
contains all characteristic signals confirming its structure: signals at 1604 and 1290 cm−1

correspond to vibrations of the secondary amino group associated with the benzene ring;
signals at 2910 and 1370 cm−1 refer to stretching and bending vibrations, respectively, of
methyl groups; signals at 3040, 1600 and 1500 cm−1 are typical for aromatic compounds.
The groups of signals responsible for oscillations of the phosphazene cycle are in the range
of 700–1200. The signal at 3370 is not entirely clear; it is probably related to the NH bond of
PN-mt.

In the FTIR spectrum of the BA-mt monomer, the signals at 948 and 1235 cm−1

correspond to the stretching vibrations of the C-O-C bond, and at 752 cm−1, to the out-
of-plane bending vibrations of Ar-H in the oxazine ring. In the infrared spectra of the
obtained polybenzoxazines, the intensities of these signals are significantly reduced, and
a broadened signal appears at 3420, which corresponds to the stretching vibrations of
phenolic hydroxyl groups linked by hydrogen bonds. It should be noted that the addition
of a fire retardant to the composition in various amounts practically does not affect the FTIR
spectrum. Thus, the data of FTIR spectroscopy do not allow us to make an unambiguous
conclusion about the participation of the ortho and para positions of PN-mt in the curing
reaction and the formation of covalent bonds between PN-mt and BA-mt. Taking into
account the presence of the residual endo-peak on the DSC curves (melting of PN-mt) of
the cured modified compositions, it can be concluded that at least part of the modifier is
not covalently incorporated into the polymer network.

3.4. Curing Kinetics

The common approach to studying curing kinetics is to monitor it by differential
scanning calorimetry (DSC), as the crosslinking reaction of thermosetting resins is an
exothermic process.

Two main strategies can be used to model the DSC results and derive kinetic laws:
model-free and model fitting methods. Model-free isoconversional methods allow us to
determine the activation energy as a function of conversion with the simple assumption
that “the reaction rate at constant extent of conversion is only a function of temperature”,
i.e., only for single-step reactions [37]. However, the curing mechanism of thermosetting
resins is usually a multi-step one. Particularly, non-negligible contribution of the molecular
diffusion might seriously hinder the kinetics of curing [41–43].

The degree of curing is supposed to be proportional to the amount of heat generated
during the process and is usually defined as:

∝ (t) =
H(t)

∆Htotal
(1)

where H(t) is the accumulative heat of reaction up to a given time t during the curing
process; ∆Htotal is the ultimate total heat released at complete cure. For an uncured system,
α = 0, whereas for a completely cured one, α = 1.

The curing rate is assumed to be proportional to the rate of heat generation dα/dt and
is calculated by the following equation:

d ∝
dt

=
1

∆Htotal

dH
dt

(2)

It is currently accepted that the rate of reaction can be defined by two functions, k(T)
and f(α):

d ∝
dt

= k(T) f (∝) (3)

where dα/dt is the reaction rate (s−1), α is the degree of conversation (dimensionless), k(T)
is the temperature-dependent rate constant, and f(α) is the reaction model.
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The temperature dependence of the reaction rate constant can be represented in the
Arrhenius form:

k(T) = A·exp
(
− Ea

RT

)
(4)

In this work, we briefly estimated changes in activation energy during curing for
formulation 2 and fitted the reaction model. The kinetic research was based on non-
isothermal DSC measurements consisting of three runs with different temperature rates:
5 ◦C/min, 10 ◦C/min and 20 ◦C/min. We used two approaches: model-free isoconversional
(Friedman method) and model fitting methods. All calculations were performed in special
software, ThermoKinetics 3.1, provided by Netzsch (Selb, Germany).

Activation energy was calculated by the Friedman method [44] consisting of plotting
the dependence (5) of the logarithmic Equation (6), where the slope of the linearized curve
provided the activation energy. The resulting dependency is represented in Figure 11.

ln
(

d ∝
dt

)
∝
− (1/T) (5)

ln
(

d ∝
dt

)
∝
= ln[A f (∝)]− Ea

RT
(6)

Figure 11. The Ea-dependency for non-isothermal curing of formulation 2 on the degree of
conversion.

Activation energy varies from 105 to 148 kJ/mol during the curing process that in-
dicates multiple-stage cure kinetics. This type of Ea-dependency could describe either
two parallel independent reactions or two competitive reactions. Presence of the peak
contributes to independent reactions. However, a constant rise of Ea is usually attributed to
competitive reactions. Furthermore, a monotonic change in the peak area that is observed
with variation of the heating rate (Table 4) is sufficient evidence of the presence of com-
petitive reactions. As for the small rise of Ea at the final stage of curing, we suppose that
it could be related to the diffusion control because this behavior is quite typical for this
process and was discussed in many works [41,45,46].

In the case of the model fitting approach, we did not obtain an accurate approximation
using single-step modeling. This fact is well correlated with the abovementioned results
of the Friedman method. Therefore, we decided to separate peaks, calculate their kinetic
parameters separately and, after that, combine them into a united two-step scheme model.
This method is well discussed by Tikhonov in his study [47].

We separated peaks in Fityk software (Institute of High Pressure Physics, Warsaw,
Poland). A typical graphic of separated peaks for formulation 2 is presented in Figure 12.
The attempt to utilize the competitive reaction scheme, predicted by isoconversional
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analysis, did not succeed. Only the usage of the consecutive reaction scheme resulted in a
quite accurate model of curing. Figure 13 shows the final model fitting for composition 2.

Figure 12. Peak separation for formulation 2 at 10 ◦C/min. Red line—original curve; yellow and
blue lines—separated peaks; black line—model (sum) of separated peaks.

Figure 13. Comparison of experimental (symbols) and calculated (full lines) DSC curves for formulation 2: (�) 20 ◦C/min,
(∆) 10 ◦C/min, (♦) 5 ◦C/min.

The most appropriate type of reaction for two steps appeared to be the extended
Prout–Tompkins model:

f (∝) = (1− ∝)n ∝m (7)

d ∝
dt

= A· exp
(
−Ea

RT

)
(1− ∝)n ∝m (8)

All parameters for the model are presented in Table 5.
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Table 5. Parameters for resulting two-step model for formulation 2.

Parameter Optimum Value

logA1 [s−1] 7.3632
E1 [kJ/mol] 80.7604

React. Ord. 1 0.6224
Exponent a1 0.5311
Log A2 [s−1] 13.2443
E2 [kJ/mol] 137.0854

React. Ord. 2 2.0102
Exponent a2 0.0938
Foll. React. 1 0.1963

Correlation coefficient 0.9993
∆H (5 ◦C/min), J/g 278.7
∆H (10 ◦C/min), J/g 268.6
∆H (20 ◦C/min), J/g 257.5

A brief kinetics study revealed the complex nature of the curing process of modified
composition 2 and proved that this process is not a single step one. The resulting kinetic
model of curing was built using a two-step scheme of consecutive reactions and extended
Prout–Tompkins model. These facts may indicate that the formation of new bonds be-
tween monomers can occur with the participation of different reaction sites both in the
aromatic rings of the diphenol and amine residues, and probably the aromatic residue in
arylaminophosphazene as well.

3.5. Flammability

To estimate the flammability of the resultant cured samples, we used the UL-94
standard.

The content of more than 10 pbw of FR-mt in the composition allows us to achieve
the V-0 flammability category of the UL-94 standard. Achievement of the highest category
of flame resistance is ensured both by increasing the content of phenyl residues in the
composition and by the synergistic effect of phosphorus and nitrogen introduced into the
mixture. The results are shown in Table 6.

Table 6. Flammability test results according to UL-94 standard.

Formulation № τ1, c τ2, c τ3, c Στ, c UL-94

1 16 19 14 49 V-1
2 5 6 9 20 V-0
3 3 5 7 15 V-0
4 1 4 5 10 V-0

4. Conclusions

From the example of the compositions based on bis(3-(m-tolyl)-3,4-dihydro-2H-1,3-
benzoxazine (BA-mt), it was found that hexakis-(3-methylphenylamino)cyclotriphosphazene
catalyzes polymerization and, at a content of 10 parts by weight or more, increases the fire
resistance rating to the UL-94 V-0 category. The addition of 10 pbw decreases the onset tem-
perature of curing from 222.0 ◦C for neat BA-mt to 205.9 ◦C. Due to this reduction, it became
possible to proceed to complete curing at temperatures up to 180 ◦C. DSC curves of cured
samples revealed the presence of some undissolved particles of PN-mt in compositions,
which could be one of the reasons for the dramatic decrease in glass transition temperature
from 206.5 ◦C (formulation 1) to 160.1 ◦C (formulation 4). However, we suppose that this
disadvantage could be managed. The study of the kinetics of the curing process revealed
signs of two competing reactions in the curing of all compositions and of the neat monomer,
which probably relate to the phenolic and amine aromatic reactive sites.
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