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Patients with diabetes have severe vascular complications, such as diabetic

nephropathy, diabetic retinopathy, cardiovascular disease, and neuropathy.

Devastating vascular complications lead to increased mortality, blindness,

kidney failure, and decreased overall quality of life in people with type

2 diabetes (T2D). Glycolipid metabolism disorder plays a vital role in the

vascular complications of T2D. However, the specific mechanism of action

remains to be elucidated. In T2D patients, vascular damage begins to develop

before insulin resistance and clinical diagnosis. Endothelial dysregulation is a

significant cause of vascular complications and the early event of vascular injury.

Hyperglycemia and hyperlipidemia can trigger inflammation and oxidative

stress, which impair endothelial function. Furthermore, during the

pathogenesis of T2D, epigenetic modifications are aberrant and activate

various biological processes, resulting in endothelial dysregulation. In the

present review, we provide an overview and discussion of the roles of

hyperglycemia- and hyperlipidemia-induced endothelial dysfunction,

inflammatory response, oxidative stress, and epigenetic modification in the

pathogenesis of T2D. Understanding the connections of glucotoxicity and

lipotoxicity with vascular injury may reveal a novel potential therapeutic

target for diabetic vascular complications.
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1 Introduction

Diabetes mellitus (DM) is a heterogeneous disease with multiple etiologies. Diabetes is

more common in the middle-aged and elderly populations. However, the age of diabetes

onset tends to be younger because of excess nutrition and lack of exercise. Currently,

approximately 463 million people have diabetes worldwide (Ogurtsova et al., 2017).

Diabetes is generally divided into type 1 diabetes (T1D) and type 2 diabetes (T2D)

according to the function of human pancreatic islets, with T2D accounting for most cases

(Beckman and Creager, 2016; Schwab et al., 2021; Chen et al., 2022). Insulin resistance is a

significant feature of T2D. Unhealthy diet, obesity, and physical inactivity increase the risk
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of T2D (Teodoro et al., 2018; Georgakis et al., 2021). The T2D

phenotype includes the inability to metabolize glucose in blood

vessels, resulting in high glucose (HG) contents in blood vessels.

Excessive lipid accumulation is associated with glucose

intolerance (Nosadini and Tonolo, 2011). Dyslipidemia is

another indicator of T2D, as it increases the low-density

lipoprotein (LDL) concentration (Wils et al., 2017).

Uncontrolled glycolipid metabolism in T2D can damage and

destroy blood vessels in various organs, especially the kidneys,

eyes, heart, and nerves (Iacobini et al., 2021). The vascular

complications of T2D, such as diabetic retinopathy, diabetic

nephropathy, diabetic neuropathy, myocardial infarction and

stroke, are mostly related to the aforementioned tissues

(Figure 1A).

The pathophysiology of the association between T2D and

vascular complications is multifactorial. Several studies have

revealed that it was closely related to glucotoxicity and

lipotoxicity (Teodoro et al., 2018; Opazo-Ríos et al., 2020).

Hyperglycemia and hyperlipidemia could trigger oxidative

stress through mitochondrial dysfunction, and then enhance

the production of reactive oxygen species (ROS), whereas

hyperlipidemia releases pro-inflammatory cytokines through

adipose tissue. Oxidative stress and inflammatory response are

considered major factors in the progression of T2D and its

complications. These lesions can manifest as endothelial

dysfunction (ED), an early stage of vascular disease and T2D

complications. Furthermore, epigenetic reprogramming can

affect the genes associated with inflammation and the

generation of ROS, resulting in ED. In the present work, we

reviewed the blood vessel damage caused by abnormal glucose

and lipid metabolism, which may provide insights for

developing new strategies for the treatment of T2D and its

complications.

2 Vascular wall structure

In general, blood vessels walls are divided into three layers

from the lumen to the outside: the tunica intima, tunica media,

and tunica adventitia (Jedlicka et al., 2020). The tunica intima is

the innermost layer of the tube wall, which is mainly composed of

interconnected endothelial cells. However, there are also gaps in

some blood vessels, especially in the veins. The tunica media

varied in composition and thickness according to the type of

blood vessel. The aorta is mainly based on the elastic membrane,

and the middle artery is mainly made up of smooth muscle. The

tunica adventitia is mainly composed of fibroblasts, elastic fibers,

and collagen fibers.

For a long time, the inner membrane cells have been

generally believed to be the inner part directly in contact with

blood. However, a later study found a colloidal film, called

glycocalyx, that has a layer of protein-polysaccharide complex

on the inner membrane cells and a thickness in the order of

microns (Jedlicka et al., 2020). The vascular endothelial

glycocalyx covers the surface of all vascular endothelial cells

and regulates vascular endothelial permeability. The endothelial

glycocalyx interacts with blood and endothelial cells, mediate

blood flow shear force, and induce the release of nitric oxide

(NO) (Becker et al., 2010; Becker et al., 2015; Jedlicka et al., 2020)

(Figure 1B). Some blood vessels are also differently composed

and distributed, and the veins have additional structures, such as

venous valves.

FIGURE 1
(A) Vascular complications of diabetes. (B) Diagram of a vascular structure.
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3 Vascular damage due to
hyperglycemia and dyslipidemia

Hyperglycemia associated with dyslipidemia initiates

diabetic vascular complications through metabolic and

vascular remodeling and aberrant gene expression. In

recent years, many hypotheses have been proposed to

elucidate the mechanisms of hyperglycemia and

dyslipidemia evoked vascular damage, including ED, the

formation of advanced glycation end products (AGEs),

FIGURE 2
Biochemical and major pathways underlying endothelial dysregulation in vascular complications of diabetes. Long-term hyperglycemia and
hyperlipidemia can cause endothelial cell dysfunction and increase the adhesion of monocytes and platelets. The former can transform into
macrophages, while the latter can recruit blood cells, accumulate in blood vessels, and form thrombi. On the one hand, macrophages invade
endothelial cells and engulf ox-LDL, turning into foam cells and forming arterial plaques. Macrophages release inflammatory and transcription
factors that aggravate the inflammatory response. Excessive glucose and lipid levels will covalently combine to form AGEs, which can bind to their
receptors; activate the MAPK and NF-KB pathways, among others; and reduce the production and utilization of NO. Abnormal glucose and lipid
metabolism can also affect mitochondrial function, produce excessive ROS, and lead to insufficient energy supply. Epigenetic modifications are also
closely related to vascular injury in the vascular complications of T2D, including histone and DNA modifications, and ncRNA regulation.
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oxidative stress, inflammation and epigenetic modification

(Figure 2).

3.1 ED and structure remodeling

Endothelial cells not only constitute the vascular network but

also are involved in vasodilation and vascular reactivity. The early

sign of diabetic vascular injury is endothelial injury. Endothelial

cells regulate the tension in blood vessels through

mechanoreceptors, which sense shear forces caused by blood

flow through their surfaces. Subsequently, endothelial cells

transmit these messages to surrounding cells and secrete

many biologically active mediators to dilate or contract blood

vessels to regulate blood flow (Iliff and Xu, 2018). For example,

the active mediators of vasodilation are NO, prostaglandin I2

(PGI2), histamine, and serotonin. The vasoconstrictive

mediators are endothelin-1 (ET-1), thromboxane A2,

angiotensin II (Ang II), and prostacyclin H2 (Sandoo et al.,

2010; Krüger-Genge et al., 2019). HG and LDL levels can change

the osmotic pressure of endothelial cells and the permeability of

the intima, which may affect the synthesis and release of vascular

regulatory factors by endothelial cells, resulting in reduced

vascular reactivity.

The normal metabolism of intimal cells and the integrity of

the intima are the basis for the normality of vessels. ED is the

inability of endothelial cells to maintain vascular homeostasis.

The development of ED is related to an increased risk of vascular

complications and mortality (Erkens et al., 2017; Heusch, 2020).

Oxidative stress has been considered a sign of ED. AGEs

promotes cellular glucotoxicity, and long-term ED supports

inflammation in the vascular system.

As mentioned earlier, NO is a vasodilator that can induce the

relaxation of vascular smooth muscle cells (VSMCs) and vascular

vasodilation (Moncada et al., 1991; Rajendran et al., 2019). ED

can inhibit the expression of endothelial nitric oxide synthases

(eNOS) and decrease NO synthesis. Glycocalyx is a protector of

endothelial cells. However, HG levels could directly damage the

glycocalyx by promoting the shedding (Jedlicka et al., 2020).

Endothelial cells are sensitive to HG levels, and the change in the

extracellular environment can induce cell death and influence cell

growth (Triggle et al., 2012). The excess glucose can activate NF-

kB expression in endothelial cells, which leads to an increase in

the expression levels of pro-inflammatory cytokines (Aminzadeh

et al., 2013). HG can stimulate the transformation of

endothelial cells into fibrous phenotypes, causing vascular

injury. Several studies have found fibrotic changes in the

heart, liver, and kidneys of diabetic rodent models (Huang

et al., 2013; Lucchesi et al., 2015; Alex et al., 2018). ED

conditions can induce increased VSMC proliferation and

phenotypic transition, increasing the thickness of the

vascular middle layer and promoting the stenosis of the

vascular lumen.

Oxidized low-density lipoprotein (ox-LDL) can be formed

when LDL levels increases in blood vessels, and the lipid

hydrogen peroxide produced in the process of ox-LDL

production can directly damage endothelial cells, increase cell

permeability, and promote cell death. Endothelial cells damage

will further cause structure remodeling to blood vessels.

Monocytes can migrate into the inner membrane when the

tunica intima is incomplete. Macrophages converted from

monocytes engulf ox-LDL and turn into foam cells. This will

increase the thickness of the median-intimal membrane of blood

vessels. In addition, ox-LDL can inhibit the synthesis of the

endothelial cell-derived relaxation factor or NO, impairing the

normal diastolic function of arterial walls.

3.2 Formation of AGEs

AGEs are compounds of non-enzymatic glycation. Excess

glucose, lipids and proteins combine to form covalent add-ons

(Barlovic et al., 2011; Yang et al., 2019a; Papachristoforou et al.,

2020). The free amino group of proteins and the carbonyl group

reduce glucose levels or another carbonyl to develop the Schiff

bases. The Schiff bases could undergo Amadori rearrangement

reactions and form relatively stable aldehyde and amine

products. The Amadori products can result from dehydration,

rearrangement and fragmentation reaction, which lead to the

formation of AGEs. Even though the last reaction is usually slow,

ROS and other catalysts can increase its rate.

The increased levels of AGEs were related to the less

endothelial-dependent vasodilation. AGEs can depress the

expression of eNOS by receptor-mediated phosphorylation of

serine residues in eNOS and increase the degradation of eNOS

mRNA (Ren et al., 2017). Tan et al. found that increased

concentrations of AGEs were associated with ED by impairing

endothelial-dependent vasodilation (Tan et al., 2002). AGEs are

also responsible for increases in ET-1 levels and decreases in

PGI2 levels, which lead to vasoconstriction (Santilli et al., 2015).

AGEs were related to lipid accumulation in vessels. For example,

the circulating AGEs can alter the structures of LDL and damage

the mechanisms of LDL receptor-mediated cholesterol uptake

(Ruiz et al., 2020). Furthermore, the interaction of AGE and LDL

could induce pro-inflammatory cytokine production and affect

the phagocytosis of macrophages and phenotypic conversion of

smooth muscle cells (Iwashima et al., 2000; Barlovic et al., 2011;

Byun et al., 2017).

The interaction of AGEs and their receptor (RAGE) plays a

vital role in the AGEs that mediate vascular complications. The

binding of AGEs to RAGE activates the transcription factor NF-

kB which regulate multiple genes, such as ERK (extracellular

signal-regulated kinase) 1/2 and the p38 MAP kinase (MAPK)

pathway (Bierhaus et al., 2001; Chen et al., 2010a). These

signaling pathways lead to an inflammatory response,

including the aggregation of cell adhesion molecules. NF-kB
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regulates various cellular signaling cascades associated with ROS

formation, including NAPDH oxidase and protein kinase C

(PKC) (Coughlan et al., 2009; Chen et al., 2010a).

3.3 Oxidative stress

Oxidative stress occurs when reactive species are

overproduced or when the antioxidant system is weakened.

Reaction species are usually derived from oxygen, nitrogen, or

sulfur elements, which generate ROS, reactive nitrogen (RNS),

and reactive sulfur. ROS and RNS are the major sources of

oxidative stress. The free radicals include the superoxide anion

radical (O2
−), hydroxyl free radical (OH·), hydrogen peroxide

(H2O2) and peroxynitrite (ONOO−).

Many experimental and clinical studies have demonstrated

that oxidative stress promotes the development of vascular

complication. The mitochondrial overproduction of ROS was

reported to be the primary origin of vascular damage in

hyperglycemia induced diabetic complications (Nishikawa

et al., 2000; Iacobini et al., 2021). In hyperglycemia, the flux

and voltage gradient of the electron donors into the electron

transport chain through the inner mitochondria membrane were

increased owing to the increase in pyruvate generated. The

electron transfer inside complex III in the electron transport

chain is plugged when the voltage gradient reaches a critical

point. The electrons return to coenzyme Q and transfer to O2,

resulting in superoxide (O2
−) (Brownlee, 2005). In addition,

NADPH oxidases, xanthine oxidase, uncoupled nitric oxide

synthase (NOS), cycloxygenase-2 (COX-2), and endoplasmic

reticulum (ER) stress can also contribute to the production of

superoxide. Excessive ROS in turn causes mitochondria

dysfunction and affects the energy supply of cells. In addition,

dysfunctional mitochondria act as a key regulator of

inflammatory response, apoptosis, and ferroptosis (Rizwan

et al., 2020). Many apoptosis-related factors and key proteins

are located in the mitochondria, and mitochondrial dysfunction

could activate many signaling pathways (Li et al., 2018) such as

the AMP-dependent protein kinase (AMPK)/the mammalian

target of rapamycin (mTOR) (Assaf et al., 2022) and

phosphatidylinositol 3-kinase (PI3K)/MAPK pathways (Barber

et al., 2021).

Oxidative stress can directly induce vascular injury. For

instance, oxidative damage can rapidly decrease the glycocalyx

level in vascular endothelial cells, reducing the integrity of the

vascular wall. ROS are a main factor in the progression of several

disease. ROS can inhibit the activity of eNOS, increase the

pressure in the mitochondrial and endoplasmic reticulum in

endothelial cells, which leads to ED. Hyperglycemia can also

increase the ROS production through the polyol and hexosamine

pathways and PKC activation. In addition, hyperglycemia can

directly trigger the excessive production of ROS by activating the

NF-kB pathway which affect the enzymatic cascades (Pitocco

et al., 2013). The nuclear factor erythroid 2-related factor (Nrf2)

is an important transcription factor that regulates intracellular

oxidative stress and is a key regulator for maintaining

intracellular redox homeostasis (Baird and Yamamoto, 2020).

Zhang et al. (2016) demonstrated that hyperglycemia could

inhibit the regulation of Nrf2 activity, which leads to an

imbalance in oxidative stress and the aggravation of cellular

damage.

The excessive accumulation of ROS promotes the production

of ox-LDL and AGEs, which can lead to vascular damage.

However, ROS could oxidize lipids, proteins and nucleic acid

molecules, including DNA and RNA. Studies have demonstrated

that the oxidized nucleic acid content was higher in the urine or

blood plasma of patients with T2D (Franzke et al., 2018;

Schöttker et al., 2020). ROS can cause the DNA black, which

leads to the activation of poly ADP-ribose polymerase (PARP),

inhibiting the expression of the glycolytic enzyme

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and

promoting the production of early glycolytic intermediates

(Shah and Brownlee, 2016). This production promotes ED

through the PKC pathway and the formation of the AGE

pathway. The oxidization of DNA can affect the its self-

reparative ability and hyperglycemia disturbs the self-

reparative ability of DNA by ROS, which leads to the cell

death and senescence. A previous study revealed that DNA

repair contributes to fibrotic remodeling (Kumar et al., 2020).

Oxidative DNA can activate the homeo-domain interacting

protein kinase 2 (HIPK2) expression, which leads to activation

of fibrosis and then increase vascular stiffness (Tuleta and

Frangogiannis, 2021).

RAGE is also a critical factor in oxidative stress-induced

vascular damage. Many intracellular signaling pathway linked to

oxidative stress can be activate when AGEs bind to RAGE.

Furthermore, ROS can promote inflammatory response by

increasing pro-inflammatory cytokine levels, the expression

level of cell adhesion molecules, and growth factors. ROS can

also activate multiple signaling molecules such as MAPK, PI3K,

Akt (or PKB), mTOR, and JUK. These genes were reported to be

associated with cell apoptosis, proliferation, migration,

inflammatory response and oxidative stress (Chiarugi and

Cirri, 2003; Torres and Forman, 2003; Montezano et al.,

2014). Thus, the oxidative stress and inflammatory response

mechanism were exacerbated, increasing endothelial cell

apoptosis, inhibiting cell proliferation and vascular repair, and

aggravating vascular injury.

3.4 Inflammation

Long-term chronic inflammation plays a major role in the

pathogenesis and development of diabetic vascular complication,

such as diabetic nephropathy and retinopathy. The inflammatory

response in blood vessels can be stimulated by the aggregation of
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monocytes, platelets and the invasion of macrophages. The

immune system is associated with the metabolic changes in

T2D. Inflammation signaling is coupled with ROS and AGEs.

Chronic inflammation can damage vascular components and the

vascular endothelial structure and reduce vascular reactivity. The

inflammatory reaction in the body directly destroys the

glycocalyx, which is also a main hazard of long-term

inflammation. Platelets, blood cells, and fibrin are deposited

and aggregated to form thrombosis, damaging the endothelial

cells in the intima, which recruit white blood cells and further

activate the inflammatory response process. The inflammatory

cells infiltrate the blood vessel wall, which can impair reactive and

increase the stiffness of the blood vessel wall.

In T2D, the activation of inflammation is associated with

dysregulated inflammasome. Plasminogen activator inhibitor

type-1 (PAI-1) expression was associated with fibrinolysis and

high PAI-1 expression is linked with formation of thrombosis.

Pandolfi et al. found that PAI-1 levels were increased in the

arterial wall of diabetic patients (Pandolfi et al., 2001). Evaluating

PAI-1 expression level can help reduce fibrinolysis. HG levels can

stimulate the accumulation of NLR family pyrin domain

containing 3, resulting in the generation of interleukin-1β (IL-

1β) (Sharma et al., 2018). The release of active IL-1β can induce

the expression of other inflammatory cytokines and promote

chemotactic responses and recruitment of macrophages.

Ox-LDL can enhance the expression of intercellular adhesion

molecule-1, which increases the numbers of monocytes,

neutrophils and lymphocytes binding to the endothelium, and

the binding shows high affinity. Monocytes are transformed into

macrophages and even induce ED and structural remodeling.

This process can trigger ROS production, which promotes the

expressions of IL-1 and tumor necrosis factor α (TNF-α). The
increased IL-1 and TNF-α levels upregulated the expression of

adhesion molecules and recruited more monocytes into the

progression of vascular stiffness. These reactions can induce

apoptosis and impair NO release, which leads to ED.

3.5 Epigenetic modification

Epigenetic modifications are stable and heritable changes to

epigenetic inheritance and phenotypes, which are independent of

changes in the gene sequence. Epigenetic factors could regulate

gene expression and control cell phenotypes, including DNA

methylation, histone modification and regulation of non-coding

RNAs (ncRNAs). In T2D, abnormal regulation of enzymes in the

gene promoter region could alter gene expressions, and

differentially expressed genes such as SET domain-containing

lysine methyltransferase 7 (SET7) and suppressor of variegation

3–9 homolog 1 (SUV39h1) can affect inflammation-related

pathways that lead to vascular injury. Various genes can be

changed by epigenetic modifications, which are involved in

the pathology of diabetic vascular complications (Pirola et al.,

2010; Kato and Natarajan, 2014). Those genes are mainly

involved in the signaling of inflammation, modification, and

oxidative stress.

3.5.1 DNA methylation
DNA methylation refers to the covalent binding of a methyl

group to the CpG dinucleotide cytosine 5′ carbon site in the

genome without altering the DNA sequence by DNA

methyltransferases (DNMTs) (Greenberg and Bourc’his,

2019). Previous studies have demonstrated that DNA

methylation is involve in the progress of vascular

complications (Rajasekar et al., 2015; Natarajan, 2021). The

DNMT family includes DNMT1, DNMT2, and DNMT3

(DNMT3A, DNMT3B, and DNMT3L).

Hyperglycemia can stimulate DNA methylation. For

instance, Priola et al. found the hypomethylation of heme

oxygenase 1 (HMOX1) and hypermethylation of interleukin

8 precursor (IL8) in human aortic endothelial cells treated

with HG (Pirola et al., 2011). Hyperglycemia can cause

abnormal DNA methylation in multiple genes such as

endothelial NOS, vascular endothelial growth factor A

(VEGFA), homeobox A5, Krüppel-like factor 3, homeobox 4,

homeobox 6, small mothers against decapentaplegic homolog 6

(SMAD6), and SMAD3, which are involved in angiogenesis,

inflammation and migration resulting in ED (Dunn et al.,

2015; Aref-Eshghi et al., 2020; Pepin et al., 2021). Another

study also found that ET-1 was hypomethylated at the

promoter region and during the worsened state of a vascular

complication (Biswas et al., 2018).

However, hyperglycemia can also decrease DNA

methylation. Mitochondrial adaptor p66shc protein functions

as a redox enzyme to regulate ROS generation and the

oxidative signals associated with apoptosis. Paneni et al.

(2012) found that hyperglycemia decreased DNA methylation

at the promoter region of p66shc. Decreased methylation and

upregulated p66shc increased the AGEs precursors and promoted

apoptosis. In the diabetic condition, the promoter of polymerase

gamma 1 is hypermethylated in retinal endothelial cells (Tewari

et al., 2012).

3.5.2 Histone modification
Histones are proteins that make up nucleosomes together

with DNA, including H2A, H2B, H3, and H4. Histone

modification occurs covalently in the N-terminal tail part of

the histone, and H3 is the most modified histone protein (Zhang

et al., 2021a). These protein modifications can inhibit or activate

the transcription of genes. The sites of histone methylation were

usually lysine and arginine.

Histone acetylation is mainly related to the activation of

genes, which are coordinated by acetyltransferase and

deacetylase. For instance, H3K9/K14 acetylation was caused

by HG level, which leads to the overexpression of IL-8,

HMOX1, and MMP10. The upregulated genes were associated
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with oxidative stress and inflammation, which could promote the

pathological process of T2D vascular complications (Pirola et al.,

2011). The expression of sirtuin 1 (SIRT1) was negatively

regulated by acetylated p53 under the HG condition.

Upregulated SIRT1 inhibited the expression of PARP and

mitochondria mediated apoptosis related genes, such as NF-

kB and BAX (Orimo et al., 2009; Zheng et al., 2012).

Overexpression of SIRT1 also restrained the expression of

p66shc and oxidative stress in the vasculature of diabetic mice

(Zhou et al., 2011). Chen et al. (2010b) found that hyperglycemia

can induce the expression of transcriptional coactivator p300 in

human umbilical vein endothelial cells (HUVECs). Increased

binding of p300 to ET-1 and fibronectin promoters, increased

histone acetylation, H2AX phosphorylation, multi-transcription

factor activation, expressions of vasoactive factors, and

extracellular matrix protein. In the streptozotocin induced

diabetic rat model, the histone acetyltransferases level was

decreased and the histone deacetylases level was increased in

HG levels (Zhong and Kowluru, 2010). Hyperglycemia triggered

the expression of NF-kB, which is associated with increased

H3K4 and reduced H3K9 methylation in aortic endothelial

cells (Brasacchio et al., 2009).

H3K27me3 in the promoter of eNOS can regulate the

expression and affect endothelial reactivity (Dhawan et al.,

2022). Liao et al. (2018) found that histone methylation

(H3K4me2, H3K9me2, and H3K9me3) at the promoter site

reduced the expression levels of NOX4 and eNOS.

Dysregulated NOX4 and eNOS contribute to ROS and NO

generation, resulting in ED. Zhong et al. found that

hyperglycemia reduced the expression of H3K4me1 and

me2 but increased the binding of lysine-specific demethylase 1

(LSD1) with superoxide dismutase 2 (SOD2). Downregulation of

the expression of LSD1 ameliorates the glucose-induced reduction

of SOD2 H3K4 methylation and prevents the decrease in

SOD2 gene expression levels (Zhong and Kowluru, 2011;

Zhong and Kowluru, 2013). Hyperglycemia can promote the

accumulation of SET7 and activate the activity of SET7.

SET7 acts on the p65 promoter region of NF-kB, which leads

to H3K4 methylation and upregulation of NF-kB expression and

affects its dependent inflammatory factors such as the vascular cell

adhesion molecule and monocyte chemotactic protein 1 (MCP-1).

Previous studies have shown that SET7 knockdown can

significantly reduce NF-kB-mediated inflammatory genes in

diabetic models (Miao et al., 2006; Li et al., 2008). The

increased expression levels of inflammation-related genes are

also associated with decreases in the expression levels of

repressive regulators in T2D. For example, at the promoter

regions of IL-6, MCP-1, and TNF-α, decrease H3K9me3 and

SUV39h1 recruitment were found in diabetic mice (Villeneuve

et al., 2008). Furthermore, inhibition of the expression of

SUV39h1 methyltransferase can reduce H3K9me3 expression in

IL-6, which leads to cytokine expression (Villeneuve et al., 2010).

3.5.3 ncRNAs
ncRNAs are transcribed from the genome but does not code

proteins. They are involved in translation and regulate the

expression of related genes. With the advancements of the

sequencing technology and research, the understanding of

non-coding RNA has also changed from “useless” to

“useful.” Recent reports have implicated ncRNAs in the

vascular injury in T2D, including microRNAs (miRNAs),

circular RNAs (circRNAs), and long non-coding RNAs

(lncRNAs; Table 1).

3.5.3.1 miRNAs

MiRNAs are small-molecule ncRNAs, with a length of

21–24 nucleotides, which function by partial complementary

sequence binding to the 3′ untranslated region of the target

mRNA to cleat the mRNA or repress the translation process (Ha

and Kim, 2014). EachmiRNA can havemultiple target genes, and

multiple miRNAs can regulate the same gene.

Silambarasan et al. (2016) performed a microarray on

HUVECs treated with HG and analyzed in patients with

T2D and diabetic rats. They found that the expression

levels of ten miRNAs were gradually increased with the

increase in HG concentration. Among these miRNAs, miR-

29b-3p, miR-29c-3p, miR-125b-1-3p, miR-130b-3p, miR-

221-3p, miR-320a and miR-192-5p were correlated with

endothelial cell apoptosis. The expression of miR-34a was

upregulated in the aortic endothelium of diabetic mice. MiR-

34a knockdown can attenuate oxidative stress by regulating

the expression of sirtuin1 (Sirt1) (Li et al., 2016). The low

expression of miR-146a was associated with the significant

increase in NF-kB expression level in diabetic rats, activated

the inflammation pathway, and promote apoptosis

(Yousefzadeh et al., 2015; Habibi et al., 2016). MiR-221 and

miR-222 have a similar function, which is to promote the

intimal thickening in the arteries of diabetic subjects. The

downregulation of miR-221 and miR-222 reduced the VSMC

proliferation and migration by metformin, and inhibiting

miR-221 and miR-222 was efficacious in the prevention of

the vascular complications of T2D (Coleman et al., 2013;

Lightell et al., 2018). The miR-342-3p expression was

downregulated in endothelial cells isolated from diabetic

models. Overexpression of miR-342-3p enhanced

endothelial cell proliferation and migration by targeting

fibroblast growth factor 11 signaling (Cheng et al., 2018).

MiR-29a/b knockdown could impair the endothelial function

in diabetic patients and rat models. Overexpression of miR-29

can promote NO production and restore endothelium-

dependent vasodilation by modulating lysophospholipase I

(Lypla1) expression (Widlansky et al., 2018). MiR-9

expression was involved in anti-inflammation and apoptosis

under HG conditions (Jeyabal et al., 2016). Chen et al. (2021)

found that upregulating the miR-9 expression can rescue
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hyperglycemia-induced ED by inhibiting the Notch1 signaling

pathway. Overexpression of miR-24 can inhibit the platelet-

derived growth factor pathway, protect against intimal

hyperplasia and inhibit intracellular inflammatory responses

(Yang et al., 2018). Endothelial injury stimulates platelet

aggregation and cell proliferation and differentiation, and

TABLE 1 ncRNAs associated with vascular dysfunction in diabetic patients and models.

Model Signaling Function Refs

miRNAs

miR-34a diabetic mouse/HUVEC Sirt1 oxidative stress Li et al. (2016)

miR-146a diabetic rat NF-kB inflammation, apoptosis Yousefzadeh et al. (2015), Habibi et al. (2016)

miR-221/222 diabetic mouse/VSMC ERK-1/2/p27Kip1 proliferation, migration Coleman et al. (2013), Lightell et al. (2018)

miR-342-3p HUVEC/HDF FGF11 proliferation, migration Cheng et al. (2018)

miR-29 T2D subjects/diabetic rat Lypla1 vasodilation Widlansky et al. (2018)

miR-9 HUVEC NICD1 inflammation Chen et al. (2021)

miR-24 VSMC PDGF-BB inflammation, remodeling Yang et al. (2018)

miR-19a T2D subjects/HMEC TF inflammation Witkowskiet al. (2018)

miR-483-3p T2D subjects/HAEC VEZF1 apoptosis, inflammation Kuschnerus et al. (2019)

miR-210 T2D subjects/diabetic mouse PTP1B oxidative stress Zhou et al. (2022)

miR-29c diabetic mouse/VSMC Emp2 proliferation Torella et al. (2018)

miR-204 diabetic mouse/VSMC Cav1 proliferation Torella et al. (2018)

miR-181c-3p/-5p T2D subjects/HUVEC LIF oxidative stress Shen et al. (2018)

circRNAs

circ_WDR77 VSMC miR-124/FGF-2 proliferation, migration Chen et al. (2017)

circHIPK3 HAEC/HUVEC miR-124 death, apoptosis Cao et al. (2018)

circDiaph3 VSMC miR-148a-5p/IGF1R proliferation, migration Xu et al. (2019a)

circBPTF HUVEC miR-384/LIN28B inflammation, oxidative stress Zhang and Sui (2020)

circ_001209 diabetic mouse/HRVEC miR-15b-5p/COL12A1 invasion, migration, tube formation Wang and Zhang (2021)

circ_CLASP2 HUVEC miR-140-5p/FBXW7 proliferation Zhang et al. (2021b)

circSOD2 VSMC miR-206/NOTCH3 proliferation, neointima formation Mei et al. (2021)

circMAP3K5 SMC miR-22-3p/TET2 differentiation, neointima formation Zeng et al. (2021)

circ_0007367 PMVEC NF-kB inflammation, endothelial integrity Li et al. (2022)

circ_0068087 PMVEC miR-186-5p/ROBO1 inflammation, oxidative stress Li et al. (2021a)

circ_0068087 HUVEC miR-197/TLR4 inflammation Cheng et al. (2019)

circ_0006768 HBMEC miR-222-3p/VEZF1 migration, tube formation Li et al. (2021b)

circ_0003423 BMEC miR-589-5p/TET2 Endothelial injury Yu et al. (2021)

circ_0003645 HUVEC NK-kB inflammation Qin et al. (2020)

circ_0003204 HUVEC miR-942-5p/HDAC9 oxidative stress, inflammation Wan et al. (2021)

circ_36781 atherosclerosis mice/MAEC miR-30days-3p/TP53RK endothelial injury Li et al. (2021c)

circ_37699 atherosclerosis mice/MAEC miR-140-3p/MKK6 endothelial injury Li et al. (2021c)

lncRNAs

MALAT1 HBMEC miR-126/PI3K/Akt proliferation, angiogenesis Zhang et al. (2020a)

MALAT1 HBMEC miR-205-5p/VEGFA proliferation, angiogenesis Gao et al. (2020)

TUG1 HUVEC Runx2/ANPEP proliferation, migration Du et al. (2021)

PVT1 HUVEC miR-153-3p/GRB2 inflammation, oxidative stress Guo et al. (2021)

H19 HUVEC miR-let-7/periostin Inflammation Cao et al. (2019)

DANCR VSMC/HUVEC miR-214-5p/COX20 apoptosis Zhang et al. (2022)

LINC00299 VSMC miR-135a-5p/XBP1 apoptosis Chang et al. (2022)

ZEB1-AS1 HUVEC NOD2 proliferation, apoptosis Xu et al. (2019b)

OIP5-AS1 HUVEC miR-320a/LOX1 apoptosis Zhang et al. (2020b)
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activated inflammatory signals can induce thrombosis. Previous

studies have shown that the expression of miR-19a can regulate

endothelial cell homeostasis and angiogenesis (Qin et al., 2010;

Jiang et al., 2015). In addition, Witkowski et al. found that miR-

19a expression correlated with miR-126 expression in plasma of

diabetic patients and showed anti-thrombotic properties by

modulating vascular tissue factor (TF) expression (Witkowski

et al., 2018). Other study demonstrated that miR-483-3p could

also regulate the endothelial integrity by targeting vascular

endothelial zinc finger 1 (VEZF1) (Kuschnerus et al., 2019).

Zhou et al. found that downregulation of miR-210 expression

induced ED in T2D and the levels of miR-210 were lower in T2D

patients. Overexpressed miR-210 can rescue endothelial

apoptosis by repressing the expression of protein tyrosine

phosphatase 1B (PTP1B) and oxidative stress (Zhou et al.,

2022). Torella et al. found that miR-29c and miR-204 can

regulate the VSMC hyperplastic phenotype by targeting

epithelial membrane protein 2 (Emp2) and caveolin1 (Cav1),

respectively (Torella et al., 2018). The expression of miR-181c is

associated with endothelial cells damage under abnormal

conditions of glycolipid metabolism (Yang et al., 2017). Shen

et al. investigated whether miR-181c-3p/5p overexpression could

enhance endothelial cell injury by regulating the expression of the

leukemia inhibitory factor (Shen et al., 2018).

3.5.3.2 circRNAs

CircRNAs are cyclic ncRNAs produced by non-canonical

cleavage and covalently linked upstream and downstream shear

sites (Kristensen et al., 2019). Many circRNAs have been

identified in eukaryotes by high-throughput RNA sequencing

(RNA-seq) and bioinformatics and were found to have tissue-

specific expression patterns. circRNAs could act as miRNA

sponges to affect the regulation of or interact with related

proteins (Kristensen et al., 2019; Zang et al., 2020). To date,

circRNAs have been reported to be associated with the

pathologies and development of various diseases such as DM,

cardiovascular diseases and cancer (Cortés-López et al., 2018;

Altesha et al., 2019).

Vascular damage and repair can stimulate VSMC

differentiation and proliferation, causing intravascular

restenosis. Another reaction to vascular injury is intimal

hyperplasia. Chen et al. (2017) performed a microarray and

found 983 differentially expressed circRNAs under HG

conditions. CircWDR77 (circ_0013509) expression was

upregulated in VSMCs cultured with HG.

circWDR77 knockdown inhibited cell proliferation and

migration by targeting miR-124/growth factor 2 (FGF-2).

CircHIPK3 expression was downregulated in HG-treated

HUVECs and human aortic endothelial cells.

circHIPK3 knockdown exacerbated endothelial cell apoptosis

by modulating miR-124 expression (Cao et al., 2018). In the

carotid artery injury rat model, overexpressed circDiaph3

(circ_005717) can act as a sponge with miR-148-5p and

weaken the inhibitory effect of miR-148a-5p on insulin-like

growth factor-1 receptor (IGF1R), which promotes intimal

hyperplasia (Xu et al., 2019a).

A previous study found that circBPTF (circ_0045462)

expression was upregulated in HUVEC under HG condition

(Jin et al., 2019). Zhang and Sui, 2020 revealed that circBPTF

knockdown could suppress cell apoptosis and reduce the release

of pro-inflammatory cytokines by mediating the miR-384/

LIN28B axis. Wang and Zhang, 2021 found that the

circ_001209/miR-15b-5p/COL12A1 axis may be the potential

regulatory pathway for human retinal vascular endothelial cells.

Circ_CLASP2 (circ_0064772) expression was found to be

downregulated in HG-induced HUVECs. Overexpression of

circ_CLASP2 can decrease ED under HG conditions by

inhibiting the expression of miR-140-5p and regulating

FBXW7 expression (Zhang et al., 2021b). Depletion of

circ_SOD2 alleviated VSMC proliferation by modulating the

miR-206/NOTCH3 axis (Mei et al., 2021). Furthermore, Zeng

et al. revealed that overexpression of circMAP3K5 was associated

with reduced proliferation of VSMCs to sequester miR-22-3p,

which inhibited the expression of TET2 (Zeng et al., 2021).

Flow pattern was related to endothelial integrity.

Overexpression of circ_0007367 can protect the endothelial

integrity by repressing the activity of NF-kB signaling and

increasing the eNOS expression level (Li et al., 2022). The

circ_0068087 expression level was increased in blood sample

from patients with T2D. Circ_0068087 knockdown could

ameliorate ox-LDL-induced HUVEC dysfunction by miR-186-

5p and roundabout guidance receptor 1 (ROBO1) (Li et al.,

2021a). Moreover, circ_0068087 knockdown could also suppress

cell dysfunction under HG conditions. Inhibiting miR-197

expression can reverse the circ_0068087 function, and toll-like

receptor 4 (TLR4) was the downstream target of miR-197 (Cheng

et al., 2019). Li et al. (2021b) found that upregulated

circ_0006768 expression rescued human brain microvascular

endothelial cells injury by modulating the expression of miR-

222-3p and its target, VEZF1.

Circ_0003423 functions as an endogenous miR-589-5p

sponge to inhibit miR-589-5p activity that upregulates TET2,

which relieves ox-LDL-induced endothelial cell injury (Yu et al.,

2021). The circ_0003645 expression was found to be up-

regulated in patients with atherosclerosis and in vitro. Cell

apoptosis and the expression levels of the NF-kB pathway-

related genes were reduced after knockdown of

circ_0003645 expression (Qin et al., 2020). Changes in

circ_0003204 levels have been detected in HUVECs (Liu et al.,

2020; Wan et al., 2021). Silencing circ_0003204 promoted cell

viability and decreased inflammation in HUVECs.

Circ_0003204 can modulate HDAC9 levels by sponging miR-

942-5p. Li et al. (2021c) performed a circRNA microarray to

detect aberrant expression of circRNAs in an atherosclerosis

mouse model. Finally, the circABCA1 (circ_36781) and

circKHDRBS1 (circRNA_37699) expression were significantly
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upregulated. The following sponging of miR-30 days-3p and

miR-140-3p were predicted using bioinformatics analysis, and

the target protein TP53RK andMKK6 were identified in vivo and

vitro, respectively.

3.5.3.3 lncRNAs

LncRNAs are a diverse class of RNAs with lengths of more

than 200 nucleotides. Studies have proposed many functions for

lncRNAs, including cis or trans transcription regulation, nuclear

domain organization, and interaction with other ncRNAs or

specific proteins (Quinn and Chang, 2016). Previous studies have

implicated lncRNAs in the progression of numerous pathologies

(Gao et al., 2021a; Gao et al., 2021b; Goodall and

Wickramasinghe, 2021).

Metastasis-associated lung adenocarcinoma transcript 1

(MALAT1) was initially found to regulate cancer metastasis.

The RNA sequencing profile used to analyze lncRNA expression

showed that MALAT1 was significantly upregulated in HUVECs

treated with hypoxia (Michalik et al., 2014). Silencing of

MALAT1 increased basal endothelial cell migration and

sprouting in vitro. MALAT1 can activate PI3K and Akt

phosphorylation, promoting endothelial apoptosis by sponging

miR-126 (Zhang et al., 2020a). Furthermore, MALAT1 can also

protect the angiogenesis function through the miR-205-5p/

VEGFA pathway (Gao et al., 2020). Microarray data showed

that the expression of lncRNA taurine upregulated gene 1

(TUG1) was associated with the ox-LDL concentration. Runt-

related transcription factor 2 (Runx2) was detected as the

downstream target of TUG1 by RNA pull down, and

Runx2 knockdown could reverse the function of

aminopeptidase N (ANPEP). TUG1 silencing can promote

endothelial injury repair via the repression of Runx2 and

ANPEP (Du et al., 2021).

The expression of lncRNA plasmacytoma variant

translocation 1 (PVT1) was upregulated in ox-LDL-induced

injury in HUVECs. PVT1 knockdown decreased the

inflammation and apoptosis in HUVEC via the miR-153-3p/

GRB2 axis (Guo et al., 2021). Gao et al. reported that lncRNA

H19 could regulate ox-LDL inflammation, apoptosis and

HUVECs by targeting the miR-let-7/periostin axis (Cao et al.,

2019). The expression level of lncRNAdifferentiation antagonizing

non-protein coding RNA (DANCER) was increased in patients

with atherosclerosis and ox-LDL-treated cells. DANCER

knockdown significantly reduced the levels of IL-6 and, TNF-α
via miR-214-5p sponging, thereby activating the chaperone of

cytochrome c oxidase subunit II COX2 (COX20) (Zhang et al.,

2022). The down-regulated expression of long intergenic non-

coding 00299 (LINC00299) inhibited vascular injury through the

miR-135a-5p/XBP1 axis (Chang et al., 2022). The expression level

of lncRNA ZEB1-antisense 1 (ZEB1-AS1) was increased in the ox-

LDL induced endothelial cell injury model. Nucleotide-binding

oligomerization domain 2 (NOD2) was reported to integrate ER

stress and innate immunity. ZEB1-AS1 expression can regulate

endothelial cell injury via LRPPRC to stabilize NOD2 mRNA (Xu

et al., 2019b). The expression level of lncRNA OIP5-AS1 was

increased in ox-LDL mediated vascular ED. Zhang et al.

demonstrated that OIP5-AS1 knockdown suppressed apoptosis

and evaluated cell viability by modulating the expression of miR-

320a and regulation of lectin-like oxidized low-density lipoprotein

receptor 1 (Zhang et al., 2020b).

4 Conclusion

Diabetic patients have extensive vascular disease. Previous

epidemiological data and laboratory mechanism studies have

indicated that vascular complications are the leading cause of

morbidity and mortality in T2D. During the development of the

disease, its damage to blood vessels includes increased thickness

of blood vessels, decreased vasodilation, vascular calcification,

and impaired vascular response. Awareness of T2D-related

diseases and complications, identification of their possible

pathogeneses and causes, and development of new

interventions are warranted. Recent studies have shown

increasing interest in identifying the mechanisms that play a

major role in the development of T2D. We reviewed and

discussed the roles of ED, inflammation, oxidative stress and

epigenetic modification in the pathogenesis of T2D induced by

hyperglycemia and hyperlipidemia.

The early symptom of diabetic vascular disease is endothelial

damage, which can cause significant dysfunction. The formation of

thrombosis and activation of inflammation are themain features of

vascular injury, which can decrease vasodilation. The

inflammatory process contributes to insulin resistance, and

long-term chronic inflammation can further cause endothelial

damage and exacerbate oxidative stress. Oxidative stress is

mainly due to mitochondria dysfunction. Mitochondria are

energy-producing factories, and mitochondrial dysfunction can

induce apoptosis and activate inflammation, creating a vicious

cycle. In the pathological process of T2D, dysregulation of DNA

methylation, histone markers and non-coding RNA activate

dormant endothelial cells and initiates various molecular

activities, resulting in ED. The interaction between the factors

that cause vascular injury is inseparable. ED is the first event to

occur and the ultimate point of action of elements.

Continuous experimental, clinical and translational studies have

shown that pharmacological interventions targeting glycotoxicity

and lipotoxicity play an important role in the treatment of the

vascular complications of T2D. Most of these drugs have shown

good vascular protection in preclinical and clinical studies. For

instance, the common drugs used to treat diabetes, such as

insulin and metformin, have been shown to be effective in

stimulating the release of NO and maintaining vascular stability

(Tousoulis et al., 2008; Aggarwal et al., 2021). Moreover, metformin

can regulate AMPK-related pathways to protect endothelial cells

(Ding et al., 2021). Sodium-glucose cotransporter 2 inhibitors
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(SGLT2i) are new-generation drugs for the treatment of T2D and its

complications (DeFronzo et al., 2021). The mechanisms of action of

SGLT2i include anti-inflammatory, anti-proliferative, and

antifibrotic effects (Heerspink et al., 2019; DeFronzo et al., 2021).

The protective effects of GLP-1 receptor agonists mainly include

maintaining the integrity of the intima, reducing the adhesion of

monocytes stimulated by ox-LDL, increasing the level of NO

production, reducing the release of inflammatory factor, and

blocking inflammatory pathways (Chang et al., 2019; Xu et al.,

2019c). Moreover, statins, which are lipid-lowering drugs, can

reduce LDL content and increase the bioavailability of NO. They

have anti-apoptotic and anti-inflammatory effects, which reduce the

release of inflammatory factors and inhibit leukocyte adhesion.

Antihypertensive drugs such as calcium channel blockers (CCBs),

ARBs, and ACEI can also improve the endothelial function and

increase the eNOS expression level (Silva et al., 2019). Other studies

suggested that ACEI, and, ARBs could also attenuate ROS-induced

injury by enhancing the activity of superoxide dismutase. Anti-

inflammatory drugs, including nonselective (aspirin) and selective

COX-2 inhibitors, have been studied to reduce cardiovascular risk

and recurrence of cardiovascular events in patients with T2D

(Huang and Vita, 2006). Some natural ingredients such as

colchicine have been used clinically for the treatment of ED and

cardiovascular disease. Angelica sinensis polysaccharide, which is

purified from the fresh roots of Angelica sinensis, could regulate

glucose and lipid metabolisms by reducing the release of

inflammatory factors (Wang et al., 2015). Lifestyle changes,

including diet and exercise, are also the primary

recommendations. The mechanism of action of exercise therapy

involves promoting the release of cytokines and increasing the

uptake and utilization of glucose and lipid hydrolysis (Yang

et al., 2019b).

By better understanding the etiology of vascular diseases,

combining the relevant mechanisms of new and old drugs, and

developing targeted interventions for the vascular complications

of diabetes, cardiovascular morbidity and mortality rates in

patients with T2D can be reduced.
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