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Fibroblast-like synoviocytes (FLSs) are the prominent non-immune cells in synovium and play
a pivotal role in rheumatoid arthritis (RA) pathogenesis. Searching for natural compounds that
may suppress the pathological phenotypes of FLSs is important for the development of RA
treatment. Tomatidine (Td), a steroidal alkaloid derived from the solanaceae family, has been
reported to have anti-inflammatory, anti-tumor and immunomodulatory effects. However, its
effect on RA remains unknown. Here, we examined the inhibitory effect of Td on TNFα-
induced arthritic FLSs, and subsequently investigated its therapeutic effect on collagen-
induced arthritis (CIA) rats. Our results revealed that Td significantly inhibited TNFα-induced
proliferation and migration of arthritic FLSs. In addition, we found that Td treatment could
efficaciously ameliorate synovial inflammation and joint destruction of rats with CIA. Both
in vitro and in vivo studies showed that Td significantly suppressed the production of pro-
inflammatory cytokines including IL-1β, IL-6 and TNFα, and downregulated the expression of
MMP-9 and RANKL. Further molecular mechanism studies revealed that the inhibitory effect
of Td on RA might attribute to the decreased activations of MAPKs (ERK and JNK) and NF-
κB. These findings provide evidence that Td has the potential to be developed into a
complementary or alternative agent for RA therapy.
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INTRODUCTION

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disorder characterized
byinflammation of the synovium and destruction of bone tissue (Ath and Denton, 1991;
Athanasou, 1996; Danks et al., 2002). Although RA pathogenesis remains incompletely understood,
many cell types such as fibroblast-like synoviocytes (FLSs), macrophages, osteoclasts and lymphocytes
have been demonstrated to be involved (Gravallese, 2002; Ma and Pope, 2005; Skapenko et al., 2005). As
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the important effector cells in this disease, FLSs exhibit tumor-like
characteristics such as overproliferation, aggressive migration and
invasion, and apoptosis-resistance (Neidhart et al., 2003; Mor et al.,
2005; Noss and Brenner, 2008; Bartok and Firestein, 2010; Lahoti
et al., 2014). These over-activated FLSs can produce multiple pro-
inflammatory cytokines which promote the formation of pannus
and the destruction of cartilage and bone (Firestein, 2003). In
addition, the pathogenic properties of FLSs have been
demonstrated to tightly correlate with histological and
radiographic damage in RA animal models and patients (Lange
et al., 2005; Laragione et al., 2008). Therefore, FLS-targeted therapy
represents an attractive complementary approach to immune-
directed therapies in RA.

Many current drugs used for RA therapy have relatively limited
effectiveness and unwanted side effects. Therefore, botanical
medicines as alternative remedies have become increasingly
popular as they are believed to be safe, efficacious and have over
a thousand years’ history in treating patients. Furthermore, analysis
of patents on anti-RA therapies issued in China revealed that
traditional Chinese Medicine may provide substantial new
information for anti-RA drug development (Yuan et al., 2015).
Tomatidine (Td) is a natural steroidal alkaloid that isolated from
the Solanaceae plants such as tomatoes, potatoes and eggplants
(Lange et al., 2005; Laragione et al., 2008). Steroidal alkaloids are
known to be essentially nitrogen analogues of steroid saponins such
as diosgenin, which is a precursor of steroidal hormones and anti-
inflammatory steroids. Nowadays, Td has received increasing
attention for its confirmed pharmacological safety and a variety
of biologic activities, including cardioprotective, antioxidative,
anti-inflammatory, anticancer, anti-osteoporosis, and immuno-
regulatory effects, as well as its ability to inhibit muscle atrophy
(Chiu and Lin, 2008; Friedman et al., 2009; Lee et al., 2011; Shieh
et al., 2011; Yan et al., 2013; Hu et al., 2019; Jeon and Kim, 2019).
For example, Chiu and Lin found that Td effectively inhibited the
expressions of COX2 and iNOS by suppressing NF-κB and JNK
pathways in LPS-stimulated mouse macrophage cells (Chiu and
Lin, 2008). Meanwhile, Td was demonstrated to regulate the
function of the immune system through stimulating potent
antigen-specific humoral and cellular immune responses (Lee et
al., 2004). In addition, Td could effectively inhibit the proliferation
and invasion of tumor cells, and promote the cell apoptosis
(Friedman et al., 2009; Lee et al., 2011; Shieh et al., 2011). More
importantly, Hu et al. found that Td suppressed osteoclast
formation and mitigated estrogen deficiency-induced bone mass
loss (Hu et al., 2019). Given the reported pharmacological functions
of Td and the clinical and pathological features of RA, we
hypothesized that Td might represent a novel treatment for RA.
Thus, we here investigated the therapeutic effect of Td on cultured
arthritic FLSs and type Ⅱ collagen-induced arthritis (CIA) in rats,
and subsequently explored their underlying mechanisms.

MATERIALS AND METHODS

Reagents
Td (C₂₇H₄₅NO₂, purity ≥ 98%) was obtained from
MedchemExpress (Shanghai, China). Lyophilized native

chicken type Ⅱ collagen (CⅡ) was purchased from Chengdu
Herbpurify Co., Ltd. (Chengdu, Sichuan, China). Methotrexate
(MTX) was from Shanghai Sine Pharmaceutical Co., Ltd.
(Shanghai, China). Commercial kits for measurement of
alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were from Jiancheng Institute of
Biotechnology (Nanjing, Jiangsu, China). IL-1β, IL-6 and
TNFα ELISA kits were purchased from SenBeiJia Biological
Technology Co., Ltd. (Nanjing, Jiangsu, China). Dulbecco’s
modified Eagle’s medium (DMEM) was purchased from
Gibco (Gibco BRL, Grand Island, NY, United States). Fetal
bovine serum (FBS) was purchased from Invigentech
(Sydney, Australia). Recombinant tumor necrosis factor
alpha (TNFα) was purchased from Peprotech (PeproTech,
Rocky Hill, NJ, United States). MTS reagents, Triton-X 100,
DAPI solution and Freund’s complete adjuvant (CFA) were
purchased from Sigma-Aldrich (St Louis, MO, United States). 5-
Ethynyl-2ʹ-deoxyuridine (EdU) was obtained from Guangzhou
RiBo Bio Co., Ltd. (Guangzhou, Guangdong, China).
Annexin V-FITC apoptosis detection kit was from KeyGEN
Biotech Co., Ltd. (Nanjing, Jiangsu, China). TRIzol reagent was
from Invitrogen Life Technologies (Carlsbad, CA,
United States). Primary antibodies targeting phosphorylated
extracellular signal-regulated kinase 1/2 (p-ERK1/2),
phosphorylated c-Jun N-terminal kinases (p-JNK),
phosphorylated p38 (p-p38), phosphorylated inhibitor of NF-
κB (p-IκBα), total ERK, total JNK, total p38, IκBα, p65, MMP-2,
MMP-9 and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH) were purchased from CST (Cell Signaling
Technology, Inc., Beverly, MA, United States). Anti-RANKL
antibody was obtained from Proteintech (Proteintech Group,
Inc., Chicago, United States).

Isolation and Culture of Arthritic
Fibroblast-Like Synoviocytes
Arthritic FLS cells were isolated and cultured as previously
reported (Liu Z. et al., 2018). Briefly, the synovial tissues
were dissected from the knees of the vehicle-treated CIA rats,
minced and incubated with 0.25% trypsase and 0.4%
collagenase. Arthritic FLS cells were collected and cultured
in DMEM supplemented with 10% FBS, 100 U·mL−1

penicillin and 100 μg·mL−1 streptomycin at 37°C in 5% CO2.
Cells from passages three to nine were used for all in vitro
experiments.

Cell Viability Assay
Arthritic FLS cells were seeded into 96-well plates and
cultured for 48 h with complete DMEM containing varying
concentrations of Td (0, 2.5, 5, 10, 20, 40, 80 μM). MTS/PMS
mixture was added and cells were incubated for another 4 h.
The absorbance at 490 nm was measured using a microplate
reader (Model 680, BioRAD, Hercules, CA, United States).
The effect of Td on cell viability was expressed as percent cell
viability with vehicle treated control cells set at 100%.
GraphPad Prism (version 5.0c; San Diego, CA) was used to
calculate the half maximal inhibitory concentration (IC50).
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Ethynyl-2ʹ-deoxyuridine Incorporation
Assay
Arthritic FLS cells were incubated with Td (5 μM) for 6 h and
then stimulated with or without TNFα (50 ng·mL−1) for 24 h.
EdU (10 μM) was added to measure the newly synthesized DNA
and Hoechst 33342 was used to counterstain cell nuclei. The cell
proliferation rate was calculated as the proportion of nucleated
cells incorporating EdU in five high-power fields per well.

Wound-Healing Assay
Wound-healing assay was carried out as our previous
descriptions (Liu et al., 2018b; Qiu et al., 2018). In brief,
arthritic FLSs were seeded into 12-well plates and cultured to
80% confluency. A linear scratch was created using a sterile 200 ul
pipette tip. After washing the suspended cell debris with PBS,
arthritic FLSs were treated with different concentrations of Td (0,
2.5, 5 and 10 μM) for 1 h and then stimulated with TNFα
(50 ng·mL−1) for 24 h. The cell migration area was measured
by comparing the remaining cell-free area in the identical fields
using Image J software (National Institutes of Health, Bethesda,
MD, United States).

Apoptosis Assay
Arthritic FLS cells were seeded into 6-well plates and incubated
with varying concentrations of Td (0, 2.5, 5 and 10 μM) for 24 h.
Cells were then harvested for staining with annexin V and
propidium iodide (PI) solution. The cells were detected by a
flow cytometer (Beckman Coulter, CA, United States) and the
apoptotic cell percentage was analyzed using Cell Quest Software
(FACScan; Becton Dickinson, Franklin Lakes, NJ, United States).

Cytokine and MMP Analysis in Cultured
Arthritic Fibroblast-Like Synoviocytes
Arthritic FLS cells were incubated with varying concentrations of Td
(0, 2.5, 5 and 10 μM) for 1 h and then stimulated with TNFα
(50 ng·mL−1) for 24 h. The cells were harvested for real-time
polymerase chain reaction (PCR) assay or Western blot analysis.
The culture supernatants were collected for ELISA assay.

For real-time PCR assay, the total RNA was extracted using
TRIzol reagent and subjected to cDNA synthesis according to the
manufacturer’s instructions. Real-time PCRwas performed using a
SYBR Green PCR Kit (Vazyme Biotech) and run in Mastercycler
ep realplex two systems (Eppendorf, Hamburg, Germany). The
primer pairs for IL-1β, IL-6, TNFα,MMP-2,MMP-9, RANKL and
β-actin were used as the previous descriptions (Ueland et al., 2005;
Liu et al., 2018b). The expression of each target gene was
normalized to the transcription level of β-actin gene.

For Western blot assay, the cells were lysed and the protein
levels of MMP-2, MMP-9 and RANKL were examined by
Western blot as described below.

For ELISA assay, the culture supernatants were centrifuged
at 2000 rpm for 20 min to remove the particulate matter. The
pro-inflammatory cytokines IL-1β, IL-6 and TNFα were
determined using cytokine-specific ELISA kits according to
the manufacturer’s instructions.

Collagen-Induced Arthritis
A total of 30 female Wistar rats (170–180 g, about 6–8 weeks)
were purchased from Beijing Vital River Laboratory Animal
Technology Co., Ltd. (Beijing, China). All of the rats were
housed under specific pathogen-free (SPF) conditions (22°C,
12 h/12 h light/dark, 50–55% humidity) and given free access
to food and water. All the animal experiments were approved by
the Experimental Committee of Nanjing Normal University
(#2020065, approved date July 15, 2020).

The CIAmodel was induced as previously described (Liu et al.,
2018a; Liu et al., 2018b; Qiu et al., 2018). Briefly, the rats were
intradermally injected with 1 mg native chicken CII emulsified in
Freund’s complete adjuvant. Seven days later, the rats were
subcutaneously boosted with half the amount of CII emulsified
in Freund’s incomplete adjuvant. The normal control rats were
immunized with saline (n � 6). All the immunized rats developed
CIA (clinical score ≥2) after a mean (±SD) interval of 14 ± 1 days.
Rats with CIA were randomly divided into four groups as two Td-
treated groups, MTX-treated group and vehicle-treated group
(n � 6 per group). The MTX-treated group was administrated
with MTX (3 mg·kg−1 body weight) every 3 days (according to
clinical usage). The Td-treated groups were intraperitoneally
injected with different doses of Td (5 and 15 mg·kg−1 body
weight, respectively) and the vehicle-treated group was
injected with 0.9% saline every day for a 14-day period. The
doses of Td were determined according to the previous reports
(Fujiwara et al., 2012; Dyle et al., 2014; Hu et al., 2019) with
modification from our preliminary experiments. Clinical arthritic
scores were evaluated using a scoring system of 0–4 for each limb:
0 � no swelling; 1 � swelling and/or redness of one to two
interphalangeal joints; 2 � involvement of three to four
interphalangeal joints or one larger joint; 3 � more than four
joints red/swollen; 4 � severe arthritis of an entire paw. The
reported arthritis score for each rat was the sum of the two hind
paws. The volumes of the hind paws were measured using a
volume displacement plethysmometer (YLS-7A, Facility Station
of Shandong Academy of Medical Science, Shandong, China).
Arthritis scoring and paw volume measurements were performed
by two independent observers in a blinded manner. After a 14-
days treatment, serum was collected for measurement of pro-
inflammatory cytokines, ALT and AST. Joint tissues were
harvested for radiographic and histopathological evaluation,
cytokine and MMP analysis, and signaling pathway detection.
In addition, we weighed the main organs including heart, liver,
kidney, spleen and thymus, and calculated the organ coefficients,
as our previous report (Liu et al., 2013). Also, the change in body
weight of each individual CIA rat was calculated as the following
formula: change in body weight � [(body weight of day 14
arthritis/body weight of day 1 arthritis)−1] *100%.

Radiographic Evaluation
The left hind paws were separated, fixed and exposed under
X-ray (MX-20; Faxitron X-ray Corporation, Wheeling, IL,
United States). Bone destruction was evaluated using a scoring
system of 0–3, as the previous report (Cai et al., 2007). The
radiological evaluation was carried out by two independent
observers in a blinded manner.
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Histopathological Assessment
After X-ray examination, the left ankle joints were decalcified in
12% ethylenediaminetetraacetic acid (EDTA) and then embedded
in paraffin. Sections with a thickness of 4 μm were stained with
haematoxylin and eosin (H&E). Pathological changes in
inflammation, pannus formation, synovial hyperplasia, cartilage
destruction and bone erosion were scored using a semi-
quantitative scale, as our previous descriptions (Liu et al.,
2018a; Liu et al., 2018b; Qiu et al., 2018). Histopathological
analysis was recorded by two independent observers in a
blinded manner.

Cytokine and MMP Analysis in
Collagen-Induced Arthritis Rats
Serum was collected by centrifugation (5000 rpm for 15 min) and
stored at −80°C until analysis. The levels of IL-1β, IL-6 and TNFα
were measured using ELISA kits according to the standard
method. In addition, serum ALT and AST were detected using
commercial kits following the protocol of manufacturer’s
instructions.

The right hind paws of rats were removed and homogenized,
as our previous report (Liu et al., 2018a; Liu et al., 2018b; Qiu
et al., 2018). The homogenates were used to detect the protein
levels of IL-1β, IL-6, TNFα and MMP-9, RANKL by ELISA and
Western blot, respectively. In addition, the phosphorylation
changes of MAPKs (ERK, JNK and p38) and the protein level
of IκBα were examined by Western blot.

Western Blot Analysis
Arthritic cells or joint tissues were homogenized in
radioimmunoprecipitation assay buffer and the supernatants
containing proteins were collected by centrifugation. Protein
was separated by sodium dodecyl sulphate–polyacrylamide
gelelectrophoresis (SDS-PAGE) and then transferred to
nitrocellulose membranes. The membranes were incubated with
various kinds of primary antibodies including p-JNK, JNK, p-ERK,
ERK, p-p38, p38, p-IκBα, IκBα, MMP-2, MMP-9, RANKL and
GAPDH. The immunoreactivity was visualized using enhanced
chemiluminescence reagents (Labgic Technology) according to the
manufacturer’s instructions. Three independent experiments were
performed and the intensity of each band was analyzed using
ImageJ software.

Confocal Microscopy for NF-κB
Localization
Arthritic FLS cells were seeded on sterile cover slips in a 24-well
plate and cultured overnight at 37°C. Following serum starvation,
the cells were treated with Td (10 μM) for 4 h, and then stimulated
with TNFα (50 ng·mL−1) for 30 min. After washing with PBS, the
cells were fixed by methanol and permeabilized by 0.5% Triton-X
100. The arthritic FLS cells were blocked with 10% goat serum and
then incubated with NF-κB p65 antibody. DAPI solution were
used to stain cell nuclear. The nuclear translocation of p65 was
imaged using a Nikon A1R resonance scanning confocal
microscope with spectral detector (Nikon, Tokyo, Japan).

Statistical Analysis
All data were expressed as the mean ± SD of results obtained from
three or more experiments. Multiple comparisons were
performed using one-way analysis of variance (ANOVA),
followed by Tukey’s post hoc analysis. Comparisons between
two groups were made using Student’s t-test. P < 0.05 was
considered statistically significant.

RESULTS

Tomatidine Suppressed TNFα-Induced
Proliferation and Migration of Arthritic FLSs
Arthritic FLSs are themain effector cells of RA. Inhibiting the over-
activated properties of FLSs has become a potential approach to
RA therapies. In this study, we firstly used an MTS assay to
quantify the potential cytotoxicity of Td on FLSs. As shown in
Figure 1B, up to 20 μM for 2 days treatment, arthritic FLSs did not
show a significant decline in cell viability. And the calculated IC50

was 34.31 μM (Figure 1C). In the subsequent in vitro experiments,
concentrations of Td used did not exceed 10 μM. We here
investigated the effects of Td on TNFα-induced proliferation,
migration and apoptosis in arthritic FLSs. The EdU assay
showed that TNFα stimulation could dramatically enhance
FLS’s proliferative potential, however, this enhancement was
significantly suppressed by 5 μMTd (Figures 1D,E). The
wound healing assay demonstrated that Td at doses of
2.5–10 μM could significantly and dose-dependently inhibit the
migration rate of arthritic FLSs (Figures 1F,G). Since Td was able
to induce apoptosis in several tumor cells (Song et al., 2018), we
analyzed the apoptosis-inducing effect of Td on arthritic FLSs. As
shown in Figure 1H, the given doses of Td had little effect on the
apoptotic rate of arthritic FLSs, suggesting that the suppression of
Td on proliferation and migration was not due to its apoptosis-
inducing action.

Tomatidine Decreased the Production of
Cytokines and MMP-9 in TNFα-Stimulated
Arthritic FLSs
It is well known that RA is an immune-driven inflammation
disease and manifests as cartilage and bone erosion occurs the
later stage of the disease. Efforts should be made to inhibit the
expressions of pro-inflammatory cytokines as well as genes
involved cartilage and bone destruction in RA treatment. Our
studies revealed that TNFα stimulation could dramatically
upregulate the mRNA levels of pro-inflammatory cytokines
including IL-1β, IL-6 and TNFα. However, these
upregulations were significantly inhibited by Td treatment
(Figure 2A). Consistent with the real-time PCR data, ELISA
assay showed that the protein levels of IL-1β, IL-6 and TNFα
were also decreased by Td (Figure 2B), which further confirmed
the anti-inflammatory action of Td. Rheumatoid FLSs
contribute to the degradation of connective tissue by
secreting substantial amounts of MMPs, which results in the
breakdown of cartilage destruction. In this study, the data of
real-time PCR andWestern blot both demonstrated that Td had

Frontiers in Pharmacology | www.frontiersin.org August 2021 | Volume 12 | Article 6707074

Yu et al. Inhibition of Td on RA

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


FIGURE 1 | Td attenuated TNFα-induced proliferation and migration of arthritic FLS in vitro. (A) The chemical structure of Td. (B,C) The viability of Td-treated
arthritic FLSs was quantified using an MTS assay and the IC50 was calculated. (D,E) The EdU assay showed that Td (5 μM) significantly inhibited TNFα-induced
proliferation of arthritic FLSs. ###P < 0.001 versus TNFα-untreated, Td-untreated cells; ***P < 0.001 versus TNFα-treated, Td-untreated cells. (F,G) Td dose-dependently
reduced TNFα-induced migration of arthritic FLSs. Serum-starved cells were treated with various doses of Td (0, 2.5, 5 and 10 μM) for 1 h and then incubated with
TNFα (50 ng·mL−1) for 24 h. The cell migration rate was measured by a wound-healing assay. ###P < 0.001 versus TNFα-untreated, Td-untreated cells; **P < 0.01 and
***P < 0.001 versus TNFα-treated, Td-untreated cells. (H) After treating with varying doses of Td (0, 2.5, 5, and 10 µM) for 24 h, the arthritic FLSs were stained with
Annexin V-FITC and propidium iodide (PI). Flow cytometry was used to detect the percentage of apoptosis cells within each population.
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FIGURE 2 | Td decreased the production of proinflammatory cytokines, RANKL and MMP-9 in TNFα-induced arthritic FLSs. Arthritic FLSs were treated with
various doses of Td (0, 2.5, 5 and 10 μM) for 1 h and then incubated with TNFα (50 ng·mL−1) for 24 h. The cells were harvested for real-time polymerase chain reaction
(PCR) assay or Western blot analysis. The culture supernatants were collected for ELISA assay. (A) The total RNA was extracted and real-time PCR was performed to
measure the transcripts of IL-1β, IL-6, TNFα, MMP-2, MMP-9 and RANKL. The mRNA levels of these genes were normalized to β-actin and represented as fold
change over the TNFα-untreated, Td-untreated cells. n � 3, ###P < 0.001 versus TNFα-untreated, Td-untreated cells; *P < 0.05 and ***P < 0.001 versus TNFα-treated,
Td-untreated cells. (B) The culture supernatants were collected and ELISA was performed to detect the protein levels of IL-1β, IL-6, TNFα. n � 3, ###P < 0.001 versus
TNFα-untreated, Td-untreated cells; *P < 0.05, **P < 0.01 and ***P < 0.001 versus TNFα-treated, Td-untreated cells. (C) Western blot was performed to examine the
protein expressions of MMP-2, MMP-9 and RANKL. Relative expression was determined by densitometric analysis using ImageJ software. n � 3, ###P < 0.001 versus
TNFα-untreated, Td-untreated cells; *P < 0.05 and ***P < 0.001 versus TNFα-treated, Td-untreated cells.
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no obvious effect on the expression of MMP-2 but distinctively
inhibited MMP-9 production (Figures 2A,C). RANKL has been
regarded as the strongest inducer in osteoclast differentiation
and activity (Yasuda et al., 1998; Kobayashi et al., 2000; Liu et al.,
2018a). In our study, RANKL was significantly suppressed by Td
at both the mRNA and protein levels (Figures 2A,C), indicating
that Td might play an important protective role in bone
destruction.

Tomatidine Attenuated the Severity of
Arthritis in CIA Rats
To assess the anti-arthritic effect of Td, a CIA model in Wistar
rats was used. When the CIA model was firmly established
(clinical score ≥2), Td with different doses or vehicle was
intraperitoneally administrated once a day and continued for
14 days. As shown in Figure 3A, arthritis symptoms such as

swelling and erythema were obviously observed in the vehicle-
treated CIA rats, while Td or MTX treatment significantly
attenuated the severity of the disease. Compared to MTX or
5 mg·kg−1 of Td which significantly suppressed the development
of CIA, 15 mg·kg−1 of Td showed a stronger protective action as
assessed by clinical score and paw swelling (Figures 3B,C).

Tomatidine Suppressed Synovial
Inflammation and Bone Destruction in CIA
Rats
To further confirm the therapeutic effect of Td, radiographic and
histopathological assessments were performed on the rat hind
paws. The X-ray images showed that the typical RA changes, such
as joint destruction and joint space narrowing, appeared in the
vehicle-treated CIA rats without exception (Figure 3D).
However, these destructions were significantly improved in

FIGURE 3 | Td significantly suppressed synovial inflammation and bone destruction in CIA rats. (A) Representative photographs of the hind paws of CIA rats
obtained from different groups. Clinical score (B) and hind paw volume (C) were inhibited by Td or MTX. n � 6, ###P < 0.001 versus the normal control rats; *P < 0.05,
**P < 0.01 and ***P < 0.001 versus the vehicle-treated CIA rats. (D) Representative radiographs of the hind paws of CIA rats obtained from different groups. (E)
Radiological scores were calculated as described in Materials and Methods section. n � 6, *P < 0.05 and ***P < 0.001.
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MTX- or Td-treated groups. Furthermore, this improvement was
more obvious in the high-dose Td group (Figure 3E). In line with
the data of radiographic scoring and the clinical scoring, H&E
staining and histopathological assessment showed that Td
significantly attenuated the pathological characteristics of CIA
rats including inflammatory cell infiltration, synovial hyperplasia,
pannus formation, cartilage erosion, and bone erosion, which
further demonstrated the inhibitory effect of Td on RA
(Figures 4A,B).

To evaluate the potential adverse effect of Td on CIA rats, a
preliminary study was carried out to analyze the weight loss,
organ indexes and serum markers of liver injury (ALT and AST).
As shown in Table 1, compared to the normal control, the

vehicle-treated CIA rats showed a significant weight loss.
However, this weight loss was significantly suppressed by Td
treatment. Except that the kidney index was decreased by Td, the
other organ indexes as well as serum ALT and AST have no
significant differences between the Td-treated groups and the
vehicle-treated CIA group, further supporting that the given
doses of Td used in this study had no significant side effects.

Tomatidine Decreased Synthesis of
Cytokines and MMP-9 in CIA Rats
We have demonstrated that, in primary arthritic FLSs, Td
could inhibit the expressions of multiple pro-inflammatory

FIGURE 4 | Effects of Td on histologic changes in CIA rats. (A) Representative H&E images of ankle joints obtained from different groups. (B) Histological scores
were calculated as described inMaterials andMethods section. n � 6, *P < 0.05, **P < 0.01 and ***P < 0.001. B, bone; C, cartilage; J, joint space; P, pannus; S, synovium.
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cytokines. To further confirm the in vitro results, serum and
joint tissues of each group were collected and the protein
expressions of IL-1β, IL-6 and TNFα were examined using
ELISA. As shown in Figures 5A,B, the local and systemic
levels of IL-1β, IL-6 and TNFα in the Td-treated groups were

much lower than those in the vehicle-treated group. In addition,
compared with the vehicle-treated rats, those treated with
Td had significantly decreased production of MMP-9 and
RANKL (Figure 5C), which further confirmed the data from
arthritic FLSs.

TABLE 1 | Effects of Td on organ indexes and serum ALT and AST in rats with collagen-induced arthritis.

Parameters Control Vehicle MTX (3 mg·kg−1) Td (5 mg·kg−1) Td (15 mg·kg−1)

Body weight gain (%) 27.29 ± 5.98 −5.11 ± 1.35### 7.86 ± 2.47*** 7.72 ± 2.44*** 12.68 ± 3.66***

Index of heart (%) 0.34 ± 0.02 0.42 ± 0.03### 0.41 ± 0.05 0.37 ± 0.04 0.40 ± 0.01
Index of liver (%) 3.82 ± 0.25 4.76 ± 0.53## 3.88 ± 0.32** 4.38 ± 0.25 4.20 ± 0.55
Index of kidney (%) 0.39 ± 0.03 0.54 ± 0.06### 0.49 ± 0.04 0.44 ± 0.04*** 0.45 ± 0.04***

Index of spleen (%) 0.25 ± 0.02 0.41 ± 0.06### 0.32 ± 0.05 0.37 ± 0.07 0.32 ± 0.06
Index of thymus (%) 0.26 ± 0.04 0.27 ± 0.06 0.23 ± 0.05 0.22 ± 0.06 0.29 ± 0.05
AST (U/L) 25.78 ± 5.81 23.90 ± 2.62 24.31 ± 2.00 24.62 ± 1.73 25.46 ± 0.92
ALT (U/L) 26.90 ± 0.48 27.72 ± 2.60 26.13 ± 0.48 25.38 ± 1.57 25.12 ± 1.65

Rats were intraperitoneally injected with Td (5 and 15 mg·kg−1) or 0.9% saline daily for up to 14 days. The MTX-treated group was intraperitoneally injected with MTX (3 mg·kg−1) every
3 days according to clinical usage. Data were expressed asmean ±SD; n � 6, ##P < 0.01 and ###P < 0.001 versus the normal control (age-matched rats); **P < 0.01 and ***P <0.001 versus
the vehicle-treated CIA rats. ALT, alanine aminotransferase; AST, aspartate aminotransferase.

FIGURE 5 | Td decreased synthesis of proinflammatory cytokines, MMP-9 and RANKL in CIA rats. (A,B) ELISA was performed to measure the protein levels of IL-
1β, IL-6 and TNFα in serum and joint tissues of rats. n � 6, ###P < 0.001 versus the normal control rats; *P < 0.01, **P < 0.05 and ***P < 0.001 versus the vehicle-treated
group. (C) Western blot was performed to examine the protein expression of MMP-9 and RANKL in joint tissues of rats. Relative expression was determined by
densitometric analysis using ImageJ software. n � 6, ###P < 0.001 versus the normal control rats; **P < 0.01 and ***P < 0.001 versus the vehicle-treated group.
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FIGURE 6 | Td suppressed TNFα-induced MAPKs and NF-κB activations. (A) Arthritic FLSs were treated with or without Td (10 μM) for 4 h, and then incubated
with TNFα (50 ng·mL−1) for 0, 5, 10, 20, 30 and 60 mins. Western blot was probed for p-ERK1/2, total ERK1/2, p-JNK1/2, total JNK1/2, p-p38, total p38, p-IκBα, IκBα
and GAPDH. (B) The ratios of p-ERK/ERK, p-JNK/JNK, p-p38/p38, p-IκBα/GAPDH and IκBα/GAPDH were analyzed using ImageJ software. *P < 0.05, **P < 0.01 and
***P < 0.001 versus TNFα-treated, Td-untreated cells. (C) Arthritic FLSs were seeded at a density of 2 × 104/well in 24-well plates and cultured overnight. Following
pre-treatment with or without Td (10 μM) for 4 h, and the cells were incubated with TNFα (50 ng·mL−1) for 30 min. The localization of p65 was fixed, stained, and
visualized by immunofluorescence analysis. (D) The right hind paws were collected and joint tissue homogenates were used to measure the protein levels and
phosphorylations of MAPKmembers (ERK, JNK and p38). Additionally, the protein level of IκBαwas also detected. Relative expression was determined by densitometric
analysis using ImageJ software. n � 6, ##P < 0.01 and ###P < 0.001 versus the normal control rats; **P < 0.01 and ***P < 0.001 versus the vehicle-treated group.
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Tomatidine Inhibited TNFα-Induced MAPKs
(ERK and JNK) and NF-κB Activations
To reveal the mechanisms through which Td plays an
inhibitory action on CIA model and arthritic FLS cells, we
used immunoblotting to examine the activations of MAPKs
and NF-κB, which play vital roles in RA pathogenesis. In
cultured primary arthritic FLSs, TNFα stimulation could
rapidly increase the phosphorylation levels of the MAPK
family members (ERK, JNK and p38) (Figures 6A,B). Td
treatment significantly suppressed TNFα-induced
phosphorylations of ERK and JNK but without effect on p38
(Figures 6A,B). In addition, TNFα stimulation initiated
phosphorylation and degradation of IκBα. When the cells
were treated with Td (10 μM), IκBα phosphorylation and
degradation were both significantly suppressed (Figures
6A,B). It is well known that IκB degradation can liberate
NF-κB p65 protein into the nucleus and trigger its
downstream target gene expression (Makarov, 2001). Thus,
we used immunofluorescence microscopy to detect the effect of
Td on p65 nuclear translocation. As shown in Figure 6C, TNFα
incubation for 30 min clearly promoted NF-κB p65
translocation from the cytoplasm to the nuclei. However,
this translocation process was substantially blocked when
the cell was treated with 10 μM Td, as evidenced by the
cytoplasmic retention of p65 proteins (Figure 6C).

To confirm the in vitro results, we isolated the protein
from the joint tissues of each group and examined
the activations of MAPKs and NF-κB using Western blot.
As expected, Td had no obvious influence on p38
phosphorylation. However Td significantly decreased the
phosphorylation levels of ERK and JNK compared with
the vehicle-treated group (Figure 6D). Additionally, the
degradation of IκBα was also suppressed by high-dose Td
treatment (Figure 6D).

DISCUSSION

Td, a steroidal alkaloid derived from the solanaceae family,
has been reported to possess antioxidative, anti-
inflammatory, anti-tumor, immunomodulatory and anti-
osteoclastic properties (Lee et al., 2004; Chiu and Lin, 2008;
Yan et al., 2013; Jeon and Kim, 2019). Based on the
evidence, we reasoned that Td might exert a protective role
in RA development. Indeed, this study demonstrated that
Td could suppress synovial inflammatory and bone
destruction through inhibiting the pathogenic behaviors of
arthritic FLSs.

As the prominent cell type in synovium, FLSs play an
indispensable role in establishing the complex three-
dimensional synovial lining architecture. In inflamed RA
synovium, FLS cells acquire and sustain uniquely aggressive
properties including increasing proliferative and invasive
capacity, escaping contacting inhibition and resisting
apoptosis (Neidhart et al., 2003; Lahoti et al., 2014). These
over-activated FLSs can autonomously drive and maintain

joint inflammation through secretion of multiple pro-
inflammatory mediators, directly invade and destroy articular
cartilage through producing matrix metalloproteinases
(MMPs), and promote bone erosion through synthesis of
osteoclast differentiation factor RANKL (Takayanagi et al.,
2000; Kim et al., 2009). Hence, inhibiting the pathogenic
properties of FLSs may be a promising strategy for RA
treatment. In this study, the in vitro and in vivo experiments
provided rigorous demonstrations that Td could attenuate FLS’s
destructive phenotypes. The EdU assay showed that Td
significantly inhibited the proliferative potential of primary
arthritic FLSs. In line with the in vitro data, the
histopathological results showed that both low dose and
high dose of Td could significantly suppress synovial
hyperplasia in CIA rats. In addition, Td could dose-
dependently reduce the migration rate of arthritic FLSs. The
histopathological scores also demonstrated that the pannus
formation in CIA rats was significantly suppressed by Td.
MMPs, especially the members of MMP-2 and MMP-9, are
well known to exert a critical role in ECM breakdown and
tissues degradation (Gruber et al., 1996; Tchetverikov et al.,
2004). MMP-2 is constitutively expressed in an inactive form
in various cell types without being affected by pro-inflammatory
mediators (Konttinen et al., 1999). However, MMP-9 is
inducible by inflammatory cytokines, indicating a close
relationship with synovial inflammation (Giannelli et al.,
2004). In this study, Td had little effect on the production of
MMP-2, however, it significantly suppressed synthesis of MMP-
9. This finding was consistent with our in vivo results,
which showed a protective effect of Td on cartilage erosion.
In addition to MMP-9, Td also inhibited the expressions of IL-
1β, IL-6 and TNFα at both the mRNA and protein
levels, indicating that Td could suppress synovial
inflammation. Indeed, the in vivo data showed that Td
significantly attenuated inflammatory cell infiltration and
inflammation response. Notably, RANKL, an essential
inducer of osteoclastogenesis, was significantly down-
regulated by Td. Consistent with this result, the radiographic
evaluation and the histopathological analysis both verified
that Td at the dosages of 5 mg·kg−1 and 15 mg·kg−1
effectively protected against bone destruction in CIA rats.
The previous study reported that Td could directly inhibited
osteoclast formation through modulating multiple TRAF6-
mediated pathways (Hu et al., 2019). Therefore, we
speculated that Td’s anti-bone erosive action might attribute
to its direct inhibition on osteoclastogenesis, and an indirect
inhibitory effect through decreasing RANKL expression in
arthritic FLSs.

Having demonstrated that Td exerted an inhibitory action
on CIA rats and arthritic FLSs, we further analyzed the
possibly involved molecular mechanisms. MAPKs are well
known to play essential roles in regulating multiple
cellular events such as cell migration, proliferation and
secretion of proinflammatory cytokines (Herlaar and
Brown, 1999; Han and Sun, 2007; Bogoyevitch et al., 2010).
In the over-activated RA FLSs, the three MAPK kinases
(ERK, JNK and p38) showed significantly up-regulated
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phosphorylation and activation. Therefore, the blockage of
their activations may offer promising benefits to RA
treatment (Thompson and Lyons, 2005; Senolt et al., 2009).
In arthritic FLSs, we found that Td had little effect on the
phosphorylation of p38 but significantly attenuated TNFa-
induced phosphorylation of ERK and JNK. A similar result
was observed in the CIA rat model, which further confirmed
the inhibition of Td on ERK and JNK pathways. Besides,
Td also suppressed the activation of NF-κB, as evidenced
by the downregulations of IκBα phosphorylation and
degradation, and thereby inhibition of p65 nuclear
translocation. These results were further demonstrated by
the real-time PCR data that Td significantly inhibited the
transcripts of NF-κB target genes including IL-1β, IL-6,
TNFα, MMP-9 and RANKL. Taken together, these data
indicated that Td might play an inhibitory action on RA via
multiple targets (Figure 7), and further studies are needed to
clarify its direct binding sites.

In summary, we here demonstrated for the first time that Td
could inhibit the pathological properties of arthritic FLSs
in vitro and protect against CIA in vivo. This inhibitory
effect of Td on RA might attribute to the decreased
activations of MAPKs (ERK and JNK) and NF-κB. Td has
the potential to become a complementary or alternative
medicine for RA therapy.
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FIGURE 7 | Schematic summarizing of the mechanism by which Td relieved the destructive behaviors of FLSs and prevented the development of CIA. In TNFα-
stimulated FLSs and CIA rat model, MAPK and NF-κB signaling pathways were activated. Td treatment significantly inhibited phosphorylations of ERK and JNK. Also,
NF-κB activation was suppressed via decreasing IκBα phosphorylation and degradation, and thereby inhibiting the nuclear translocation of the p65 subunit of NF-κB.
Accordingly, NF-κB target genes including IL-1β, IL-6, TNFα, MMP-9 and RANKL were downregulated.
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