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Abstract

Many physical simulations aim at evaluating the net interaction between two rigid bodies,

resulting from the cumulative effect of pairwise interactions between their constituents. This

is manifested particularly in biomolecular applications such as hierarchical protein folding

instances where the interaction between almost rigid domains directly influences the folding

pathway, the interaction between macromolecules for drug design purposes, self-assembly

of nanoparticles for drug design and drug delivery, and design of smart materials and bio-

sensors. In general, the brute force approach requires quadratic (in terms of the number of

particles) number of pairwise evaluation operations for any relative pose of the two bodies,

unless simplifying assumptions lead to a collapse of the computational complexity. We pro-

pose to approximate the pairwise interaction function using a linear predictor function, in

which the basis functions have separated forms, i.e. the variables that describe local geom-

etries of the two rigid bodies and the ones that reflect the relative pose between them are

split in each basis function. Doing so replaces the quadratic number of interaction evalua-

tions for each relative pose with a one-time quadratic computation of a set of characteristic

parameters at a preprocessing step, plus constant number of pose function evaluations at

each pose, where this constant is determined by the required accuracy of approximation as

well as the efficiency of the used approximation method. We will show that the standard

deviation of the error for the net interaction is linearly (in terms of number of particles) pro-

portional to the regression error, if the regression errors are from a normal distribution. Our

results show that proper balance of the tradeoff between accuracy and speed-up yields an

approximation which is computationally superior to other existing methods while maintaining

reasonable precision.

Introduction

At the very heart of every static or dynamic simulation, lies the evaluation of physical interac-

tions such as different forms of energy and force. Predicting trajectories in a complex many-

body system demands numerical solving of equations of motion which, in turn, involves evalu-

ation of pairwise interactions between individual objects at different time steps. Oftentimes, a
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large portion of the processing time is dedicated to pairwise interactions, which takes qua-

dratic time, presuming that each particle is influenced by every other particle present in the

system. However, the nature of every particular problem enforces a set of restricting conditions

which perhaps can be utilized to simplify the original problem. In the following, major catego-

ries of simplifying techniques are reviewed.

Ignoring far interactions

The profiles of several distance-dependent interactions suggest that the mutual effect of ‘far’

particles on each other can be neglected where, ‘far’ implies farther than a so-called cut-off dis-

tance, d which varies depending on the type of interaction. Fig 1a and 1b show this for differ-

ent types of physical interactions. Assuming that electrostatic and van Der Waals force

interactions between pairs of atoms fade away as their distance exceeds 9 and 5 Angstroms,

respectively, [1] captures neighborhood information in an atomic ensemble using a 3D hash
table, leading to an n–fold reduction in force computation time.

Using mesh values and interpolation

In many physical applications, the interaction profile does not experience abrupt changes any-

where throughout the domain under study. Particle-in-cell methods lay out a mesh on the

computational domain to interpolate (Fig 1c) the values of pairwise interactions using the

mesh values [2, 3]. Their computational complexity is O(n +mlogn), where n andm are the

numbers of particles and mesh points, respectively [3]. In order to address the limited resolu-

tion provided by the mesh, the P3Mmethod introduced in [3] computes the short-range inter-

actions directly, while for far-field interactions uses the mesh values. A similar approach is

taken in [4], by replacing the mesh with a tree. By stating the potential at each point as a sum

of three components, namely, far, near and external, the work in [2] uses multi-pole expan-

sions to reduce the computation complexity down to O(n).

Exploiting rigidity

Oftentimes, it is observed in physical systems that groups of objects are lumped together as

rigid bodies. Examples of this phenomenon can be seen in hierarchic protein folding instances,

where the interaction between almost rigid domains directly influences the folding pathway

[5], the interaction between macromolecules [6–13] for drug design purposes, self-assembly of

nanoparticles [14] for drug design and drug delivery applications, design of smart materials

[15] and biosensors [16], as well as the interaction between stellar clusters [17]. In such cases,

we look at the motion of each ensemble as a whole. Also, rather than evaluating single pairwise

interactions, we are more interested in their net effect. The assumption of rigidity can be

exploited in different ways:

Faster evaluation of kinematic parameters. Rigid body constraint algorithm is incorpo-

rated in [18] into a GPU-accelerated MD to speed up the numerical solving of equations of

motion. Distance and angular holonomic constraints are enforced in [19] during the molecu-

lar simulations. Also, [20] suggests a robust parallelizable constraint method for molecular

simulations. These methods, however, do not offer techniques for reducing the computational

complexity associated with interaction computations.

Faster net interaction evaluation by avoiding pairwise evaluations within rigid bodies.

In the brute force approach, computing the net interaction between a pair of rigid bodies is

accomplished by simply adding up all the pairwise interactions. This can be however computa-

tionally improved when rigid domains are identified within the system. In an effort to compu-

tationally benefit from the rigidity condition, [1, 21–23] the protein molecule was modeled, in
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[1, 21–23] as a kinematic chain with groups of atoms lumped together. These groups of atoms

act as rigid bodies or links and thus, lead to speedups in force computation and motion track-

ing in simulations, by neglecting the internal forces. However, since the number of rigid bodies

is proportional to the number of atoms, the computational complexity remains dependent of

the number of atoms. The Chain Tree data structure introduced in [24] stores the distance sta-

tus of pairs in a hierarchy, allowing fast inquiry and update for them, avoiding interaction eval-

uations within rigid sections and resulting in a logarithmic reduction of time complexity (still

dependent on the number of particles). Notice that, as long as the net effect of interactions on

each individual particle is of concern, the minimum reachable computational complexity is of

the order of O(n), n being the number of particles present in the system.

Faster net interaction evaluation by approximating attributes of rigid body pair. As

long as the pairwise effect of interest is distance dependent, the net interaction can be

expressed only as a function of the relative pose of the two bodies, plus a description of geome-

try at a reference relative pose. The number of independent variables needed for articulating

the pose equals 6 in the most general case, with 3 translational and 3 rotational variables. How-

ever, this number can be as low as 1 if specific restraints are enforced such as the case studied

in [14], where the two alpha helices are hinged together by means of a revolute joint. This sug-

gests that unlike the general n− body problem (where the net effect of interactions on each par-

ticle must be tracked), a computational complexity that is independent of n is in theory

achievable, due to the fact that number of parameters needed to describe the state of the sys-

tems collapses from O(n) toO(1) (= the number of relative pose parameters). Although for cer-

tain special cases with restrained geometries, closed-form simplifications of the interaction

functions can be suggested, such as the case of gravity force between earth and a mass on its

surface (where the earth is taken as a sphere and the mass on the surface is taken as a point), a

straightforward formulation does not seem to exist for the general unrestrained geometry (i.e.

between arbitrary shapes), as we may end up with expressions with a quadratic number of

terms, each of which referring to a single pairwise interaction. In [25], a method is proposed

for evaluation of long-range forces and moments between rigid bodies. For a prevalent form of

the interaction function, where force is a negative integer power of distance, the pairwise inter-

action in [25] is approximated by obtaining the binomial series expansion of the force function

followed by neglecting the terms that become insignificant when the two objects get “far

enough” from each other. The method offers a computational complexity of interaction

Fig 1. Existing techniques. Left: trend of pairwise interaction vs. pairwise distance for (a) van der Waals energy (b) electrostatic energy and/or gravity force (A = 1, B = 1.5

and C = 1). Within the dotted lines, pairwise interaction can be neglected and the green dot specifies the cut-off distance. Right: Interpolating from mesh values.

https://doi.org/10.1371/journal.pone.0195618.g001
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evaluation which is independent of the number of particles present in the simulation. How-

ever, observe that the method is limited to specific forms of force function (F/ 1/dn, where d
is distance and n is a positive integer number). Therefore, other forms of force, for instance,

the widely used linear and non-linear spring models [26, 27] for describing the interaction

between particles do not fall within the scope of application of their method. In addition, the

method only addresses the computation of long-range interactions and therefore fails to com-

pute the net interaction when the two objects become closer than a threshold distance. There-

fore, short-range interactions which play an important role in determining the overall

attributes of the system must be treated separately with conventional approaches.

In this paper, we attempt to address the shortcomings of the existing methods in exploiting

the rigidity condition. We propose to approximate the pairwise interaction function using a

linear predictor function, in which the basis functions have separated forms [28], i.e. the vari-

ables that describe local geometries of the two rigid bodies and the ones that reflect the relative

pose between them are split in each basis function. Doing so facilitates certain summation

operations on the pairwise interactions during a preprocessing step, yielding fast evaluation of

instantaneous net interaction whenever required. The multivariate pairwise interaction func-

tion is approximated by one that has the following separated form [28]: f �
Pr

k¼1
bkgkhk,

where hk only concerns the relative pose of the two rigid bodies, gk is only descriptive of geom-

etry at a reference relative pose, r is the separation rank (Fig 2) and βk is the regression coeffi-

cient. The advantage of this is that, now, we can collect all the terms with similar hk and sum

over all the corresponding βk gk values (which can be obtained from the geometry at the refer-

ence relative pose) once, in a preprocessing step to attain a set of characteristic parameters.
Then, computing the net interaction requires an evaluation of only O(r) terms, i.e. {hk|1� k�
r}, instead of one evaluation per each pair of particles. Using this method, the quadratic num-

ber of pairwise interaction evaluations (O(rMN),M and N, being the numbers of particles of

the two bodies), in computing the net interaction at each relative pose, is replaced with one-

time quadratic operations in preprocessing (O(MN)) plus constant pose function evaluations

at each pose (O(r)), where r is independent ofM and N and is only a function of the accuracy

and efficiency of the used approximation method.

The two steps for arriving at a linear regression that approximates a multivariate pairwise

interaction (for functions that admit this variable decomposition) are: (1) finding appropriate

basis functions (i.e., {hk, gk|1� k� r}); and (2) adjusting the regression coefficients (i.e., {βk|1
� k� r}). Note that the accuracy of pairwise interaction has direct influence on the accuracy

of the resulting net interaction.

Several different approaches can be found in the literature for approximating multivariate

functions. A review of finite sums decomposition methods in mathematical analysis can be

found in [29]. In [30], decomposable functions of several variables are studied. The paper

deals, in particular, with a function of three variables and claims that many of the results are

extendable to more than three variables. The algorithm presented in [28] estimates a function

of many variables from scattered data by approximating it as a sum of separable functions. The

method is linear in the number of data points as well as the number of variables, which makes

it suitable for large data sets in high dimensions. Also, [31] gives a method for decomposing

smooth functionH of k variables into a finite sum of products of k functions of single variables,

as well as, conditions for the existence of special decompositions. Moreover, [32] reviews the

recent advances in the use of separated representations.

Reviewing the existing approximate decomposition methods, two observations are made:

(1) each one of these methods involves some sort of data-driven training and optimization. (2)

each method best fits certain types of multivariate functions.
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Fig 2. Brute force versus the proposed approximation method for computing the net interaction between two rigid bodies at multiple poses.

https://doi.org/10.1371/journal.pone.0195618.g002
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We propose an approximate decomposition method for the prevalent distance-dependent

interactions i.e., for the cases that the pairwise interaction is stated only as a function of the

pairwise distance and some constant (over all poses) scalar values (e.g., electrostatic, van der

Waals, gravity, spring, collision, etc.) (Note that, the pairwise distance itself, is a multivariate

function of up to 12 variables (where 6 variables describe the coordinates of a pair of points at

the reference relative pose and another 6 describe the pose parameters)). Our method, first

surrogates the interaction function as a polynomial of squared distance (
Pn

k¼0
akðd2Þ

k
), using

the linear regression method. This is followed by substituting d2 in the polynomial with its

equivalent, in terms of reference geometry and pose variables, and finally expanding the poly-

nomial to get a finite sum of products. It is worthwhile noting that, choosing d2 over d as the

independent variable, is key to this method which, guarantees a finite number of terms,

resulted from the expansion.

Using this method, the two aforementioned steps of approximation (i.e., choosing the basis

functions and adjusting the regression coefficient) are conducted automatically, with minimal

data-driven training. In fact, the only training that is performed here is the linear regression

that is done to get the polynomial of d2 which, takes only fractions of a second, even for very

large data. Moreover, the presented method is an essay-to-implement technique that manifests

the promise of using separated representation for computing the net interaction between rigid

bodies at different poses. The utility of the method will be shown using several test cases. Note

that, the accuracy of the polynomial approximation highly depends on the degree of the poly-

nomial and thus the complexity of representation. We plan to embed more efficient approxi-

mation techniques into the method in the future stages of this work.

The proposed usage of separable functions yields a fast approximation method for the net

interaction between lumped masses whose complexity and accuracy are independent of the

number of particles, but rather dependent on the efficiency of the used decomposition tech-

nique. The presented polynomial method, although not optimal, but offers a straightforward

and almost generic (i.e., with no restriction on the form or the domain of the pairwise interac-

tion function as long as the pairwise interaction admits polynomial regression) technique for

decomposing distance-dependent interactions. Moreover, the presented approach facilitates

the design process [33, 34] of desired behaviors in a system of rigid bodies, by giving the

designer the option to manipulate the characteristic values. We demonstrate that, the standard

deviation of the error for the net interaction is linearly (in terms of number of particles) pro-

portional to the regression error, if the regression errors are from a normal distribution. In the

Results section, we show that as the number of particles and the number of poses which inter-

action must be evaluated at go up, the computational superiority of the proposed method over

the brute force (or other methods whose complexities are dependent on the number of parti-

cles) can be observed more vividly. The proposed method particularly finds application in

molecular simulations where the interplay between molecular domains must be studied, as

well as molecular design where molecular domain systems must be designed with certain

desired behaviors.

Materials and methods

In this section, we will first show how separated representation can be used for approximating

the net interaction function. Then, the polynomial regression/expansion method for approxi-

mating distance dependent functions is discussed. The section is concluded with an error anal-

ysis of the proposed approximation method.
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Separated variable representation

Let f~poi ji � Mg and f~qoi ji � Ng represent the coordinates of individual particles in rigid bod-

ies P and Q respectively, at some reference relative pose, ξo, of the two rigid bodies. Without

the loss of generality, we assume body P to be fixed in the configuration space (i.e., the refer-

ence frame to be attached to body P), and therefore the up to 6 variables that describe the spa-

tial configuration of Q, are also representative of the relative pose of the two bodies. More so,

let fl
P
i ji � Mg and fl

Q
i ji � Ng reflect some pose-independent property of the individual par-

ticles that appears in the pairwise interaction function (e.g., particle charge). The interaction

among particle i of P and particle j of Q at any relative pose ξ can be stated as:

fi;j ¼ f ð~pi; l
P
i ;~qj; l

Q
j Þ ð1Þ

or alternatively

fi;j ¼ f ð~poi ; l
P
i ;~q

o
j ; l

Q
j ;T

x

xoÞ ð2Þ

where Tx

xo is the transformation operator that takes ξo to ξ. Assume that the pairwise interac-

tion can be approximated by sparable functions in the following form:

fi;j �
Xr

k¼1

bkgkð~p
o
i ; l

P
i ;~q

o
j ; l

Q
j ÞhkðT

x

xoÞ ð3Þ

where r is the separation rank [28]. Then the net interaction between the two rigid bodies can

be expressed as:

FPQ ¼
XM

i¼1

XN

j¼1

fi;j �
Xr

k¼1

XM

i¼1

XN

j¼1

bkgkð~p
o
i ; l

P
i ;~q

o
j ; l

Q
j Þ

" #

hkðT
x

xoÞ ð4Þ

Defining interaction characteristic constant Ck ¼
PM

i¼1

PN
j¼1

bkgkð~pi; l
P
i ;~qj; l

Q
j Þ, we have

FPQ �
Xr

k¼1

CkhkðT
x

xoÞ ð5Þ

Since interaction characteristic constants are independent of pose, they can be computed once

and be inserted into Eq (5). Then for finding the net interaction at any arbitrary pose, O(r) dif-

ferent terms must be evaluated (Fig 2).

Polynomial regression/expansion

It was shown in the previous section that, if one can get a separated representation of the pair-

wise interaction, they can use it towards formulating the net interaction between two lumped

masses at different poses and defining the characteristic values. Now, we will see how this sepa-

rated representation can be achieved by surrogating the interaction profile with a polynomial

of squared distances and then expanding it. Using polynomial regression, we get:

f ðd; lPi ; l
Q
j Þ � sðl

P
i ; l

Q
j Þ
Xn

k¼0

akðd
2Þ
k

ð6Þ

where d is the distance between~pi and~qj, s is a function of l
P
i and l

Q
j , ak is polynomial regres-

sion coefficient and n is the degrees of the polynomial. In the case that the left hand side of

Eq (6) represents the magnitude of a vector function (i.e., j~f ðd; lPi ; l
Q
j Þj) which is applied in the

Approximating net interactions among rigid domains

PLOS ONE | https://doi.org/10.1371/journal.pone.0195618 April 9, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0195618


direction of the vector connecting~pi and~qj (e.g, pairwise force), the approximation can take

place componentwise, giving rise to a proper vector sum for evaluating the net interaction. For

that, instead of the interaction magnitude, the ratio of interaction magnitude over distance, is

surrogated as a polynomial of squared distance:

j~f ðd; lPi ; l
Q
j Þj

d
� sðlPi ; l

Q
j Þ
Xn

k¼0

akðd
2Þ
k
; ð7Þ

from which, components of the pairwise interaction can be attained:

fi;j;l ¼
j~f ðd; lPi ; l

Q
j Þj

d
ðqj;l � p

o
i;lÞ

ð8Þ

where,

~qj ¼ T
x

xo~qoj ð9Þ

and subscript l takes values 1, 2 or 3 which, respectively, indicate x, y and z components. Also,

in this method, certain additional treatments of the pairwise interaction, before conducting

the summation over pairs, are allowed as long as the polynomial form is preserved. For

instance, one can approximate the pairwise moment by manipulating the pairwise force inter-

action:

~mi;j ¼~qj �~f i;j ¼ ðT
x

xo~qoj Þ �~f i;j ð10Þ

The right hand sides of Eq (6) can expanded after the following replacement:

d2 ¼ ð~qj � ~poi Þ � ð~qj � ~p
o
i Þ ¼

X3

l¼1

ðqj;l � p
o
i;lÞ

2
ð11Þ

and using Eq (9) to substitute~qj. In the most general case (where all 6 pose parameters are vari-

able), we can express the transformation as a combination of rotation by an angle θ about an

axis in the direction of a unit vector~u ¼ ðu1u2u3Þ
t

where u2
1
þ u2

2
þ u2

3
¼ 1 and a translation

vector~x ¼ ðx1x2x3Þ
t

(superscript t indicates transpose.):

Tx

x0
¼

cosyþ u2
1
ð1 � cosyÞ u1u2ð1 � cosyÞ � u3siny u1u3ð1 � cosyÞ þ u2siny x1

u2u1ð1 � cosyÞ þ u3siny cosyþ u2
2
ð1 � cosyÞ u2u3ð1 � cosyÞ � u1siny x2

u3u1ð1 � cosyÞ � u2siny u3u2ð1 � cosyÞ þ u1siny cosyþ u2
3
ð1 � cosyÞ x3

0 0 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Substituting this into Eq (9), we have

~qj ¼

ðcosyþ u2
1
ð1 � cosyÞÞqoj;1 þ ðu1u2ð1 � cosyÞ � u3sinyÞqoj;2 þ ðu1u3ð1 � cosyÞ þ u2sinyÞqoj;3 þ x1

ðu2u1ð1 � cosyÞ � u3sinyÞqoj;1 þ ðcosyþ u
2
2
ð1 � cosyÞÞqoj;2 þ ðu2u3ð1 � cosyÞ � u1sinyÞqoj;3 þ x2

ðu3u1ð1 � cosyÞ � u2sinyÞqoj;1 þ ðu3u2ð1 � cosyÞ þ u1sinyÞqoj;1 þ ðcosyþ u
2
3
ð1 � cosyÞÞqoj;1 þ x3

0

B
B
B
@

1

C
C
C
A
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Consequently, substituting this in (11) gives:

d2 ¼ qoj;1 ðcosyþ u2
1
ð1 � cosyÞÞ þ qoj;2 ðu1u2ð1 � cosyÞ � u3sinyÞ þ qoj;3 ðu1u3ð1 � cosyÞ þ u2sinyÞ þ x1

� �2

þ qoj;1 ðu2u1ð1 � cosyÞ þ u3sinyÞ þ qoj;2 ðcosyþ u2
2
ð1 � cosyÞÞ þ qoj;3 ðu2u3ð1 � cosyÞ � u1sinyÞ þ x2

� �2

þ qoj;1 ðu3u1ð1 � cosyÞ � u2sinyÞ þ qoj;1 ðu3u2ð1 � cosyÞ þ u1sinyÞ þ qoj;1 ðcosyþ u2
3
ð1 � cosyÞÞ þ x3

� �2

Note that d2 is now represented as a sum of squares of separated representations. We will

now show that this can turn into a separated representation.

Lemma 1. Let function f have a separated representation. Then, fn, in which n is a non-neg-

ative integer, also has a separated representation.

Proof. Suppose that f has the following form:

f ¼
Xr

k¼1

gkhk ð12Þ

Then

f n ¼
Xr

k¼1

gkhk

 !n

¼ ðg1h1 þ g2h2 þ :::þ gkhk þ :::þ grhrÞ
n

ð13Þ

f n ¼
X

8ða1þ:::þar¼nÞ

Ca1 ;:::;ar

Yr

k¼1

gk
akhk

ak ¼
X

8ða1þ:::þar¼nÞ

Ca1 ;:::;ar
g1

a1g2
a2 :::gkak :::grar h1

a1h2

a2 :::hk
ak :::hr

ar
ð14Þ

where α1, . . ., αr are non-negative integer numbers and

Ca1 ;:::;ar
¼

n
a1

� �
n � a1

a2

� �

:::
n � ða1 þ a2 þ :::þ ar� 1Þ

ar

� �

where n
k

� �
indicates the number of k-combinations from a set of n elements (Fig 3).

From, it can be concluded that, d2 and consequently,
Pn

k¼0
akðd2Þ

k
have separated forms.

Here as an example, we derive the separated formulation for d2 for the case that, only two

out of six pose parameters, x1 and θ are variable (i.e., x2 = x3 = u1 = u2 = 0, u3 = 1). The trans-

formation will take the following form:

Tx

x0
¼

cosy � siny 0 x1

siny cosy 0 0

0 0 1 0

0 0 0 1

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

Replacing this in 9 yields:

~qj ¼

cosyqoj;1 � sinyqoj;2 þ x1

sinyqoj;1 þ cosyq
o
j;2

qoj;3

0

B
B
B
@

1

C
C
C
A
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Substituting this in 11 gives:

d2 ¼ ðcosyqoj;1 � sinyqoj;2 þ x1 � poi;1Þ
2
þ ðsinyqoj;1 þ cosyq

o
j;2 � p

o
i;2Þ

2
þ ðqoj;3 � p

o
i;3Þ

2
ð15Þ

or

d2 ¼ x2
1 þ poi;12þ p

o
i;22þ ðq

o
j;3 � p

o
i;3Þ

2
þ � poi;1 2x1 þ qoj;12þ q

o
j;22 cos2y þ qoj;12þ q

o
j;22 sin2y

þ � qoj;1p
o
i;1 � q

o
j;2p

o
i;2 2cosy þ qoj;2p

o
i;1 � q

o
j;1p

o
i;2 2siny þ qoj;1 2cosyx1 þ � q

o
j;2 2sinyx1

which as can be observed, has a separated form.

Error analysis

Every approximation introduces some type of error. We must see how the error of pairwise

interaction contributes to the error of the net approximation. Eq (3) can be restated as

fi;j ¼
Xr

k¼1

bkgkð~p
o
i ; l

P
i ;~q

o
j ; l

Q
j ÞhkðT

x

xoÞ þ �i;j ð16Þ

Fig 3. Each path results in an algebraic term that has a separated form.

https://doi.org/10.1371/journal.pone.0195618.g003

Approximating net interactions among rigid domains

PLOS ONE | https://doi.org/10.1371/journal.pone.0195618 April 9, 2018 10 / 18

https://doi.org/10.1371/journal.pone.0195618.g003
https://doi.org/10.1371/journal.pone.0195618


where, �i,j is the regression error. This reformulates Eq (4) in the following form:

FPQ ¼
Xr

k¼1

XM

i¼1

XN

j¼1

bkgkð~p
o
i ; l

P
i ;~q

o
j ; l

Q
j Þ

" #

hkðT
x

xoÞ þ Enet ð17Þ

where Enet ¼
PM

i¼1

PN
j¼1
�i;j. Assuming a normal distribution for the regression error

(�i;j � Nð0; s2
r Þ), we have

E � Nð0;MNs2
r Þ ¼ Nð0; ð

ffiffiffiffiffiffiffiffi
MN
p

srÞ
2
Þ ð18Þ

implying that the error for the net interaction is linearly (in terms of number of particles) pro-

portional to the regression error, if the regression errors are from a normal distribution.

Results and discussion

This section provides a few examples in which, the polynomial regression/expansion method

is used to obtain a separated representation (with only one variable pose parameter) of a few

types of pairwise interactions, followed by using it to evaluate the net interaction between

lumped masses at different poses. We will observe that the computational time collapses from

quadratic to constant yet, the resulting accuracy is reasonable.

Electrostatic energy of two rectangular cubes, 1D translation

Consider the two rectangular cubes P and Q shown in Fig 4a, where point charges are distrib-

uted inside the objects. Knowing the local coordinates of each point charge inside each object,

we want to evaluate the electrostatic energy of the system at a sequence of snapshots as Q trav-

els a certain distance in x1 direction. The pairwise electrostatic energy for two point charges l
P
i

and l
Q
j is

ei;j ¼
l
P
i l

Q
j

4p�d
ð19Þ

Fig 4. Object P is fixed. Two scenarios occur for object Q: (a) it is translated in x1 direction; (b) it is rotated about x3.

https://doi.org/10.1371/journal.pone.0195618.g004
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where d is the distance between the charges and � is the dielectric constant. Given that the only

variable pose parameter here is x1, we have:

d2 ¼ x2
1 þ ðqoj;1 � p

o
i;1Þ

2
þ poi;22þ p

o
i;32 þ ðq

o
j;1 � p

o
i;1Þ 2x1 ð20Þ

We need to approximate the function 1/d as a polynomial of d2. Let a1 = a2 = 3 and a3 = a4 = 1

for this example. Also, let 0� x1� 5. It can be shown that for this special case, 1� d2� 82

and thus the regression needs to be valid for this range. Choosing n = 9 as the degree of the

polynomial regression, substituting 20 in 6 and conducting polynomial expansion results in

the following expression for the pairwise energy:

ei;j ¼
X18

k¼0

bk;i;jx
k
1

ð21Þ

where, βk,i,j is only a function of~poi , l
P
i ,~qoj and l

Q
j . Fig 5 juxtaposes the values obtained for the

net energy obtained from the conventional brute force method and the proposed approxima-

tion technique, as well as the time spent by each method for 3 different test cases.

Fig 6 compares the computational time of the conventional brute force method and the

approximation method (preprocessing step as well as iterations for different relative poses) for

different selections of two parameters, namely the number of particles in each rigid body and

number of steps at which net interaction (energy in this case) is evaluated. For the proposed

method, the overall computation time is obtained by summing up the preprocessing time and

that of the main process (i.e., iterations for different relative poses). Note that the number of

particles only affect the former and the number of iterations (i.e., the number of poses at

which the net interaction must be evaluated) only affects the latter.

Fig 5. (a) Each object has 500 charged particles, randomly distributed within its confining box. The net electrostatic energy is evaluated at 500 snapshots. Conventional

brute force method takes 40s of processor time compared to 6s taken by the approximation method. The average error is 1.75%. (b) Objects are similar to case a. Energy is

evaluated in 100 snapshots. Conventional brute force method takes 8s long, while the approximation method is accomplished in 6s. The average error is 1.75%. (c) Each

object has 1000 charged particles, randomly distributed within its confining box. Energy evaluation is conducted at 500 snapshots. Conventional brute force and

approximation methods last 160s and 24s respectively. The average error is 2.15%.

https://doi.org/10.1371/journal.pone.0195618.g005
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Electrostatic energy of two rectangular cubes, 1D rotation

Now, let object Q be rotated about x3 axis. This time, given that the only variable pose parame-

ter is θ, we have:

d2 ¼ poi;12þ p
o
i;22þ ðq

o
j;3 � p

o
i;3Þ

2
þ qoj;12þ q

o
j;22 cos2y þ qoj;12þ q

o
j;22 sin2y

þ � qoj;1p
o
i;1 � q

o
j;2p

o
i;2 2cosy þ qoj;2p

o
i;1 � q

o
j;1p

o
i;2 2siny

Let the box dimensions be the same as the previous case. Also, let −π/2� θ� 0. Again, choos-

ing n = 9 as the degree of the polynomial regression, substituting the expression for d2 in 6,

conducting polynomial expansion and noting that, cos2 θ = 1 − sin2 θ, results in the following

expression for the pairwise energy:

ei;j ¼
X9

k¼0

bk;i;jðsinyÞ
k
þ γk;i;jðsinyÞ

kcosy ð22Þ

where, βk,i,j and γk,i,j are only functions of~poi , l
P
i ,~q

o
j and l

Q
j . Similar to the previous case, Fig 7

compares the performances of conventional brute force and approximation method.

Fig 6. Computational time of conventional brute force method and approximation method for different selections of the number of steps and the number of

particles in each rigid body.

https://doi.org/10.1371/journal.pone.0195618.g006
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Almost-rigid bodies

In several real cases, the objects under study do not remain absolutely rigid during their range

of motion but rather fluctuate around a so-called average rigid structure. Such phenomenon is

often seen in molecular domains and usually is reflected by an index called B factor [35]. To

study the effect of flexibility factor on the performance of the approximation method, we

repeat the first example for 3 different levels of rigidity. The brute force method computes the

net interaction based on the exact coordinates of the particles at each snapshot, while the

approximation method assumes a rigid body motion (Fig 8).

Net force and net moment approximation

Approximations of net force and net moment are shown using another example. Let a1 = a2 =

a3 = a4 = 1 reflect the dimensions and 0� x1� 2 for the objects of Fig 4a. Figs 9 and 10

Fig 7. (a) Each object has 500 charged particles, randomly distributed within its confining box (same objects as the case of translation example). The net electrostatic

energy is evaluated at 500 snapshots. Conventional brute force method takes 40s of processor time compared to 21s taken by the approximation method. The average error

is 0.99%. (b) Objects are similar to case a. Energy is evaluated in 100 snapshots. Conventional brute force method takes 8s long, while the approximation method is

accomplished in 21s. The average error is 0.99%. (c) Each object has 1000 charged particles, randomly distributed within its confining box. Energy evaluation is conducted

at 500 snapshots. Conventional brute force and approximation methods last 159s and 84s respectively. The average error is 1.57%.

https://doi.org/10.1371/journal.pone.0195618.g007

Fig 8. The translation example is repeated, but this time, we let particles deviate from their initial local coordinates at the reference pose, during the motion. The

deviation is confined by a cube whose edge takes a certain size and is 0.1 for case a, 0.3 for case b and 0.5 for case c. The average errors for the three cases are respectively

1.77%, 2.58% and 4.05%.

https://doi.org/10.1371/journal.pone.0195618.g008
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compare the approximation technique with the brute force method in computing different

components of the net force as well as the net moment between the two objects at different

snapshots.

Electrostatic energy of two alpha helices, 1-D translation

Fig 11 compares the two methods in evaluating the net interaction between two alpha helices.

The first helix is fixated in the space, while the other one is translated 4Å in the x direction.

The electrostatic energy resulting from the partial charges on the atoms of the two objects is

computed at different snapshots during the motion, both using the conventional brute force

method and the suggested approximation technique.

Conclusion

Despite all the breakthroughs in the field of computer algorithms, as well as the huge computa-

tional power available on even personal computers, the quadratic computational complexity

associated with exact pairwise interaction evaluations remains the bottleneck of static and

dynamic simulations. This has caused an ongoing search for efficient approximation methods.

Fig 9. Components of the net force are computed using the approximation technique as well as the conventional brute force method. Each object has 500 charged

particles, randomly distributed within its confining box. Net force evaluation is conducted at 500 snapshots. The conventional method takes 55s of processor time

compared to 8s taken by the approximation method. The average error is 6.99%.

https://doi.org/10.1371/journal.pone.0195618.g009

Fig 10. Components of the net moment are computed using the approximation technique as well as the conventional brute force method. Each object has 500

charged particles, randomly distributed within its confining box. The net moment evaluation is conducted at 500 snapshots. The conventional method takes 55s of

processor time compared to 8s taken by the approximation method. The average error is 12.37%.

https://doi.org/10.1371/journal.pone.0195618.g010
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In this paper, we proposed an approximation method for the special case that the net interac-

tion between two rigid bodies, resulting from the cumulative effect of pairwise interactions

between their constituents, must be evaluated. A linear predictor, the basis functions of which

have separated forms, is used to approximate the values of a multivariate interaction function.

In other words, the variables that describe the local geometries of the two rigid bodies and the

ones that reflect the relative pose between them are split. This facilitates certain summation

operations, when computing the net interaction. As a result, the quadratic number of interac-

tion evaluations for each relative pose is replaced with a one-time quadratic computation of a

set of characteristic parameters at a preprocessing step, plus constant number of pose function

evaluations at each pose, where this constant is determined by the required accuracy of

approximation as well as the efficiency of the used approximation method. We showed that

the standard deviation of the error for the net interaction is linearly proportional to the regres-

sion error, if the regression errors are from a normal distribution. Our results also showed that

even exploiting the simple polynomial regression/expansion method to obtain the separated

representation can yield faster computation yet comparable in accuracy to the conventional

brute force method. This promises even better performances if more efficient fitting algo-

rithms are employed.

Author Contributions

Conceptualization: Pouya Tavousi.

Data curation: Pouya Tavousi.

Formal analysis: Pouya Tavousi.

Investigation: Pouya Tavousi.

Methodology: Pouya Tavousi.

Project administration: Pouya Tavousi.

Resources: Pouya Tavousi.

Fig 11. Left is an all-glycine alpha helix with 25 residues and is fixated in space. Right is an all-Alanine alpha helix again with 25 residues and is translated 4Å in the x

direction. The conventional and brute force evaluations of the electrostatic energy between the two object are shown. The average error is 11.26%.

https://doi.org/10.1371/journal.pone.0195618.g011

Approximating net interactions among rigid domains

PLOS ONE | https://doi.org/10.1371/journal.pone.0195618 April 9, 2018 16 / 18

https://doi.org/10.1371/journal.pone.0195618.g011
https://doi.org/10.1371/journal.pone.0195618


Software: Pouya Tavousi.

Validation: Pouya Tavousi.

Visualization: Pouya Tavousi.

Writing – original draft: Pouya Tavousi.

Writing – review & editing: Pouya Tavousi.

References
1. Tavousi P, Behandish M, Kazerounian K, IlieşHT. An improved free energy formulation and implemen-

tation for kinetostatic protein folding simulation. In: ASME 2013 International Design Engineering Tech-

nical Conferences and Computers and Information in Engineering Conference. American Society of

Mechanical Engineers; 2013. p. V06AT07A006–V06AT07A006.

2. Greengard L, Rokhlin V. A fast algorithm for particle simulations. Journal of computational physics.

1987; 73(2):325–348. https://doi.org/10.1016/0021-9991(87)90140-9

3. Hockney RW, Eastwood JW. Particle-Particle-Particle-Mesh (P3M) Algorithms. Computer simulation

using particles( CRC Press, 1988, pp 267–304). 1988;.

4. Oshino S, Funato Y, Makino J. Particle–Particle Particle–Tree: A Direct-Tree Hybrid Scheme for Colli-

sional N-Body Simulations. Publications of the Astronomical Society of Japan. 2011; 63(4):881–892.

https://doi.org/10.1093/pasj/63.4.881

5. Baldwin RL, Rose GD. Is protein folding hierarchic? I. Local structure and peptide folding. Trends in bio-

chemical sciences. 1999; 24(1):26–33. https://doi.org/10.1016/S0968-0004(98)01346-2 PMID:

10087919

6. Wodak SJ, De Crombrugghe M, Janin J. Computer studies of interactions between macromolecules.

Progress in biophysics and molecular biology. 1987; 49(1):29–63. https://doi.org/10.1016/0079-6107

(87)90008-3 PMID: 3310103

7. Méndez R, Leplae R, De Maria L, Wodak SJ. Assessment of blind predictions of protein–protein interac-

tions: current status of docking methods. Proteins: Structure, Function, and Bioinformatics. 2003; 52

(1):51–67. https://doi.org/10.1002/prot.10393

8. Janin J, Henrick K, Moult J, Eyck LT, Sternberg MJ, Vajda S, et al. CAPRI: a critical assessment of pre-

dicted interactions. Proteins: Structure, Function, and Bioinformatics. 2003; 52(1):2–9. https://doi.org/

10.1002/prot.10381

9. Brennick CA, George MM, Corwin WL, Srivastava PK, Ebrahimi-Nik H. Neoepitopes as cancer immu-

notherapy targets: key challenges and opportunities. Immunotherapy. 2017; 9(4):361–371. https://doi.

org/10.2217/imt-2016-0146 PMID: 28303769

10. Corwin WL, Ebrahimi-Nik H, Floyd SM, Tavousi P, Mandoiu II, Srivastava PK. Tumor Control Index as a

new tool to assess tumor growth in experimental animals. Journal of immunological methods. 2017;

445:71–76. https://doi.org/10.1016/j.jim.2017.03.013 PMID: 28336396

11. Ebrahimi-Nik H, Corwin WL, Floyd SM, Tavousi P, Mandoiu II, Srivastava PK. Tumor Control Index: a

novel tool to assess and compare tumor growth in experimental animals; 2017.

12. Ebrahimi-Nik H, Corwin WL, Yamamoto R, Srivastava PK. CD11c+ MHCII int bone marrow-derived

dendritic cells as adjuvants for neoepitope–based cancer immunotherapy; 2017.

13. Ebrahimi-Nik H, Bassami MR, Mohri M, Rad M, Khan MI. Bacterial ghost of avian pathogenic E. coli

(APEC) serotype O78:K80 as a homologous vaccine against avian colibacillosis. PLOS ONE. 2018; 13

(3):1–16. https://doi.org/10.1371/journal.pone.0194888

14. Zahra Shahbazi HIKKPB Tais A P F Pimentel. A Kinematic Observation and Conjecture for Stable Con-

struct of a Peptide Nanoparticle. Advances in Robot Kinematics, Issue on Motion in Man and Machine,

(J Lenarcic & M Stanisoc editors), ISBN 978-90-481-9261-8, Springer Science & Business Media.

2010;.

15. Gandhi MV, Thompson BS. Smart materials and structures. Springer Science & Business Media;

1992.

16. Luo T, Mohan K, Iglesias PA, Robinson DN. Molecular mechanisms of cellular mechanosensing. Nature

materials. 2013; 12(11):1064–1071. https://doi.org/10.1038/nmat3772 PMID: 24141449

17. Elmegreen DM, Kaufman M, Brinks E, Elmegreen BG, Sundin M. The Interaction between Spiral Galax-

ies IC 2163 and NGC 2207. I. Observations. The Astrophysical Journal. 1995; 453:100. https://doi.org/

10.1086/176375

Approximating net interactions among rigid domains

PLOS ONE | https://doi.org/10.1371/journal.pone.0195618 April 9, 2018 17 / 18

https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.1093/pasj/63.4.881
https://doi.org/10.1016/S0968-0004(98)01346-2
http://www.ncbi.nlm.nih.gov/pubmed/10087919
https://doi.org/10.1016/0079-6107(87)90008-3
https://doi.org/10.1016/0079-6107(87)90008-3
http://www.ncbi.nlm.nih.gov/pubmed/3310103
https://doi.org/10.1002/prot.10393
https://doi.org/10.1002/prot.10381
https://doi.org/10.1002/prot.10381
https://doi.org/10.2217/imt-2016-0146
https://doi.org/10.2217/imt-2016-0146
http://www.ncbi.nlm.nih.gov/pubmed/28303769
https://doi.org/10.1016/j.jim.2017.03.013
http://www.ncbi.nlm.nih.gov/pubmed/28336396
https://doi.org/10.1371/journal.pone.0194888
https://doi.org/10.1038/nmat3772
http://www.ncbi.nlm.nih.gov/pubmed/24141449
https://doi.org/10.1086/176375
https://doi.org/10.1086/176375
https://doi.org/10.1371/journal.pone.0195618


18. Nguyen TD, Phillips CL, Anderson JA, Glotzer SC. Rigid body constraints realized in massively-parallel

molecular dynamics on graphics processing units. Computer Physics Communications. 2011; 182

(11):2307–2313. https://doi.org/10.1016/j.cpc.2011.06.005

19. Dubbeldam D, Oxford GA, Krishna R, Broadbelt LJ, Snurr RQ. Distance and angular holonomic con-

straints in molecular simulations. The Journal of chemical physics. 2010; 133(3):034114. https://doi.org/

10.1063/1.3429610 PMID: 20649315

20. Eastman P, Pande VS. Constant constraint matrix approximation: a robust, parallelizable constraint

method for molecular simulations. Journal of chemical theory and computation. 2010; 6(2):434–437.

https://doi.org/10.1021/ct900463w PMID: 20563234

21. Kazerounian K, Latif K, Alvarado C. Protofold: A successive kinetostatic compliance method for protein

conformation prediction. Journal of Mechanical Design. 2005; 127(4):712–717. https://doi.org/10.1115/

1.1867502

22. Tavousi P, Behandish M, IlieşHT, Kazerounian K. Protofold ii: Enhanced model and implementation for

kinetostatic protein folding. Journal of Nanotechnology in Engineering and Medicine. 2015; 6

(3):034601. https://doi.org/10.1115/1.4032759

23. Behandish M, Tavousi P, IlieşHT, Kazerounian K. GPU-Accelerated Computation of Solvation Free

Energy for Kinetostatic Protein Folding Simulation. In: ASME 2013 International Design Engineering

Technical Conferences and Computers and Information in Engineering Conference. American Society

of Mechanical Engineers; 2013. p. V02AT02A009–V02AT02A009.

24. Lotan I, Schwarzer F, Halperin D, Latombe JC. Algorithm and data structures for efficient energy main-

tenance during Monte Carlo simulation of proteins. Journal of Computational Biology. 2004; 11(5):902–

932. https://doi.org/10.1089/cmb.2004.11.902 PMID: 15700409

25. Poursina M, Anderson KS. Long-range force and moment calculations in multiresolution simulations of

molecular systems. Journal of Computational Physics. 2012; 231(21):7237–7254. https://doi.org/10.

1016/j.jcp.2012.06.041

26. Kuriyan J, Konforti B, Wemmer D. The molecules of life: Physical and chemical principles. Garland Sci-

ence; 2012.

27. An Z, Wang X, Deng M, Mao J, Li M. A nonlinear spring model for an interface between two solids.

Wave Motion. 2013; 50(2):295–309. https://doi.org/10.1016/j.wavemoti.2012.09.004

28. Beylkin G, Garcke J, Mohlenkamp MJ. Multivariate regression and machine learning with sums of sepa-

rable functions. SIAM Journal on Scientific Computing. 2009; 31(3):1840–1857. https://doi.org/10.1137/

070710524

29. Rassias TM, Simsa J. Finite sums decompositions in mathematical analysis; 1995.
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