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Abstract
Introduction: Graph	metrics	have	been	proposed	as	potential	biomarkers	for	diag-
nosis	 in	 clinical	work.	However,	before	 it	 can	be	applied	 in	 a	 clinical	 setting,	 their	
reproducibility should be evaluated.
Methods: This study systematically investigated the effect of two denoising pipe-
lines and different whole-brain network constructions on reproducibility of subject-
specific	 graph	measures.	We	 used	 the	multi-session	 fMRI	 dataset	 from	 the	 Brain	
Genomics	Superstruct	Project	consisting	of	69	healthy	young	adults.
Results: In	 binary	 networks,	 the	 test–retest	 variability	 for	 global	 measures	 was	
large at low density irrespective of the denoising strategy or the type of correla-
tion.	Weighted	networks	showed	very	 low	test–retest	values	 (and	thus	a	good	re-
producibility)	for	global	graph	measures	irrespective	of	the	strategy	used.	Comparing	
the	test–retest	values	for	different	strategies,	there	were	significant	main	effects	of	
the	type	of	correlation	(Pearson	correlation	vs.	partial	correlation),	the	(partial)	cor-
relation	value	 (absolute	vs.	positive	vs.	negative),	and	weight	calculation	 (based	on	
the	 raw	 (partial)	 correlation	values	vs.	 based	on	 transformed	Z-values).	 There	was	
also a significant interaction effect between type of correlation and weight calcula-
tion.	Similarly	as	for	the	binary	networks,	there	was	no	main	effect	of	the	denoising	
pipeline.
Conclusion: Our	results	demonstrated	that	normalized	global	graph	measures	based	
on	a	weighted	network	using	the	absolute	(partial)	correlation	as	weight	were	repro-
ducible. The denoising pipeline and the granularity of the whole-brain parcellation 
used	to	define	the	nodes	were	not	critical	for	the	reproducibility	of	normalized	graph	
measures.
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1  | INTRODUC TION

Resting-state	fMRI	(rs-fMRI)	is	a	task-free	and	an	easy-to-use	tool	for	
neuroscientific	data	acquisition.	It	is	used	to	detect	spontaneous	low	
frequency	(<0.1	Hz)	fluctuations	of	the	brain	by	blood-oxygen-lev-
el-dependent	 (BOLD)	signals	during	a	state	of	 rest	 (Biswal,	Yetkin,	
Haughton,	&	Hyde,	1995;	Smith	et	al.,	2013).	Those	fluctuations	are	
highly	 organized	 across	 discrete	 brain	 regions	 (Greicius,	 Krasnow,	
Reiss,	 &	Menon,	 2003).	 Functional	 connectivity	 analysis	 is	 a	 way	
to	analyze	how	distant	brain	regions	interact	and	graph	theory	can	
be	used	to	quantify	performance	of	the	entire	network	(Bullmore	&	
Sporns,	2009;	Park	&	Friston,	2013;	Sporns,	2011).

Many	 studies	 have	 reported	 that	 alterations	 of	 interactions	
among distant brain regions and dysfunction of networks are 
closely	 related	 to	 brain	 diseases,	 such	 as	 epilepsy	 (Burianová	
et	 al.,	 2017),	 Alzheimer's	 disease	 (Greicius,	 Srivastava,	 Reiss,	
&	Menon,	 2004;	Hallquist	 &	Hillary,	 2018;	 Johnson,	 Sperling,	 &	
Sepulcre,	2013)	and	among	others.	Petrella	 (2011)	proposed	 the	
use of graph metrics as potential biomarkers and diagnostic tools 
in	 clinical	work.	However,	 before	 graph	measures	 can	be	widely	
applied	 as	 a	 biomarker	 in	 a	 clinical	 setting,	 it	 is	 critical	 that	 a	
number of properties of graph measures should be evaluated rig-
orously.	These	properties	include	simplicity,	robustness,	and	test–
retest variability.

The	 reproducibility	 of	 rs-fMRI	 based	 graph	 measures	 faces	
a	 big	 challenge,	 namely	 how	 to	 effectively	 handle	BOLD	 signals	
contaminated	 by	 noise	 (Bianciardi	 et	 al.,	 2009)	 and	 how	 to	 re-
duce the influence of noise on the reproducibility of graph mea-
sures. The main causes of this contamination are head motion 
and	 non-neuronal	 physiological	 fluctuations.	Head	motion,	 even	
very	subtle	movement,	has	been	demonstrated	to	have	a	negative	
impact	on	BOLD	signals	(Parkes,	Fulcher,	Yücel,	&	Fornito,	2018;	
Satterthwaite	et	al.,	2012,	2019).	Therefore,	the	influence	caused	
by head motion and non-neuronal physiological fluctuations 
should be removed as much as possible to reduce the impact on 
functional connectivity.

Research	 in	 denoising	 techniques	 reducing	 the	 influence	 of	
noise	in	BOLD	signals	attracted	quite	some	attention	(Satterthwaite	
et	al.,	2019).	Denoising	techniques	can	have	an	impact	on	the	re-
producibility of graph measures. The most common strategies for 
denoising typically correct the signal using three types of informa-
tion:	 (a)	 head	movement	 parameters	 (Friston,	Williams,	Howard,	
Frackowiak,	&	Turner,	1996;	Satterthwaite	et	al.,	2013);	(b)	physi-
ological signals derived from white matter and cerebrospinal fluid 
(Fox,	 Snyder,	 Vincent,	 &	 Raichle,	 2007);	 and	 (c)	 a	 global	 signal	
regressor	 (GSR)	 (Fox,	 Zhang,	 Snyder,	 &	 Raichle,	 2009;	 Murphy,	
Birn,	 Handwerker,	 Jones,	 &	 Bandettini,	 2009).	 These	 strategies	
are often combined with temporal censoring of bad volumes 
that	 contain	 too	 much	 noise	 (Power,	 Barnes,	 Snyder,	 Schlaggar,	
&	Petersen,	2012;	Power	et	al.,	2014;	Satterthwaite	et	al.,	2013).	
Unfortunately,	there	has	been	no	agreement	on	which	strategy	is	
superior	to	reduce	the	noise	present	in	rs-fMRI	images	(Caballero-
Gaudes	&	Reynolds,	 2017).	 Therefore,	we	 investigated	 to	which	

degree reproducibility of graph measures depends on the denois-
ing	techniques.

Besides	 the	 challenge	 of	 reducing	 noise	 before	 network	 con-
struction,	 network	 construction	 itself	 can	 influence	 the	 repro-
ducibility	of	graph	measures	 (Dimitriadis,	Drakesmith,	et	al.,	2017;	
Wang	et	al.,	2011,	2014).	However,	this	has	not	been	systematically	
explored.	Network	 construction	 consists	 of	 defining	 the	 nodes	 of	
the network and defining the connectivity measure and how to 
calculate	 the	weights	 of	 the	 network	 from	 this	measure	 (Rubinov	
&	Sporns,	2010).	Nodes	are	the	main	elements	of	a	network.	They	
can	be	defined	using	an	atlas	or	parcellation	 (Desikan	et	al.,	2006;	
Shen,	Tokoglu,	Papademetris,	&	Constable,	2013;	Tzourio-Mazoyer	
et	al.,	2002).	They	can	also	be	defined	based	on	a	set	of	a	priori	re-
gions	(Fritz	et	al.,	2019)	or	based	on	a	data-driven	method	(de	Vos	
et	 al.,	 2018)	 or	 even	 be	 defined	 as	 the	 voxels	 themselves	 (Horn	
et	 al.,	 2019).	 Different	 definitions	 of	 nodes	 have	 different	 advan-
tages	 and	 limitations	 (Arslan	 et	 al.,	 2018).	 Node	 definition	 may	
affect reproducibility but also the way functional connectivity be-
tween	nodes	is	calculated	(Liang	et	al.,	2012).	The	latter	is	typically	
based on a Pearson correlation but also partial correlations can be 
used	 since	 it	 can	 remove	 the	 influences	 of	 other	 nodes	 (Marrelec	
et	 al.,	 2006;	 Smith	 et	 al.,	 2011).	 Both	 types	 of	 correlation	 can	 be	
used	 to	 derive	 graphs.	However,	 a	 choice	 needs	 to	 be	made	 how	
to	 treat	 negative	 (partial)	 correlations.	 One	 option	 is	 to	 use	 the	
absolute value representing the information shared between two 
nodes.	Graphs	based	on	the	absolute	value	are	graphs	in	which	all	
functional	information	among	nodes	is	presented.	An	alternative	is	
to	study	graphs	based	on	only	the	positive	or	negative	(partial)	cor-
relations	separately	setting	the	other	values	to	zero.	However,	the	
proportion of positive and negative connections in a real network 
may	vary,	which	may	induce	some	bias	if	we	would	take	only	either	
positive correlations or negative correlations into account. The ef-
fect of these choices on the reproducibility of graph measures has 
not yet been systematically investigated. The last element of net-
work construction is the choice between a weighted and a binary 
network.	 In	weighted	networks,	a	selection	of	connections	can	be	
made,	for	example,	using	a	soft-thresholding	removing	small	weights	
and keeping the weights of the remaining connections or they can be 
used as fully weighted graphs in which no a priori selection is made 
(Li,	Xue,	Ellmore,	Frye,	&	Wong,	2014;	van	den	Heuvel,	Mandl,	Stam,	
Kahn,	 &	 Hulshoff	 Pol,	 2010;	 Wang,	 Ghumare,	 Vandenberghe,	 &	
Dupont,	2017).	For	weighted	networks,	the	weight	can	be	obtained	
either	from	the	raw	(partial)	correlations	itself	or	from	a	transformed	
Z-value after a Fisher r-to-Z	transform	(Wang	et	al.,	2017).	In	binary	
networks,	selection	of	connections	is	based	on	significance	or	ampli-
tude. Selected connections will get a weight of 1 while the weight of 
the	others	is	set	to	0	(Hosseini	et	al.,	2013;	Wang	et	al.,	2014).

Most	 studies	 only	 focused	 on	 the	 robustness	 of	 resting-state	
fMRI	based	graph	measures	at	the	group	 level	 (Braun	et	al.,	2012;	
Du	 et	 al.,	 2015;	 Paldino,	 Chu,	 Chapieski,	 Golriz,	 &	 Zhang,	 2017).	
Although	 it	 can	 provide	 interesting	 information	 about	 brain	 func-
tioning	 in	 normal	 or	 pathological	 conditions,	 it	 is	 not	 sufficient	 if	
we	want	to	introduce	these	techniques	in	a	clinical	setting	in	which	
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subject-specific	 graphs	 have	 to	 be	 constructed	 and	 quantified	
(Gordon	et	al.,	2017;	Poldrack	et	al.,	2015).	Therefore,	we	focused	
on subject-specific graph measures in this paper.

In	this	study,	we	comprehensively	investigated	how	these	fac-
tors mentioned above affect the reproducibility of subject-spe-
cific graph measures and investigated which combination gave 
reasonable results. We investigate the use of two denoising pipe-
lines:	 a	 simple	 versus	 a	 more	 complex	 denoising	 pipeline	 (Ciric	
et	al.,	2017;	Parkes	et	al.,	2018).	Furthermore,	we	investigated	the	
use	of	the	two	functional	connectivity	measures	(correlations	vs.	
partial	 correlations),	 three	different	approaches	 to	handle	nega-
tive	 correlations	 (taking	 the	 absolute	 value,	 taking	only	 positive	
values,	or	taking	only	the	negative	values),	two	types	of	network	
(binary	or	weighted),	and	two	types	of	calculations	of	the	weights	
of	the	network	(based	on	the	(partial)	correlation	values	or	based	
on a transformation of Z-values obtained after a Fisher r-to-Z 
transformation).	 Finally,	 we	 also	 considered	 two	 levels	 of	 gran-
ularity	 for	 the	 whole-brain	 parcellation	 (50	 vs.	 100	 parcels	 per	
hemisphere).	The	overall	 aim	was	 to	answer	 the	 following	ques-
tions:	 (a)	 are	 subject-specific	 graph	 measures	 reproducible	 and	
(b)	what	is	the	optimal	pipeline	for	rs-fMRI	based	subject-specific	
graph measures?

2  | MATERIAL S AND METHODS

2.1 | Dataset and ethical statement

We	 used	 multi-session	 fMRI	 datasets	 from	 the	 Brain	 Genomics	
Superstruct	 Project	 (GSP)	 (Holmes	 et	 al.,	 2015).	 This	 dataset	
consisted	of	69	healthy	young	adults	 (34	males)	between	19	and	
27 years old and is publically available at http://neuro infor mat-
ics.harva	rd.edu/gsp/.	 All	 participants	 provided	 written	 informed	
consent in accordance with guidelines established by the Partners 
HealthCare	Institutional	Review	Board	and	the	Harvard	University	
Committee	 on	 the	 Use	 of	 Human	 Subjects	 in	 Research	 (Holmes	
et	al.,	2015).	All	 images	were	acquired	at	Harvard	University	and	
Massachusetts	 General	 Hospital	 using	 Siemens	 3T	MAGNETOM	
Tim	 Trio	 MRI	 scanners	 equipped	 with	 a	 12-channel	 phase-array	
head coil. Each subject had two sessions on a different day with 
a gap between scan days within 6 months. Each session consisted 
of	a	structural	scan	and	one	or	two	runs	of	resting-state	fMRI.	The	
structural	 image	 was	 a	 T1-weighted	 Multi-Echo	 MPRAGE	 (ME-
MPRAGE)	image	with	1.2	mm	isotropic	resolution	(van	der	Kouwe,	
Benner,	Salat,	&	Fischl,	2008).	The	BOLD	images	had	a	3	mm	iso-
tropic	 resolution.	 Each	BOLD	volume	had	47	 slices	 including	 the	
full	 cerebellum.	 The	 interleaved	 slices	were	 acquired	 in	 an	 inter-
leaved	 fashion	 in	 ascending	 order	 (from	 bottom	 to	 top).	 The	 TR	
was	3	s,	and	the	number	of	volumes	in	each	run	was	124.	The	total	
scan	time	of	each	functional	run	was	6	min	and	12	s.	During	BOLD	
data	collection,	all	participants	were	instructed	to	keep	their	eyes	
open	while	blinking	normally.	For	more	details	about	the	scans,	see	
(Holmes	et	al.,	2015).

2.2 | Standard preprocessing

The	standard	preprocessing	was	performed	using	Matlab	(R2014b)	
and	 Statistical	 Parametric	 Mapping	 software	 (version	 SPM12,	
Wellcome	Department	of	Cognitive	Neurology,	London,	UK;	http://
www.fil.ion.ucl.ac.uk/spm/softw	are/spm12	/;	 RRID:SCR_007037).	
Before	data	preprocessing,	we	set	 the	origin	 for	all	 structural	 and	
functional	 MRI	 images	 close	 to	 the	 anterior	 commissure	 and	 if	
needed,	 adapted	 the	 orientation	 to	 make	 it	 more	 similar	 to	 the	
template	in	MNI	space.	This	step	only	affected	the	transformation	
matrix	and	not	 the	data	 itself	 since	we	did	not	 reslice	 the	 images.	
The	standard	preprocessing	steps	included:	(1)	The	first	four	dummy	
scans	of	each	run	were	removed;	(2)	all	resting-state	functional	im-
ages	were	realigned	to	correct	for	head	movement;	(3)	slice	timing;	
(4)	 coregistration	of	 the	 structural	 and	mean	 functional	 image;	 (5)	
segmentation of the structural image which provides deformation 
fields	to	warp	the	data	to	MNI	space;	and	(6)	warping	of	the	func-
tional	images	to	MNI	space	using	the	deformation	field	of	each	sub-
ject obtained in the previous step.

2.3 | Image quality control

Besides	visually	checking	 image	quality	by	a	neuroradiologist	 (QR)	
to make sure there were no apparent structural abnormalities or 
artifacts	present,	image	quality	of	the	rs-fMRI	data	was	further	as-
sessed using the head movement parameters obtained during the 
realignment	step	(overall	translation	or	rotation	along	any	direction	
and	framewise	displacement)	and	the	change	in	brain	intensities	be-
tween	two	consecutive	volumes	(Power	et	al.,	2012,	2014).

Framewise	 displacement	 (FD)	 was	 calculated	 as	 (Power	
et	al.,	2012,	2014).

in which Δdix=d(i−1)x−dix,	and	similarly	 for	the	other	movement	pa-
rameters [dix diy diz �i �i �i].	Note	that	the	rotation	parameters	should	be	
expressed	in	radians	and	translation	parameters	in	mm.

The	volume	by	volume	intensity	changes	across	whole-brain	vox-
els	are	calculated	as	(Power	et	al.,	2012;	Smyser	et	al.,	2010).

in which Ii
(
x⃗
)
 is the image intensity at locus x⃗	in	volume	i,	<.>	denotes	

the	 spatial	 average	over	 the	whole-brain	voxels	 (Power	et	al.,	2012;	
Smyser	et	al.,	2010).

In	this	work,	we	used	a	cutoff	value	for	FD	of	<0.5	mm	consistent	
with	values	reported	by	Waheed	et	al.	(2016).	The	DVARS	threshold	
was	set	 (per	run)	at	the	mean	of	the	DVARS	values	over	time	plus	
three	 standard	 deviations.	 The	 overall	 translation	 (across	 the	 run)	
was	required	to	be	<1.5	mm	and	the	overall	 rotation	<1.5	degrees	
(in	 all	 directions).	When	no	5	min	 interval	was	present	with	 these	
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http://neuroinformatics.harvard.edu/gsp/
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http://www.fil.ion.ucl.ac.uk/spm/software/spm12/
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characteristics,	we	applied	scrubbing	on	those	volumes	which	were	
outside these predefined limits. We only did this for at most 20 “bad” 
volumes. Scrubbing seems compelling to reduce head movement ef-
fects	but	at	the	cost	of	 loss	of	temporal	degrees	of	freedom	(Ciric	
et	al.,	2017;	Parkes	et	al.,	2018).	Furthermore,	if	too	many	volumes	
required	scrubbing,	it	is	not	clear	if	the	scrubbed	data	still	represent	
the	underlying	connectivity.	When	none	of	the	above	was	satisfied,	
we	considered	the	data	as	of	too	low	quality	and	that	run	was	taken	
off-study.

To investigate the reproducibility of graph measures among ses-
sions,	we	selected	the	first	run	of	each	session	except	when	the	first	
run was taken off-study in which case the second run was used.

2.4 | Pipelines for denoising

We selected two denoising pipelines: a simple approach on the one 
hand	and	a	complex	one	on	the	other	hand	to	evaluate	 the	effect	
of denoising on the reproducibility of graph measures. The simple 
approach	consisted	of	the	inclusion	of	9	regressors:	6	head	motion	
parameters,	2	physiological	parameters	 (a	WM	and	CSF	regressor,	
see	below),	and	the	GSR.	The	complex	denoising	pipeline	had	30	re-
gressors:	24	head	motion	parameters	(6	basic	ones	along	with	their	
temporal	derivatives,	squared	values	and	the	squared	values	of	the	
temporal	 derivatives),	 2	 physiological	 parameters	 along	with	 their	
temporal derivatives and the global signal regressor along with its 
derivative.

The head motion parameters were derived from the realignment 
step	in	the	preprocessing.	WM	and	CSF	regressors	were	extracted	
in	a	WM	and	a	CSF	mask,	respectively,	which	were	calculated	as	the	
intersection	between	the	subject-specific	WM	and	CSF	segmenta-
tions	(thresholded	at	0.9)	and	a	priori	masks	of	WM	and	CSF.	The	a	
priori	masks	were	generated	from	the	a	priori	masks	from	SPM	(in	
case	of	CSF,	we	 limited	 it	 to	the	 lateral	ventricles)	by	thresholding	
them at 0.5 and by applying an erosion to avoid being too close to 
GM.

The	global	signal	regressor	was	calculated	as	the	average	BOLD	
time	 series	 across	all	 voxels	within	a	global	brain	mask	defined	as	
voxels	 in	which	 the	 sum	 of	 the	GM,	WM,	 and	 CSF	 segmentation	
maps	 is	more	 than	0.9	 (Fox	et	al.,	2007;	Shirer,	 Jiang,	Price,	Ng,	&	
Greicius,	2015).	We	 included	GSR	 in	both	simple	and	complex	de-
noising pipelines.

In	 case	 scrubbing	 was	 required	 (i.e.,	 when	 censored	 volumes	
were	identified),	the	censored	volumes	were	not	taken	into	account	
in	any	of	the	preprocessing	steps	except	for	the	band-pass	filtering	
in	which	case	they	were	marked,	and	their	values	were	replaced	by	
linear interpolation before the filtering. During the calculation of the 
functional	connectivity,	 the	censored	volumes	were	not	used.	 It	 is	
worth mentioning that we applied scrubbing of bad volumes in both 
denoising	pipelines	(Power	et	al.,	2014)	if	required.

After	 defining	 all	 regressors,	 we	 applied	 a	 principal	 com-
ponent	 analysis	 (PCA)	 to	 avoid	 multi-collinearity	 of	 regressors	
(Jackson,	1991).

After	removal	of	the	nuisance	signals,	band-pass	filtering	was	ap-
plied	(0.009–0.1	Hz).

2.5 | Network construction

A	 network	 consists	 of	 nodes	 and	 connections.	 The	 nodes	 in	 this	
study were derived from a whole-brain parcellation using differ-
ent	levels	of	granularity	(Shen	et	al.,	2013).	We	selected	50	parcels	
(Shen50)	and	100	parcels	 (Shen100)	per	hemisphere	 for	 this	work	
(https://www.nitrc.org/frs/?group_id=51).	Each	parcel	was	taken	as	
a node of the network.

For	each	subject,	the	average	time	series	of	each	parcel	was	cal-
culated	as	the	mean	of	the	time	series	over	all	voxels	in	the	parcel.	
Based	 on	 the	 average	 time	 series,	we	 calculated	 either	 a	 Pearson	
correlation or a partial correlation between the average time series 
in any pair of parcels. The partial correlations were calculated be-
tween any pair of time series taking the other time series as control-
lers. The calculation was based on the inversion of the covariance 
matrix.	 Partial	 correlations	 remove	 the	 influence	 of	 other	 regions	
and could be considered as a more specific measure for functional 
connectivity	(Marrelec	et	al.,	2006;	Smith	et	al.,	2011).

We studied two types of networks: a binary network and a 
weighted	 undirected	 network	 without	 self-connections.	 Binary	
networks were studied at different densities. The density should 
neither	be	 too	 sparse	nor	 too	dense	 (Hosseini	 et	 al.,	 2013;	Kaiser	
&	Hilgetag,	2006).	Therefore,	we	used	densities	ranging	from	5%	to	
40%	(Wang	et	al.,	2014).	A	weighted	network	can	avoid	the	prob-
lem	 of	 thresholding	 and	 takes	 all	 weights	 into	 account	 (Schwarz	
&	McGonigle,	 2011;	Wang	 et	 al.,	 2011,	 2017;	 van	Wijk,	 Stam,	 &	
Daffertshofer,	2010).	The	weights	have	a	value	between	0	and	1,	and	
they	were	 calculated	 in	different	ways:	 (partial)	Correlations	were	
directly	taken	as	weights	by	either	(a)	its	absolute	value	(abs),	(b)	by	
taking	only	the	positive	values	and	setting	negative	values	to	0	(pos),	
or	(c)	by	setting	positive	values	to	zero	and	then	take	the	absolute	
value	of	the	negative	values	(neg).

Another	 way	 is	 to	 transform	 (partial)	 correlations	 to	 Z-scores 
using a Fisher r-to-Z	transform	(Finn,	1974):

in	which	 r	 indicates	 the	 (partial)	 correlation,	n is the number of vol-
umes,	and	p	is	the	number	of	regions	(which	is	2	in	case	of	correlations)	
(Finn,	1974;	Wang	et	al.,	2014).	Weights	are	then	calculated	from	the	
Z-scores	as	(Wang	et	al.,	2017).

in which Φ is the cumulative distribution function of the standard nor-
mal distribution.

Similar	as	before,	one	can	take	all	the	Z-values	(abs),	set	the	neg-
ative	Z-values	to	zero	(pos),	or	set	the	positive	Z-values	to	zero	(neg)	
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before calculating the weights w.	Although	the	approach	in	which	we	
calculate weights based on Z-scores	is	theoretically	better,	it	suffers	
from two problems: The number of volumes should be greater than 
the number of parcels plus one in order to obtain real values when 
calculating	 partial	 correlations	 directly	 without	 any	 regularization	
approach.	 In	 the	 current	 dataset,	 the	maximally	 available	 number	
of	volumes	was	120	for	a	whole	run.	Therefore,	partial	correlations	
were	only	obtained	for	the	first	level	of	granularity	(50	parcels	per	
hemisphere).	The	other	problem	is	that	the	values	of	the	Z-scores de-
pend	on	the	number	of	volumes	used,	and	this	has	an	impact	on	the	
graph measures themselves. This can be a problem when combining 
data from subjects with a different number of volumes.

2.6 | Graph analysis

Graph	theoretical	analysis	was	conducted	using	the	brain	connectiv-
ity	toolbox	version	2017-05-01	(https://sites.google.com/site/bctne	
t/;	 RRID:SCR_018421;	 Rubinov	 &	 Sporns,	 2010).	 We	 calculated	
nodal and global measures. The nodal graph measures were aver-
age	path	 length,	nodal	clustering	coefficient,	nodal	efficiency,	and	
nodal betweenness centrality. The global graph measures included 
characteristic	path	length,	clustering	coefficient,	efficiency,	and	be-
tweenness centrality. These graph measures were calculated at the 
individual	level.	Furthermore,	hubs	were	defined	based	on	the	hub	
score.	The	hub	score	is	calculated	as	the	sum	of	dummy	values	(0	or	
1)	 for	 four	criteria	based	on	whether	 the	node	belongs	 to	 the	 top	
20%	of	nodes	(a)	showing	the	highest	degree,	(b)	showing	the	low-
est	path	length,	(c)	showing	the	lowest	clustering	coefficient,	and	(d)	
showing the highest betweenness centrality. If the hub score was 
at	 least	 2,	 the	 node	was	 considered	 a	 hub.	 The	modularity	 struc-
ture	was	determined	using	Newman's	algorithm	using	100	realiza-
tions	 (Vandenberghe	et	 al.,	 2013;	Wang	et	 al.,	 2014).	This	defines	
the	 probabilistic	 co-assignment	 matrix	 in	 which	 the	 probability	 is	
given that two nodes belong to the same module when applying 
Newman's	 algorithm.	We	 also	 calculated	 normalized	 graph	 meas-
ures.	A	 normalized	 graph	measure	 is	 the	 ratio	 between	 the	 graph	
measure	and	the	average	graph	measure	of	30	equivalent	 random	
networks.	 Equivalent	 random	networks	 have	 the	 same	number	of	
nodes	and	the	same	density	(in	case	of	binary	networks)	or	the	same	
distribution	of	connectivity	values	(for	a	weighted	network)	but	con-
nections are randomly assigned to each pair of nodes.

2.7 | Measures of reproducibility for 
graph measures

The	reproducibility	of	graph	measures	(Wang	et	al.,	2014)	at	the	in-
dividual	level	can	be	easily	assessed	using	the	test–retest	variability	
(TRT)	(in	%):

m1 and m2 are the values of the graph measure derived from the 
first	and	second	measurement,	respectively.	A	higher	TRT	value	in-
dicates higher variability and less reproducibility.

The consistency of hubs is determined by measuring the co-oc-
currence	(Hc)	of	hubs	(Wang	et	al.,	2014)	which	is	based	on	the	Dice	
coefficient.

where H1 and H2	are	the	list	of	hubs	in	the	network	of	the	first,	respec-
tively,	and	second	measurements.

A	value	of	1	corresponds	to	a	perfect	agreement	of	hubs	while	0	
reflects no agreement at all.

To	assess	the	consistency	of	the	modularity	structure,	we	used	
probabilistic	scaled	inclusivity	(pSI)	(Wang	et	al.,	2014):

Here,	i	and	j	indicate	two	nodes;	P1(i,j) and P2(i,j) are the proba-
bilistic co-assignment between nodes i and j in the network derived 
from	the	first	and	second	measurement,	respectively.	A	value	of	1	
corresponds to a perfect agreement of modularity while 0 reflects 
no	agreement	at	all.	Here,	we	calculated	pSI for each node.

2.8 | Statistics

In	 this	 study,	we	 investigate	 the	effect	of	different	 factors	on	 the	
reproducibility of graph measures. These factors included denois-
ing	pipelines	(simple	vs.	complex),	types	of	correlation	(Pearson	cor-
relation	vs.	partial	correlation),	the	handling	of	negative	correlation	
values	 (absolute	 vs.	 positive	 vs.	 negative	 values),	 type	 of	 network	
(weighted	 vs.	 binary	 networks),	 the	 weight	 calculation	 (based	 on	
the	 (partial)	correlation	or	based	on	a	Fisher	r-to-Z based transfor-
mation),	and	the	granularity	of	the	parcellation	 (50	vs.	100	parcels	
per	 hemisphere).	 To	ensure	 that	 the	 results	 are	not	 depending	on	
the	weight	distribution	or	the	density,	all	comparisons	for	weighted	
networks	were	based	on	normalized	graph	measures,	and	for	binary	
networks,	we	used	identical	densities.

Most	graph	measures	were	not	normally	distributed	(based	on	a	
Shapiro–Wilk	 test),	and	therefore,	we	used	a	 relative	nonparamet-
ric analysis of variance through the aligned rank transform method 
(ART)	(Wobbrock,	Findlater,	Gergle,	&	Higgins,	2011).

The analyses were performed in three steps.
First,	we	used	a	2	×	2	factorial	repeated	measures	nonparametric	

analysis	of	variance	using	ART	to	assess	TRT	values	of	graph	mea-
sures,	in	which	the	first	factor	was	the	denoising	pipeline	(simple	vs.	
complex	denoising)	and	the	second	factor	was	the	type	of	correla-
tion	(Pearson	correlation	vs.	partial	correlation).	For	this	analysis,	we	
used	the	Shen50	parcellation	and	the	absolute	value	of	the	(partial)	
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correlations. We performed the analysis separately for binary net-
works at different densities and for weighted networks. In the latter 
case,	we	introduced	a	third	factor	based	on	how	the	weights	were	
calculated	 (using	 the	 (partial)	 correlation	 values	 or	 using	 weights	
based on the Fisher r-to-Z	 transformation),	 and	 thus,	we	 analyzed	
a	2	×	2	×	2	factorial	 repeated	measures	nonparametric	analysis	of	
variance.

Second,	we	performed	a	3	×	2	factorial	repeated	measures	non-
parametric	analysis	of	variance	using	ART	(ARTool	in	R)	in	which	the	
first	factor	was	the	handling	of	the	negative	correlations	(absolute	
value,	only	positive	values,	 and	only	negative	values)	and	 the	sec-
ond	factor	was	the	type	of	correlation	(Pearson	correlation	vs.	par-
tial	correlation).	For	this	analysis,	we	used—based	on	the	results	of	
the	 first	analyses	 (see	below)—the	Shen50	parcellation,	 the	simple	
denoising	pipeline,	and	weighted	graphs	in	which	weights	were	cal-
culated	based	on	the	value	of	the	(partial)	correlations.

Third,	we	used	ART	to	compare	the	effect	of	the	level	of	parcel-
lation	(50	vs.	100	parcels	per	hemisphere).	In	this	analysis,	we	used	
again the simple denoising pipeline and weighted graphs in which 
weights were calculated based on the value of the correlations. We 
also had to limit this analysis to Pearson correlations since partial 
correlations cannot be reliably calculated given the number of data 
points in the time series compared to the number of nodes.

An	overview	of	all	analyses	is	given	in	Table	1	and	Figure	1.
The p-value	was	 set	 at	 a	Bonferroni	 corrected	p	 <	 .05	 to	 take	

into	account	multiple	comparisons	 (the	number	of	graph	measures	
we have evaluated although graph measures are not completely 
independent).	We	 did	 not	 correct	 for	 the	 number	 of	 analyses	we	

performed,	to	prevent	too	much	reduction	of	power.	All	statistical	
analyses	were	performed	in	Rstudio	(version	3.6.0).

3  | RESULTS

3.1 | The effect of denoising pipelines and types of 
correlation

3.1.1 | Binary networks

In	binary	networks,	the	TRT	variability	for	global	measures	was	large	
at	low	density	(Figure	2,	Table	S1)	irrespective	of	the	denoising	strat-
egy or the type of correlation. Comparing the different strategies 
(analysis	 1a,	 Table	 1;	 Figure	 1a),	 the	 type	 of	 correlation	 (Pearson	
correlation	 vs.	 partial	 correlation)	 has	 a	 significant	 effect	 on	 TRT	
(Table	2):	Pearson	correlations	showed	lower	TRT	values	(Table	S1).	
The	denoising	pipelines	(simple	vs.	complex	denoising)	did	not	have	
a	significant	effect,	and	there	was	no	interaction	effect	between	the	
denoising	pipelines	and	the	type	of	correlation	(Table	2).	Since	TRT	
values were large at lower densities even for global graph measures 
(Table	S1),	we	did	not	further	investigated	binary	networks.

3.1.2 | Weighted networks

Weighted networks showed very low TRT values for global graph 
measures	(Figure	3,	Table	3A,	Table	S2)	irrespective	of	the	strategy	
used.	Comparing	the	TRT	values	for	different	strategies	(analysis	1b,	
Table	1,	Figure	1a),	there	were	significant	main	effects	of	the	type	of	
correlation	(Pearson	correlation	vs.	partial	correlation)	and	weights	
calculation	 (based	on	 the	 raw	 (partial)	 correlation	values	vs.	based	
on transformed Z-values)	(Table	3B).	There	was	also	a	significant	in-
teraction effect between type of correlation and weight calculation 
(Table	3B).	Similarly	as	for	the	binary	networks,	there	was	no	main	
effect of the denoising pipeline.

Local	 clustering	 coefficient	 and	 nodal	 average	 path	 length	
showed relatively low TRT values but local betweenness centrality 
showed	high	TRT	values	(Figure	4,	Table	S3).	Nodal	efficiency	also	
showed	high	TRT	values	in	all	cases	except	when	weights	were	cal-
culated based on transformed Z-values of the correlations.

Hub	consistency	was	moderate	with	average	values	(for	the	dif-
ferent	strategies)	between	0.23	and	0.29.

The average consistency of the modularity structure was be-
tween 0.18 and 0.24.

3.1.3 | Binary and weighted networks constructed 
using orthogonal minimal spanning trees

We have also applied a data-driven topological filtering approach 
based	on	orthogonal	minimal	spanning	trees	(OMST)	to	construct	a	
binary and a weighted network. This method was recently proposed 

TA B L E  1   Statistical analyses

Analyses 1: Factorial repeated measures nonparametric analysis 
of variance using the Shen50 whole-brain parcellation and using 
absolute	values	of	the	(partial)	correlations

1a binary networks:	2	×	2	design	with	factor 1: denoising pipeline 
(simple	vs.	complex)	and	factor 2:	type	of	correlation	(Pearson	
correlation	vs.	partial	correlations)	for	different	densities

1b weighted networks:	2	×	2	×	2	design	with	factor 1: denoising 
pipeline	(simple	vs.	complex);	factor 2: type of correlation 
(Pearson	correlation	vs.	partial	correlations);	and	factor 3: weight 
calculation	method	(based	on	the	raw	values	of	the	(partial)	
correlations	vs.	based	on	transformed	Z-values	obtained	after	a	
Fisher r-to-Z	transform)

Analysis 2:	3	×	2	factorial	repeated	measures	nonparametric	
analysis of variance using the Shen50 whole-brain parcellation 
using the simple denoising pipeline and weighted graphs in which 
the	weights	are	based	on	the	values	of	the	(partial)	correlations.	
Factor 1:	handling	of	the	negative	correlations	(absolute	value,	
only	positive	values,	and	only	negative	values)	and	factor 2: type of 
correlation	(Pearson	correlations	vs.	partial	correlations)

Analysis 3:	Wilcoxon	signed	rank	test	between	the	normalized	graph	
measures obtained using two different whole-brain parcellations 
(Shen50	vs.	Shen100)	in	which	50	and	100	refer	to	the	number	
of	parcels	per	hemisphere.	We	used	a	simple	denoising	strategy,	
absolute values of the correlation and weighted networks in which 
weights were calculated based on the raw values of the correlation
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by	 Dimitriadis,	 Antonakakis,	 Simos,	 Fletcher,	 and	 Papanicolaou	
(2017),	Dimitriadis,	 Salis,	 Tarnanas,	 and	Linden	 (2017).	 The	 results	
are given in Tables S5 and S6 and are in line with the results obtained 
before.

3.1.4 | Binary and weighted networks constructed 
using the Oxford–Harvard atlas

To ensure that the results were not critical depending on the Shen50 
atlas,	we	 also	performed	 an	 additional	 analysis	 using	 the	Oxford–
Harvard	atlas	 (Desikan	et	al.,	2006;	Frazier	et	al.,	2005;	Goldstein	
et	al.,	2007;	Makris	et	al.,	2006).	The	results	(shown	in	Tables	S7-S10)	
were in the same line as for the Shen50 atlas.

3.2 | The effect of type of correlation and the 
handling of negative values

In	a	second	analysis	(analysis	2,	Table	1,	Figure	1b),	we	investigated	
the TRT variability of different strategies to handle negative values 
in	the	(partial)	correlations	(see	Section	2).	In	this	analysis,	we	used	
the Shen50 parcellation to define the nodes and the simple denois-
ing pipeline according to the outcome of the first analysis.

There was a significant main effect of the handling of negative 
values in which taking the absolute value showed overall the lowest 
test–retest	values	(Figure	5,	Table	S4).	Similar	to	analysis	1,	there	was	
a	significant	main	effect	of	the	type	of	correlation,	in	which	Pearson	

correlation-based	normalized	global	graph	measures	showed	lower	
test–retest	 values	 compared	 to	 the	ones	based	on	partial	 correla-
tions	(Table	S4).	There	was	also	a	significant	interaction	effect	(Table	
S4).

Hub	consistency	ranged	from	0.22	to	0.29,	and	the	average	con-
sistency of the modularity structure was between 0.17 and 0.26.

3.3 | The effect of parcellation granularity

In	the	third	analysis	(analysis	3,	Table	1,	Figure	1c),	we	used	the	simple	
denoising pipeline and weighted graphs in which weights were cal-
culated	based	on	the	absolute	value	of	the	(partial)	correlations.	We	
only varied the number of parcels per hemisphere: 50 versus 100 by 
comparing the results for the Shen50 versus Shen100 parcellation.

Mean	TRT	values	of	all	global	graph	measures	obtained	using	the	
Shen100 parcellation decreased compared to the values obtained 
using	 the	Shen50	parcellation	 (Table	4A).	However,	 the	difference	
was	not	significant	(all	p-value	>	.05)	(Table	4B).	The	distribution	of	
TRT for all global graph measures for the Shen50 and Shen100 par-
cellation can be found in Figure 6.

4  | DISCUSSION

In	 this	 study,	 we	 investigated	 the	 effects	 of	 denoising	 pipe-
lines and network constructions on reproducibility of graph 
measures. We found that the choice of denoising pipeline did 

F I G U R E  1   Flow chart of the different analyses
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not significantly affect the reproducibility of graph measures. 
Furthermore,	the	reproducibility	of	graph	measures	of	individual	
binary	 networks	was	 insufficient,	 especially	when	 the	 network	
density was low. This was also the case for the reproducibility 
of	 nodal	 graph	measures,	 in	 particular	 local	 betweenness	 cen-
trality and nodal efficiency. For weighted	networks,	the	method	
of	 choice	was	 the	 absolute	 value	 of	 the	 (partial)	 correlation	 as	
weight.	The	reproducibility	of	normalized	global	graph	measures	
did not critically depend on the level of granularity or the parcel-
lation scheme that was used.

4.1 | Denoising: simple denoising versus 
complex denoising

We	used	a	simple	and	a	complex	denoising	strategy	by	means	of	a	
model with a low or a high number of parameters. The parameters of 
the	simple	model	included	the	six	basic	head	movements	and	regres-
sors	for	WM,	CSF,	and	a	GSR.	This	pipeline	is	widely	applied	for	pre-
processing	of	functional	connectivity	studies	(Fox	et	al.,	2009).	The	
parameters	of	the	complex	model	consisted	of	the	same	parameters	
as	the	simple	model	but	extended	with	their	 temporal	derivatives,	
their	squared	values	and	the	squared	values	of	the	temporal	deriva-
tives	(Ciric	et	al.,	2017,	2018;	Parkes	et	al.,	2018).	According	to	the	

findings	of	Parkes	et	al.	(2018),	the	percentage	of	edges	significantly	
associated	with	 head	motion	was	 10.7%	 for	 the	 simple	 denoising	
strategy	 versus	10.4%	 for	 the	 complex	 denoising	 strategy	 (Parkes	
et	al.,	2018)	which	 is	very	similar.	 In	our	study,	we	also	found	that	
the reproducibility of the graph measures of networks preprocessed 
using	either	the	simple	or	complex	denoising	strategy	was	very	simi-
lar and statistically not different.

Including	the	GSR,	dominated	by	non-neural	signals	such	as	mo-
tion-related and respiratory noise rather than signals from regions 
of	gray	matter,	has	been	demonstrated	to	noticeably	decrease	the	
impact caused by head movement-related artifacts and other phys-
iological	confounds	(Power,	Plitt,	Laumann,	&	Martin,	2017).	It	had	
also	 been	 reported	 that	 including	 the	 GSR	 could	 introduce	 neg-
ative	 correlations	 (Fox	 et	 al.,	 2009;	Murphy	 et	 al.,	 2009)	 and	may	
have	an	impact	on	graph	measures	(Chen	et	al.,	2018).	In	this	work,	
we	 included	the	GSR	based	on	the	work	of	Parkes	and	Ciric	 (Ciric	
et	al.,	2017;	Parkes	et	al.,	2018).	The	combination	of	head	movement	
parameters	and	physiological	non-neural	signal	regressors	and	GSR	
is a relatively effective way to decrease the influence by noise. It im-
proved the reproducibility of the functional connectivity among re-
gions	(Parkes	et	al.,	2018).	Additionally,	we	investigated	differences	
in	reproducibility	between	a	simple	and	a	complex	denoising	models	
at	the	subject	level	and	in	both	denoising	models,	a	global	signal	re-
gressor was included.

F I G U R E  2  TRT	(%)	values	of	global	graph	measures	in	binary	networks.	The	x-axis	indicates	density	(in	percent)	of	the	network	ranging	
from	5%	to	40%.	S,	simple	denoising;	C,	complex	denoising;	Cor,	Pearson	correlation;	Parco,	partial	correlation;	λn,	normalized	characteristic	
path length; Cn,	normalized	clustering	coefficient;	En,	normalized	efficiency;	and	BCn,	normalized	betweenness	centrality
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4.2 | Definition of correlation: correlation versus 
partial correlation

In	 this	 study,	 we	 found	 that	 graph	 measures	 based	 on	 Pearson	
correlations showed lower TRT values versus those based on 
partial	 correlations.	Once	nodes	have	been	defined,	another	 im-
portant	 question	 to	 consider	 is	 how	 to	 quantify	 the	 interaction	
among these spatially distinct regions through neurobiologically 
interpretable	quantities.	The	most	commonly	used	functional	 in-
teractions	 are	 based	 on	 correlations	 (Kirino	 et	 al.,	 2019)	 or	 par-
tial	correlations	(Lin	et	al.,	2018)	between	the	time	course	of	two	
nodes. Functional connections based on correlations between 
two spatially distinct regions could be driven by other regions 
(Wang	et	al.,	2014).	Functional	connections	based	on	partial	cor-
relations	avoid	this	caveat,	and	they	are	more	related	to	effective	
connectivity	(Marrelec	et	al.,	2006;	Smith	et	al.,	2011).	Therefore,	
they	are	a	more	appropriate	method	(Dawson	et	al.,	2016;	Wang,	
Kang,	Kemmer,	&	Guo,	2016)	 to	detect	biologically	 interpretable	
alterations of graph measures under different disease conditions. 
This	might	also	explain	the	higher	TRT	values	of	graph	measures	
based on partial correlations: They could provide more biologically 

meaningful information and therefore are more dependent on the 
brain state.

4.3 | Weight selection

We demonstrated that the weight selection affected the TRT val-
ues	of	graph	measures.	How	to	generate	weights	when	applying	a	
weighted network analysis has not been systematically investigated 
until	now.	We	explored	its	effect	on	TRT	of	graph	measures	through	
combining it with other network construct factors. The weights 
were	derived	either	using	raw	(partial)	correlations	or	using	Z-values 
obtained after a Fisher r-to-Z transform. The weight distribution de-
pends on this choice.

When	looking	at	differences	at	the	functional	connectivity	level,	
it is mandatory to use a Fisher r-to-Z transform in order to perform 
a	correct	statistical	analysis.	However,	this	transformation	depends	
on	the	number	of	data	points	that	is	used.	In	this	study,	the	calcula-
tion	of	graph	measures	was	based	on	the	functional	connectivity.	As	
a	result,	the	weights	when	calculated	using	these	Z-values	also	de-
pend	on	the	number	of	data	points.	As	long	as	all	data	have	the	same	
number	of	data	points,	this	is	not	a	fundamental	problem;	but	when	

TA B L E  2  Comparison	of	denoising	strategy	and	type	of	correlation	on	test–retest	values	for	global	graph	measures	of	binary	networks	
(analysis	1a)

Graph measure
Density 
(%) df

Main effects Interaction

Denoising (Simple vs. 
Complex)

Correlation (Pearson correlation 
vs. partial correlation) Denoising × Correlation

F p F p F p

λn 5 (1,204) 0.0 .86 0.0 .96 0.5 .48

10 (1,204) 0.0 .85 2.1 .15 0.3 .59

20 (1,204) 0.3 .60 10.1 1.7E-03 0.1 .78

30 (1,204) 0.2 .63 9.9 1.9E-03 0.6 .42

40 (1,204) 0.9 .33 27.2 4.4E-07 0.2 .66

Cn 5 (1,204) 0.0 .98 0.7 .41 4.1 .04

10 (1,204) 0.1 .72 5.0 2.6E-02 0.3 .58

20 (1,204) 0.5 .47 1.8 .18 0.0 .86

30 (1,204) 1.2 .27 6.1 1.4E-02 1.9 .17

40 (1,204) 3.8 .05 7.3 7.5E-03 3.4 .07

En 5 (1,204) 0.0 .91 5.3 2.2E-02 0.1 .73

10 (1,204) 2.0 .15 36.6 6.7E-09 1.7 .20

20 (1,204) 0.8 .38 25.9 8.2E-07 0.6 .42

30 (1,204) 0.1 .73 19.9 1.3E-05 0.0 .89

40 (1,204) 2.4 .12 30.0 1.3E-07 1.5 .22

BCn 5 (1,204) 0.7 .41 5.5 2.0E-02 0.1 .71

10 (1,204) 1.7 .20 28.8 2.2E-07 0.3 .58

20 (1,204) 0.1 .78 4.0 4.7E-02 0.2 .68

30 (1,204) 0.0 .99 10.6 1.3E-03 0.1 .78

40 (1,204) 0.2 .65 22.1 4.7E-06 0.0 .97

Note: p-values	are	uncorrected	but	those	in	bold	are	significant	after	a	Bonferroni	correction	(p	<	.05)	correcting	for	4	tests.
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pooling	data	with	a	different	number	of	data	points,	this	approach	
cannot be used.

4.4 | Binary versus weighted networks

Binary	networks	can	be	constructed	independently	of	the	method	
to define weights since they are typically studied at different densi-
ties	and	the	selection	of	the	highest	connections	based	on	raw	(par-
tial)	correlations,	transformed	Z-values,	or	weights	is	the	same	since	
these	methods	preserve	the	order	of	highest	connections.	However,	
we have shown that the reproducibility of binary networks at the 
subject	 level	 is	 low	especially	 at	 lower	densities	 such	 as	5%–10%.	
This	 is	not	surprising	since	at	 lower	densities,	each	change	 in	con-
nection	has	a	more	dramatic	impact	on	the	graph	measures.	Group	
based	binary	networks	are	more	reproducible	(Wang	et	al.,	2014)	but	
in	the	current	study,	we	focused	on	the	use	of	graph	measures	de-
rived from single subjects since this is the preferred method to use 
in	a	clinical	setting	(Xiang	et	al.,	2019).

4.5 | (Partial) correlation values: absolute, 
positive, and negative

When	 using	 (partial)	 correlations	 as	 measure	 of	 functional	 con-
nectivity	 between	 nodes,	 one	 needs	 to	 decide	 how	 to	 handle	

negative	values.	In	most	studies,	either	the	absolute	value	is	used	
or the connectivity is limited to only those connections with a 
positive	value	while	neglecting	 the	negative	 (partial)	 correlations	
(Kazeminejad	 &	 Sotero,	 2019).	 However,	 negative	 correlations	
may	 contain	 important	 biological	 information,	 which	 cannot	 be	
neglected	 (Kazeminejad	 &	 Sotero,	 2019).	We	 found	 that	 the	 re-
producibility of graph measures for networks based on only posi-
tive or only negative values were worse compared to taking the 
absolute	value.	Furthermore,	the	proportion	of	positive	and	nega-
tive	(partial)	correlations	in	a	given	network	may	vary,	which	may	
induce bias if we take only either positive or negative correlations 
into	account.	Therefore,	we	recommend	using	the	absolute	value,	
because connections with negative correlations are taken into ac-
count and the absolute value can be interpreted as the amount 
of information shared between two regions. The only drawback is 
that we cannot distinguish between positive or negative correla-
tions with the same amplitude.

4.6 | Granularity of parcels

The first step in defining a graph is the definition of the nodes 
of the network. There are many different ways to define nodes 
such	 as	 based	 on	 cytoarchitecture,	 anatomy,	 or	 connectivity-
driven	 methods	 with	 different	 levels	 of	 granularity	 (Arslan	
et	al.,	2018).

F I G U R E  3  TRT	(%)	values	of	global	graph	measures	in	weighted	networks.	(a)	weights	are	based	on	the	raw	(partial)	correlations;	(b),	
weights	are	based	on	Fisher's	transformed	r-to-Z	values.	BCn,	normalized	betweenness	centrality;	C,	complex	denoising;	Cn,	normalized	
clustering	coefficient;	Cor,	Pearson	correlation;	En:	normalized	efficiency;	Parco,	partial	correlation;	S,	simple	denoising;	λn,	normalized	
characteristic path length
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Parcellation methods based on functional data have nodes 
which	 are	 more	 homogeneous	 and	 functionally	 coherent	 (Arslan	
et	al.,	2018).	In	our	study,	we	have	used	a	brain	parcellation	obtained	
from	connectivity-driven	analyses	using	spectral	graph	theory	(Shen	
et	al.,	2013).	These	parcellations	were	available	for	different	levels	of	
granularity,	which	made	it	easier	to	study	the	effect	of	granularity.	
Using	parcellation	schemes	which	were	based	on	different	criteria	
would	 be	 an	 extra	 confounding	 factor.	 Furthermore,	 there	 is	 cur-
rently no golden standard for which parcellations to use.

4.7 | Hubs and modularity

The hubs and the modularity structure were only partially consist-
ent	at	the	subject	level.	This	may	be	partially	explained	because	of	
the	 low	reproducibility	of	the	 local	graph	measures.	Another	pos-
sibility is that the identification of hubs and modules is affected 
by	 different	 brain	 states	 present	 during	 the	 resting-state	 experi-
ment	(Kabbara	et	al.,	2019).	As	a	result,	the	hubs	and	modules	may	
be	 different	 during	 different	 brain	 states	 which	 may	 explain	 the	

limited reproducibility. This hypothesis has to be tested by further 
investigations.

4.8 | Limitations

There	 are	 a	 number	 of	 limitations	 in	 this	 study.	 First,	we	 did	 not	
investigate	 all	 possible	 denoising	 pipelines,	 because	 the	 effect	 of	
denoising pipelines on functional connectivity has been studied pre-
viously	(Ciric	et	al.,	2017;	Parkes	et	al.,	2018).	We	selected	relatively	
powerful denoising methods based on a similar type of regressors 
(e.g.,	 head	movement,	WM,	CSF,	 and	 a	 global	 signal	 regressor)	 to	
explore	 the	reproducibility	of	graph	measures.	Second,	we	used	a	
publicly available dataset for which the imaging parameters and the 
protocol	were	already	defined.	As	a	result,	we	could	not	determine	
the	effect	of	the	sampling	rate	(repetition	time)	or	the	variations	in	
protocol	such	as	eyes	open	(with	or	without	a	fixation	point)	or	eyes	
closed.	Third,	we	looked	at	graph	measures	based	on	overall	func-
tional	 connectivity.	 In	 future	 studies,	 the	 reproducibility	 of	 graph	
measures for different brain states can be investigated.

TA B L E  3  Summary	of	normalized	global	graph	measures	for	weighted	networks	(analysis	1b).	A.	Results	for	the	simple	denoising	strategy	
when	using	the	raw	partial	correlations	as	weight.	B.	Results	of	the	statistical	analysis

A

Correlations Partial correlations

Values at time point 1 TRT (%) Values at time point 1 TRT (%)

Mean SD Mean SD Mean SD Mean SD

λn 1.121 0.017 2.0 1.7 1.125 0.030 2.7 2.0

Cn 1.032 0.009 1.1 0.9 1.036 0.013 1.4 1.0

En 0.929 0.007 1.0 0.8 0.930 0.012 1.6 1.2

BCn 0.921 0.023 3.3 2.8 0.916 0.047 6.2 5.4

B

Main Effects df

Denoising (S vs. C) Correlation (Cor vs. Parco)
Weight
(R vs. Z)

F p F p F p

λn (1,476) 5.5 .02 122.4 <1.0E-15 23.7 1.50E-06

Cn (1,476) 0.6 .42 241.1 <1.0E-15 22.5 2.80E-06

En (1,476) 0.5 .49 126.8 <1.0E-15 53.4 1.20E-12

BCn (1,476) 5.5 .02 129.2 <1.0E-15 413.7 <1.0E-15

Interactions df

Denoising × correlation Denoising × weight Correlation × weight Denoising × correlation × weight

F p F p F p F p

λn (1,476) 4.7 .032 3.0 .08 43.5 1.10E-10 4.1 .04

Cn (1,476) 0.6 .43 0.5 .47 162.8 <1.0E-15 0.5 .48

En (1,476) 0.6 .45 3.7 .05 11.8 6.50E-04 1.1 .28

BCn (1,476) 5.4 .021 0.4 .55 13 3.50E-04 5.9 .02

Note: p-values	are	uncorrected	but	those	in	bold	are	significant	after	a	Bonferroni	correction	(p	<	.05)	correcting	for	4	tests.
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5  | CONCLUSIONS

We systematically investigated the reproducibility of graph meas-
ures of brain networks defined at the subject level as potential bio-
markers in clinical work. The denoising pipeline did not affect the 
reproducibility. The reproducibility of graph measures of individual 

binary networks was insufficient especially when the density of 
the network was low. This was also the case for the reproducibility 
of nodal graph measures based on weighted or binary networks. 
For	weighted	 networks,	 using	 the	 absolute	 value	 of	 the	 (partial)	
correlation	as	weight,	was	the	method	of	choice	and	the	reproduc-
ibility does not critically depend on the level of granularity.

F I G U R E  4  TRT	(%)	values	of	nodal	graph	measures	based	on	different	weight	calculations.	(a)	weights	are	based	on	the	raw	(partial)	
correlations;	(b)	weights	are	based	on	Fisher's	transformed	r-to-Z values. Each node is located on a circle and the radius represents the TRT 
value.	C,	complex	denoising;	Cor,	Pearson	correlation;	Parco,	partial	correlation;	S,	simple	denoising

F I G U R E  5  TRT	(%)	values	of	global	graph	measures	based	on	different	(partial)	correlation	value:	handling	of	negative	values.	Abs:	
values	based	on	the	absolute	(partial)	correlations;	BCn,	normalized	betweenness	centrality;	C,	complex	denoising;	Cn,	normalized	clustering	
coefficient;	Cor,	Pearson	correlation;	En,	normalized	efficiency;	neg,	values	based	on	only	the	positive	(partial)	correlations;	Parco,	partial	
correlation;	pos,	values	based	on	only	the	positive	(partial)	correlations;	S,	simple	denoising;	λn,	normalized	characteristic	path	length
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