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Background: Sepsis is a complex systemic immune dysfunction syndrome induced by
infection. Sepsis has a high mortality rate, with most patients dying due to systemic organ
failure or secondary infection. Dendritic cells (DCs) are professional antigen-presenting
cells. Upon infection with microbes, DCs are activated to induce adaptive immune
responses for controlling infection. DC generation and function are impaired during
sepsis; however, the underlying mechanisms remain largely unknown.

Methods: Peripheral blood samples from sepsis patients were collected to examine DC
subsets, DC progenitors, and apoptosis of DCs by flow cytometer. In vitro induction of
DCs from hematopoietic stem/progenitor cells were established and a variety of sepsis-
associated inflammatory mediators [e.g., interferon-gamma (IFN-g), interleukin-1beta (IL-
1b), tumor necrosis factor-alpha (TNF-a) and granulocyte-colony stimulating factor (G-
CSF)] and Lipopolysaccharide (LPS) were determined for the impact on DC generation
and function in vitro.

Results: Our results demonstrate that sepsis-induced systemic inflammation impairs the
capacity of hematopoietic stem and progenitor cells (HSPCs) to produce DCs, including
conventional DCs (cDCs) and plasmacytoid DCs (pDCs). We investigated peripheral blood
(PB) samples from 34 pediatric patients on days 1 to 7 following diagnosis. Compared to
healthy donors (n = 18), the sepsis patients exhibited a significantly fewer percentage and
number of pDCs and cDCs, and a lower expression of antigen presenting molecule HLD-
DR and co-stimulatory molecules (e.g., CD86) on the surface of DCs. This sepsis-induced
DC impairment was associated with significantly increased apoptotic death of DCs and
marked decreases of progenitor cells that give rise to DCs. Furthermore, we observed that
among the tested sepsis-associated cytokines (e.g., IFN-g, IL-1b, TNF-a, and G-CSF), G-
CSF and IFN-g impaired DC development from cultured HSPCs. G-CSF also markedly
decreased the expression of HLA-DR on HSPC-derived DCs and their cytokine
production, including IL-12 and IFN-b.
org September 2021 | Volume 12 | Article 7326121

https://www.frontiersin.org/articles/10.3389/fimmu.2021.732612/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.732612/full
https://www.frontiersin.org/articles/10.3389/fimmu.2021.732612/full
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:j.shuang@163.com
mailto:bbyshu@hotmail.com
https://doi.org/10.3389/fimmu.2021.732612
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2021.732612
https://www.frontiersin.org/journals/immunology
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2021.732612&domain=pdf&date_stamp=2021-09-09


Lu et al. Sepsis Impairs Dendritic Cell Progenitors

Frontiers in Immunology | www.frontiersin.
Conclusions: Collectively, these findings indicate that sepsis impairs the survival of
functional DCs and their development from HSPCs. Strategies for improving DC
reconstitution following sepsis may restore DC progenitors and their associated function.
Keywords: sepsis, dendritic cells, dendritic cell progenitors, common dendritic cell progenitors, G-CSF, IFN-g
INTRODUCTION

Sepsis is a form of life-threatening organ dysfunction due to a
dysregulated host immune response to infection (1). In 2017, an
estimated 48.9 million cases of sepsis were recorded worldwide,
with 11.0 million sepsis-related patient deaths, representing
19.7% of all global deaths (2). Dendritic cells (DCs) are the
most potent antigen presentation cells (APCs), which play an
essential role in the pathogen recognition, regulation of immune
response, and inflammation (3, 4), and link both the innate and
adaptive immunity (5, 6). DCs are mainly classified as
conventional dendritic cells (cDCs) and plasmacytoid dendritic
cells (pDCs) in peripheral blood (7). DC defects and dysfunction
represent an important contributor to persistent inflammation,
immunosuppression, susceptibility to infection and death in
sepsis patients (8). An autopsy analysis has shown that adult
sepsis patients have fewer DCs in the blood and spleen compared
to non-sepsis patients (6, 9, 10). In addition, sepsis patients with
low DC counts are susceptible to nosocomial infections (11),
suggesting the DC compartment may play an important role
during sepsis progression. However, there is limited clinical data
regarding DC generation and function in the acute inflammatory
phase in children with sepsis. A more in-depth understanding of
the mechanisms by which DC generation and function are
impaired during and after sepsis will be important for
improving the outcomes of sepsis therapy.

Sepsis induces a systemic dysregulated inflammatory
response that is characterized by the excessive production of
inflammatory mediators [e.g., interleukin-1b (IL-1b), interferon-
g (IFN-g), tumor necrosis factor-a (TNF-a), granulocyte-Colony
stimulating factor (G-CSF), interleukin-10 (IL-10) and
transforming growth factor-b (TGF-b)] and the inflammatory
inducer [lipopolysaccharide (LPS)] (12). Accumulating evidence
indicates that inflammatory factors cause DC impairment,
dysfunction, and apoptosis (13–22). DCs develop from
hematopoietic stem/progenitor cells (HSPCs) in the human
bone marrow (BM) through successive lineage commitment
and differentiation steps: multipotent progenitors (MPPs);
common myeloid progenitors (CMPs) ; granulocyte
macrophage DC progenitors (GMDPs); monocyte and DC
progenitors (MDPs); and common DC progenitors (CDPs)
(23, 24). Under a pathological microenvironment, DC
development in the bone marrow (BM) may have been
dramatically changed in response to inflammatory stimuli (25).
The level of the pro-inflammatory factors G-CSF and IFN-g, are
low under steady state conditions, but were elevated in response
to inflammatory stimuli (26–29). Moreover, elevated levels of G-
CSF and IFN-g have been reported to be associated with a poor
clinical outcome in sepsis (30–34). Several studies have shown
org 2
that inflammation may inhibit the regenerative capacity of HSCs
and DC progenitor cells (35–37). However, whether the de novo
generation of DCs from HSPCs is impaired in sepsis within this
complex internal environment remains largely unknown.

In the present study, we examined the DC survival capability
and DC progenitors in the peripheral blood (PB) of sepsis patients.
Sepsis severely impairs the generation of CDPs and depletes DCs
in the PB of pediatric patients. We found that among sepsis-
associated inflammatory cytokines (e.g., IL-1b, IFN-g, TNF-a and
G-CSF) and LPS, G-CSF and IFN-g were found to significantly
reduce DC development and functional differentiation. These
findings identify a previously uncharacterized mechanism by
which sepsis impairs DC generation and function. Strategies to
improve DC reconstitution following sepsis may be required to
restore DC progenitors and their function.
METHODS

Healthy Donors and Patients
The present study was conducted in the pediatric intensive care
unit (ICU) of the Children’s Hospital of Soochow University. A
total of 34 critically ill patients with sepsis were enrolled from
January 2020 to April 2021. The sepsis patients’ demographic is
shown in Table 1. The sepsis patients were further divided into
two groups based on the time following diagnosis: early stage
(days 1−2, n = 27) and later (days 3−7, n = 13). This study was
approved by the Medical Ethics Committee of the Children’s
Hospital of Soochow University (Suzhou, China). Written
informed consent was obtained from children with sepsis (or
their parents) upon their initial admission to the hospital and
from healthy volunteers.

Inclusion and Exclusion Criteria
Pediatric patients with sepsis were included in this study if they
met the diagnostic criteria for sepsis (1, 38). Patients were
excluded from the study if they had the following diseases:
congenital immunodeficiency disease; immunodeficiency
caused by human immunodeficiency virus (HIV) infection;
BM or solid organ transplantation; hematologic malignancy;
and allergic diseases (e.g., asthma).

Cell Isolation and Flow Cytometry
Fresh leukocytes were isolated from the peripheral blood (PB)
after using red blood cell lysis buffer (Solarbio, Beijing, China).
Samples were incubated with fluorescence-labeled antibodies for
the directed analysis on the Attune NxT Flow Cytometer (Life
Technologies, CA, USA). All mAbs used for fluorescence
staining were purchased from Biolegend (San Diego, CA) or
September 2021 | Volume 12 | Article 732612
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Invitrogen (Carlsbad, CA) (Table 2). mAb staining was
performed as previously described (39). Total DCs were
characterized as negative for lineage markers (CD3, CD14,
CD15, CD16, CD19, and CD56) and positive for HLA-DR.
Among these cells, CD1c+ cells were defined as conventional
DCs (CD1c+ cDCs), whereas CD123+CD1c-CD11c- cells
were defined as plasmacytoid dendritic cells (pDCs) (7).
HSPCs were labelled as CD34+ cells. Human common
DC progenitors (CDPs) were identified as CD34+CD38-

CD10-CD45RA+CD123+CD115-. Human monocyte-DC
progenitors (MDPs) were characterized as CD34+CD38-CD10-

CD45RA+CD123intCD115-. Human granulocyte-monocyte DC
Frontiers in Immunology | www.frontiersin.org 3
progenitors (GMDPs) were marked as CD34 +CD38-CD10-

CD45RA+CD123intCD115+ (40).

Detection of Apoptosis
The evaluation of apoptotic cells was examined using FITC-
conjugated Annexin-V and propidium iodide (PI) kits
(Invitrogen, Carlsbad, CA). Living (Annexin-V−PI−), early
apoptotic (Annexin-V+PI−) and late apoptotic or necrotic
(Annexin-V+PI+) cells were distinguished.

DC Induction and Generation From HSPCs
All recombinant cytokines were purchased from PeproTech
(PeproTech, NJ). HSPCs were purified from G-CSF mobilized
human PB using CD34+ microbeads (Miltenyi, 130046702) in
accordance with the manufacturer’s instructions. To induce DCs,
HSPCs were first cultured in Roswell Park Memorial Institute
(RPMI) 1640 containing 10% fetal bovine serum (Dongling
Biotech), FMS-like tyrosine kinase 3 ligand (FLT3L) (100 ng/
mL), stem cell factor (SCF) (20 ng/mL), interleukin-3 (IL-3) (20
ng/mL), and thermoplastic polyolefin (TPO) (20 ng/mL) for 7
days, followed by additional culture for 7 days following the
removal of TPO. On day 14, the cells were collected for analysis.
To test the impact of inflammatory mediators [e.g., IFN-g (10ng/
ml), IL-1b (10ng/ml), G-CSF (10ng/ml) and TNF-a (10ng/ml)]
and LPS (10ng/ml) on DC development, we cultured HSPCs as
described above with or without addition of the inflammatory
cytokines and the inducer as described above. To induce DC
activation, we added LPS (100 ng/mL, Sigma), R848 (100 ng/mL,
Invitrogen) or CpG oligonucleotide (CPG ODN) (1 mM) into the
DC population or fluorescence-activated cell sorting (FACS)-
sorted purified DC population using a BD Influx or BD FACs
Aria II.

Real-Time RT- PCR
Total RNA was extracted from DCs derived from HSPCs in vitro
using Trizol (Invitrogen) according to the manufacturer’s
instructions. Reverse-transcription was performed using a
TABLE 2 | Antibodies.

Marker Fluorochrome Clone Manufacturer Cat.no. Isotype

HLA-DR APC/CY7 L243 Biolegend 307618 Mouse IgG2a
CD3 FITC SK7 Biolegend 344804 Mouse IgG1
CD14 FITC HCD14 Biolegend 325604 Mouse IgG1
CD15 FITC HI98 Biolegend 301904 Mouse IgM
CD19 FITC HIB19 Biolegend 302206 Mouse IgG1
CD20 FITC 2H7 Biolegend 302304 Mouse IgG2b
CD56(NCAM) FITC MEM-188 Biolegend 304604 Mouse IgG2a
CD86 PE/CY7 II2.2 Biolegend 305422 Mouse IgG2b
CD123 APC/CY7 6H6 Biolegend 306012 Mouse IgG1
CD1C PE/CY7 L161 Biolegend 331506 Mouse IgG1
CD11C Pacific Blue Bu15 Biolegend 337212 Mouse IgG1
CD14 Pacific Blue HCD14 Biolegend 325616 Mouse IgG1
CD115(CSF-1R) APC 9-4D2-1E4 Biolegend 347323 Rat IgG1
CD10 FITC HI10a Biolegend 312207 Mouse IgG1
CD38 PE HB-7 Biolegend 356603 Mouse IgG1
CD34 APC 561 Biolegend 343607 Mouse IgG2a
CD45RA Pacific Blue HI100 Biolegend 304129 Mouse IgG2b
CD123 PE/CY7 6H6 Biolegend 306010 Mouse IgG1
Septem
ber 2021 | Volume 12 |
TABLE 1 | Characteristics of the 34 children with sepsis included in the study.

Sepsis (n = 34)

Age (years) 1.04 [0.20-3.62]
Male gender [n (%)] 22 (64)
Site of initial infection [n (%)]
Blood stream 7 (20.6)
Lung 2 (5.9)
Abdomen 11 (32.4)
Brain 10 (41.7)
Multi-site 2 (5.9)
Unidentified infection 2 (5.9)

Principal diagnosis besides sepsis
Encephalitis 15 (44.1)
Gastroenteritis 5 (14.7)
MODS 4 (11.8)
Urinary Tract Infection 3 (8.8)
Cellulitis 2 (5.9)
Hemolytic anemia 1 (2.9)
Choledochal cysts 1 (2.9)
Perianal abscess 1 (2.9)
Renal abscess 1 (2.9)
Polyarteritis nodosa 1 (2.9)

Prism-III score 9 [3-14.25]
ICU-free days in 30 days 5 [3-10.25]
Mortality [n (%)] 4 (11.8)
Values are expressed as median [interquartile range], or a number (percentage)
MODS, Multiple Organ Dysfunction syndrome; PRISM-III, pediatric risk of mortality score-III.
Article 732612
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>commercial kit with random primers (Takara). Complementary
DNA (cDNA) was quantified through quantitative real-time
polymerase chain reaction (PCR) using a SYBR Green PCR mix
(Takara) on a LightCycler 480 PCR System (Roche). The
thermocycler conditions included an initial hold period at 95°C
for 10 min, followed by a three-step PCR program, as follows: 95°C
for 20s, 55°C for 30s, and 72°C for 30s for 40 cycles. Transcript
abundance was calculated using the delta Ct method (normalization
with 18S). All of the primer sequences are listed in Table 3.

Statistics
Statistical analysis was performed using Graph Pad Prism 8
software (San Diego). Continuous data were expressed as the
mean ± standard deviation (S.D.). Data conforming to a normal
distribution were compared using a two-tailed t test, whereas
non-normally distributed data were evaluated using a Mann-
Whitney U-test. A threshold of p < 0.05 was considered to be
statistically significant.
RESULTS

Sepsis Induces a Selective Reduction of
DCs in Pediatric Patients
To identify the effect of sepsis on DCs, we obtained PB from sepsis
patients (n = 34) (Table 1). We focused on CD1c+ DCs
(CD1c+CD123-CD11c+) and pDCs (CD1c-CD123+CD11c-)
(Figure 1A), which represent the majority of the DCs found in
the PB (7). PB from normal healthy donors (n = 18) was assessed
as a control. Both the percentage and number of CD1c+ DCs and
pDCs significantly declined in sepsis patients during the first two
days following diagnosis compared to that of the healthy donors
(Figures 1B−D). There was approximately an 8- to 10-fold
reduction in both the frequency and number of CD1c+DCs and
pDCs out of the total leukocytes of sepsis patients compared to
that of the healthy donors (Figures 1B, D). Notably, this DC-
associated defect in the sepsis patients persisted throughout 7 days
after disease onset (Figures 1B−D). Sepsis did not significantly
alter the frequency of monocytes in the PB throughout 7 days
when DCs were decreased (Figure 1E). These data indicate that
sepsis causes severe DC defects in the PB early after disease onset
and does not recover within 7 days.

Sepsis Down-Regulates CD86 and HLA-
DR on the Surface of PB DCs
The expression of antigen-presenting molecules (e.g., HLA-DR)
and co-stimulatory molecules (e.g., CD86) on DCs is important
to T cell priming in response to infection (41, 42). To this end, we
examined the surface expression HLA-DR and CD86 on DCs
derived from the PB of sepsis patients (Figure 2A). CD1c+ DCs
from sepsis patients expressed lower levels of CD86 and HLA-
DR during early stage of the disease and remained at significantly
lower levels at the later stage compared to their counterparts in
the healthy donors (Figure 2B). The expression of HLA-DR on
the surface of pDCs derived from the children with sepsis in the
early stage of disease was significantly lower compared with that
Frontiers in Immunology | www.frontiersin.org 4
of the health donor group, whereas the level of CD86 did not
change significantly (Figure 2C). Therefore, sepsis also impairs
DC maturation and activation, affecting CD1c+ cDCs to a greater
extent. There are very few dendritic cells in human peripheral
blood, and some cells will not survive overnight after stimulant, it
is really difficult to detect the cytokine release function of
dendritic cells on a technical level.

Sepsis Induces DC Apoptosis
Previous studies have demonstrated that lymphocyte apoptosis is
associated with immune deficiency in sepsis (43, 44). Both death-
receptor- and mitochondrial-mediated pathways have been
found to be responsible for sepsis-induced apoptosis,
suggesting the engagement of multiple cell death stimuli (45).
We hypothesized that sepsis-induced DC defects may be the
result of increased rates of cell apoptosis. To address this
possibility, we obtained PB from sepsis patients to examine DC
apoptosis, and used healthy donors as controls. Flow cytometric
analysis of Annexin-V and PI staining revealed live cells
(Annexin-V−PI−), early apoptotic cells (Annexin-V+PI−), late
apoptotic cells (Annexin-V+PI+), and necrotic cells (Annexin-
V−PI+) (Figure 3A). We found that approximately 2% of
CD1c+DCs and 5.5% of pDCs from sepsis patients at days 1 to
3 of diagnosis were late apoptotic cells, whereas healthy donors
had approximately 6-fold and 3-fold fewer late apoptotic cells
among the CD1c+ DC (0.3%) and pDC (1.4%) subsets,
respectively (Figure 3C). From days 3 to 7 of sepsis, the
frequency of late apoptotic cells among the CD1c+ DCs and
pDCs was approximately 4-fold and 7-fold greater than that of
healthy donors (Figures 3B, C). During the early apoptotic stage,
we no significant difference in CD1c+ DCs and pDCs was
observed between healthy donors and sepsis patients. In
contrast, sepsis did not markedly affect the survival capability
of monocytes (Figure 3D). These findings suggest that sepsis
TABLE 3 | Primer for real-time RT-PCR.

Gene name Primer sequence

18s Forward 5′-GCTGCTGGCACCAGACTT-3′
Reverse 5′-CGGCTACCACATCCAAGG-3′

IL12 Forward 5′-CCAGCACATTGAAGACCTGT-3′
Reverse 5′-CAGGGTCATCATCAAAGACG-3′

Irf4 Forward 5′-CCACAGAGCCAAGCATAAGG-3′
Reverse 5′-CCGGTAGTACAGGCAGATGT-3′

Ifna Forward 5′-TCATTTCTCCTGCCTGAAGG-3′
Reverse 5′-GAGGACAGAGATGGCTTGAG-3′

Ifnb Forward 5′-TTGACATCCCTGAGGAGATTAAGC-3′
Reverse 5′-TTAGCCAGGAGGTTCTCAACAATAG-3′

Irf8 Forward 5′-AGGGGACAAAGCTGAACCAG-3′
Reverse 5′-CAGTTGCCACGCCTAGTTTG-3′

Tcf4 Forward 5′-CAAATAGAGGAAGCGGGGCA-3′
Reverse 5′-CTGTGCCTGCTGAGAGAGAT-3′

Batf3 Forward 5′-GGATGATGACAGGAAGGTCCG-3′
Reverse 5′-GTGTTTTCTTGCTCCAGGCTC-3′

Flt3 Forward 5′-TGCCGCTGCTCGTTGTTTT-3′
Reverse 5′-GAGGTCTTCCGGGGATTCTG-3′

Zebf46 Forward 5′-TCCCTGCTGTTCGAGTACCT-3′
Reverse 5′-GCATGTGTCGCTTGAGGATG-3′

Cebpa Forward 5′-GGACCCTCAGCCTTGTTTGT-3′
Reverse 5′-AGACGCGCACATTCACATTG-3′
Sep
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increases the rate of DC apoptotic cell death throughout the
acute inflammation phase.

CDPs Dramatically Decrease
During Sepsis
DCs develop from HSPCs in the BM. Under the steady-state
conditions, HSCs give rise to multipotent progenitors (MPPs),
which can become granulocyte macrophage DC progenitors
(GMDPs), monocyte and DC progenitors (MDPs), and
common DC progenitors (CDPs) (40). Of these, CDPs directly
differentiate into both CD1c+DCs and pDCs (46–48). Therefore,
we next asked whether the impaired generation of DC
progenitors may contribute to DC defects in the PB during
sepsis. Three major DC progenitors (i.e., GMDPs, MDPs and
CDPs) were observed in the PB from sepsis patients and healthy
donors (Figure 4A). Sepsis patients exhibited a significant
Frontiers in Immunology | www.frontiersin.org 5
decrease in the frequency of CDPs between days 1 to 7 post-
diagnosis compared to the healthy donors (Figures 4B−D). In
contrast, the sepsis patients showed an increased frequency and
number of MDPs and GMDPs was potentially enhanced in vivo
(Figure 4C). Thus, CDPs are more sensitive than GMDPs and
MDPs to sepsis-mediated suppression.

Generation of Human CD1c+ cDCs and
pDCs From Human HSPCs in Culture
To better understand the mechanisms by which inflammatory
stimuli impact the generation of DC progenitors from HSPCs,
we established an ex vivo culture method of producing DCs from
human CD34+ HSPCs (Figure 5A) (40). On day 14 of culture,
the cells were collected and stained for antibodies to identify DCs
and DC subsets. CD66b and CD14 were used to exclude
granulocytes and monocytes, respectively. CD1c+ DCs were
A

C D E

B

FIGURE 1 | The percentage and number of circulating blood DCs from sepsis patients are selectively declined. Leukocytes from healthy donors and sepsis patients
were obtained and directly stained for DC surface markers. (A) Gating strategy for the identification of human DC subsets from healthy donors (n = 18), sepsis 1-2d
(n = 27) and sepsis 3-7d (n = 13). (B) The absolute number of each DC subset in per ml peripheral blood among the three groups. (C) Percentage of each DC
subset among Lin-HLA-DR+ cell population among the three groups. (D) Percentage of each DC subset in leukocytes among the three groups. (E) Percentage of
monocytes in leukocytes among the three groups: healthy donors (n = 30), sepsis 1-2d (n = 22) and sepsis 3-7d (n = 12). Error bars indicate mean ± SD.
***P < 0.001; ****P < 0.0001.
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CD66b-CD14- HLA-DR+ CD1c+ (Figure 5B). Upon stimulation
with the TLR4 agonist, LPS, these cells significantly upregulated 80-
fold more IL-12p35 mRNA (Figure 5C), suggesting the induction
of CD1c+ DCs. pDCs are specialized cells that produce of high levels
of IFN-a and IFN-b (49). We identified pDCs based on their
CD66b-CD14-CD1c-CD123+CD303+ phenotype, sorted them into
CD123+ and CD303+ cell subsets respectively, and stimulated them
with R848 and CPG ODN for 2 h. mRNA was extracted from these
pDCs to examine the expression of genes encoding IFN-a and IFN-
b. Upon CpG stimulation, we observed that CD123+ pDCs rather
than CD303+ cells, could rapidly upregulate the expression of
mRNA encoding IFN-a and IFN-b (Figure 5D). Therefore,
CD66b-CD14- HLA-DR+CD1c+ cDCs and CD66b-CD14-CD1c-

CD123+ pDCs were used for all subsequent studies.

G-CSF Impairs the Generation of
CD1c+cDCs and pDCs From HSPCs
In Vitro
To identify the potential factors that impair DC generation in
sepsis patients, we screened a panel of inflammatory cytokines
known to play an important role in sepsis for their ability to affect
DC induction in in vitro culture (Figure 6A). As shown in
Figures 5B, C, the addition of LPS and IL-1b, which are known
to be important factors that contribute to sepsis (28, 50), did not
significantly affect DC generation from HSPCs (Figures 6B, C).
G-CSF, which is also increased during acute inflammation (27,
28, 51), significantly reduced the number and frequency of
CD1c+ DCs and pDCs in culture (Figures 6B, C). IFN-g is a
crucial pro-inflammatory cytokine that is produced in response
Frontiers in Immunology | www.frontiersin.org 6
to pathogen infection (52). Our results revealed that IFN-g
inhibited total DC proliferation, which primarily affected
CD1c+ DCs. In light of the impact of IFN-g on the
differentiation of DC subsets, we were surprised to find that
IFN-g had different effects on CD1c+ DCs and pDCs, suppressing
CD1c+ DCs but promoting pDC differentiation (Figures 6B, C).
Notably, TNF-a profoundly increased pDC generation in culture
(Figures 6B, C). Collectively, these data suggest that both G-CSF
and IFN-g have the capacity to impair DC generation from
cultured HSPCs. Furthermore, IFN-g inhibits CD1c+ DCs, but
promotes pDC differentiation. Moreover, increased IL-12p35
and IFN-b production following stimulation with LPS/R848
further supports the observed impaired generation of authentic
CD1c+ DCs and pDCs. (Figure 6D).

G-CSF Impairs the Expression of Pro-DC
Transcription Factors in Cultured Human
HSPCs In Vitro
We next examined whether G-CSF may affect the function of
DCs generated in culture. It has been previously reported that G-
CSF levels are associated with a poor clinical outcome in patients
with sepsis (30–32). We found that unstimulated DCs generated
in the presence of G-CSF expressed lower levels of HLA-DR
compared to their counterparts produced in the absence of G-
CSF (Figure 7A). This finding suggests that G-CSF may
contribute to decreased HLA-DR expression on DCs in
sepsis patients.

To examine the mechanisms associated with G-CSF-
mediated suppression of DC generation from HSPCs, we
A

CB

FIGURE 2 | Sepsis down-regulates the expression of CD86 and HLA-DR on DCs in PB. (A) Flow cytometry histograms of CD86 and HLA-DR expression on each
DC subset. (B, C) Percentage of CD86+ and HLA-DR+ cells on each DC subset from healthy donors (n = 20), sepsis 1-2d (n = 16) and sepsis 3-7d (n = 10).
Error bars indicate mean ± SD. *P < 0.05; **P < 0.01; ****P < 0.0001.
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examined the impact of G-CSF on the expression of transcription
factors, including IRF8, IRF4, TCF4, BATF3, and ZBTB46. TCF4
and IRF4 are known to promote pDC development (53). In
addition, Batf3 is highly important for cDC1 development (54),
IRF4 determines CD1c+ cDC2 differentiation (55), and ZBTB46
has been identified as a marker of both cDC1 and cDC2 (56, 57).
We assessed the level of transcription factor and Flt3 expression
by real-time RT-PCR. FLT3 and the transcriptional factor, IRF8,
are known to be important throughout the entire process of DC
Frontiers in Immunology | www.frontiersin.org 7
development (58–60). We found that G-CSF significantly
reduced the expression of FLT3 and IRF8 (Figure 7B), which
was consistent with the reduction of proliferation and
differentiation of CD1c+ DCs and CD123+ pDCs. We also
observed a marked decrease in the expression of the genes
associated with cDCs (ZBTB46, IRF4, and BATF3) and pDCs
(TCF4 and IRF4) (Figure 7B). CEBPA, which functions to
promote myeloid differentiation (61, 62), was also increased
(Figure 7B). These results indicate that G-CSF impairs pDC and
A

C DB

FIGURE 3 | Sepsis patients exhibit increased levels of late apoptosis on DC subsets rather than on monocytes. (A) Flow detection of apoptosis of DC subsets.
(B) Percentage of early apoptotic pDC and late apoptotic/dead pDC from healthy donors(n = 10), sepsis 1-2d (n = 16) and sepsis 3-7d (n = 8). (C) Percentage of
early apoptotic CD1c+cDC and late apoptotic/dead CD1c+cDC from healthy donors (n = 10), sepsis 1-2d (n = 21) and sepsis 3-7d (n = 14). (D) Percentage of early
apoptotic monocytes and late apoptotic/dead monocytes from healthy donors (n = 30), sepsis 1-2d (n = 22) and sepsis 3-7d (n = 12). Error bars indicate mean ±
SD. *P < 0.05; **P < 0.01; ****P < 0.0001.
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CD1c+ cDC generation from HSPCs, likely through regulation of
the key transcription factors required for DC development.
DISCUSSION

In this study, we demonstrated that sepsis induces DC defects in
pediatric patients. These defects are associated with the impaired
generation of CDPs and increased apoptosis of DCs. Among the
Frontiers in Immunology | www.frontiersin.org 8
tested inflammation-associated cytokines, we found that both G-
CSF and IFN-g contribute to reduced DC generation from
HSPCs in culture. Moreover, the addition of G-CSF
significantly decreases the expression of transcription factors
required for HSPC-derived DC production. Given the crucial
role of DCs in both innate and adaptive immunity, our findings
are important for gaining a better understanding of the
pathology associated with sepsis-associated immune
suppression in patients.
A

C DB

FIGURE 4 | Decreases in CDPs and increases in GMDPs from sepsis patients are observed. (A) Flow cytometry of human peripheral blood, showing the gating
strategy of GMDPs, MDPs, CDPs. (B, C) The proportion of CDPs, MDPs and GMDPs in CD45RA+ cells and total leukocytes respectively from healthy donors
(n = 18), sepsis 1-2d (n = 15) and sepsis 3-7d (n = 9). (D)The absolute number of CDPs, MDPs and GMDPs in per ml PB from healthy donors(n = 18), sepsis 1-2d
(n = 15) and sepsis 3-7d (n = 8). Error bars indicate mean ± SD. *P < 0.05; ***P < 0.001; ****P < 0.0001.
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A lower number of DCs in sepsis appear to be associated with
poor clinical outcomes. Guisset et al. and Grimaldi et al. have
shown that sepsis patients with depleted circulating DCs are
more likely to develop septic shock, and can even predict higher
mortality rates in fetal sepsis (9, 11). Our study found that
increased DC apoptosis and death can in part explain the
deplet ion of DCs. During inflammation, the local
microenvironment, especially inflammatory cytokines, is
important for the regulation of DC function and survival (63,
64). The study by Raffray et al. demonstrated that the serum from
patients with sepsis induced higher DC death compared to serum
from normal healthy donors or patients with cardiogenic shock
Frontiers in Immunology | www.frontiersin.org 9
(65). Furthermore, accumulating evidence has shown that
inflammatory factors (e.g., G-CSF, IFN-g, TNF-a, IL-6, IL-10,
and TGF-b) can cause DC impairment and dysfunction, even
inducing the apoptosis of DCs (13–22). Our results showed that
DC apoptosis occurred during sepsis.

In addition to apoptosis, we also provide evidence that sepsis
may have a significant impact on the differentiation of DC
progenitors into DCs. This represents another mechanism by
which sepsis causes a reduction of DCs. Our findings are
supported by observations in mouse models. For example,
Pasquevich et al. and Beshara et al. reported that BM CDPs
were reduced in mice infected with Ye/Ec/Sa/Lm (Yersinia
A

C D

B

FIGURE 5 | In vitro induction of DCs from HSPCs. (A) Workflow for the induction of HSPC-DCs. (B) Flow cytometry of pDCs (CD66b-CD14-CD1c-CD123+CD303-)
and CD1c+cDCs (CD66b-CD14-CD1c+) populations after 14 days of induction from CD34+HSPCs. On day 14, (C) After stimulated with the TLR4 and TLR7 agonists
for 2 hours, mRNA of FACS sorter purified CD1c+cDCs was extracted to measure gene expression using real time RT-PCR. (D) CD123+pDCs and CD303+pDCs
were highly purified using FACs sorter. Then both populations were stimulated with the TLR7 and TLR9 for 2 hours, mRNA was collected to measure gene
expression using real time RT-PCR. Error bars indicate mean ± SD. **P < 0.01; ***P < 0.001; ****P < 0.0001.
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enterocolitica/Escherichia coli/Staphylococcus aureus/Listeria
monocytogenes) (66) and influenza A virus (IVA), respectively
(67). Conversely, the study by Macal et al. showed that
CDPs appeared to increase on day 5, but were subsequently
reduced in mice during infection with chronic lymphocytic
Frontiers in Immunology | www.frontiersin.org 10
choriomeningitis virus (68). This disparity may be due to
different timings of examination and infection models.
Collectively, our studies and these of others indicate that sepsis
may have a significant impact on hematopoiesis and DC
development in the BM. To our knowledge, our study is the
A

C DB

FIGURE 6 | G-CSF and IFN-g impaired the induction of HSPC-DCs subsets. (A) Flow cytometry of HSPC-DCs subset from various tested cytokines [e.g., IFN-g
(10ng/ml), IL-1b (10ng/ml), G-CSF (10ng/ml) and TNF-a (10ng/ml)] and LPS (10ng/ml), which were added into the culture system on day7. (B) The graphs showed
the proliferation of HSPC-pDCs and CD1c+cDCs under various cytokines stimulation by day14. (C) The percentage of HSPC-pDCs and CD1c+ cDCs among total
populations under various cytokine stimulation on day14. (D) Total HSPC-DCs were stimulated with the TLR4 and TLR7 agonists for 2 hours, mRNA was extracted
to measure gene expression using real time RT-PCR. Data shown are representative of three independent experiments. Error bars indicate mean ± SD. *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001.
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first to report that DC progenitors are decreased in the PB of
sepsis patients. Our results further reveal a possible underlying
cause of this defect may be due to enhanced myelopoiesis (e.g.,
monocytes and granulocytes), increased circulating GMDPs and
MDP production. Several studies have reported an increase in
neutrophils and monocytes during sepsis (69–71). This primarily
results from ‘emergency hematopoiesis’ characterized by
converting the hematopoietic response program to replenish
depleted granulocytes and monocytes following a systemic
infection (25).

Although we have explored the reduction of DCs associated
with increased apoptosis and impaired generation of DC
progenitors, we cannot rule out the possibility that decreased
DCs in the PB may be attributable to the altered migration
capacity of DCs, which cannot be investigated in humans.

Our findings reveal that sepsis impairs the number and
antigen-presentation functionality of DCs, leading to a
reduction in immature DCs, which may further perpetuate
immunosuppression. DCs display an immature phenotype
under steady state conditions. Following stimulation with
microbes or danger signals, DCs undergo activation and
maturation through a series of phenotypic and functional
changes, including the upregulation of the expression of
surface MHC-II and co-stimulatory molecule CD86 (72, 73).
We found that the downregulation of these molecules suggests a
defect in the antigen-presenting capacity of DCs, which is to a
large extent influenced by the microenvironment as previously
discussed (13–22). These tolerogenic immature DCs impair the
ability of the immune system to mount a T cell response against
secondary infections (74–76). Some studies have demonstrated
Frontiers in Immunology | www.frontiersin.org 11
that tolerogenic DCs are decreased in sepsis, which are
susceptible to secondary infection, even if critically ill patients
recover from systemic inflammatory response syndrome (SIRS)
(11, 77). Thus, the downregulation of HLA-DR and CD86 are
suggestive of a state of immune suppression in sepsis (78).
Consistent with our observations, the studies by Grimaldi et al.
(11) and Poehlmann et al. (6) showed that cDCs exhibit lower
expression of HLA-DR, whereas there was no difference in its
expression on pDCs in patients with sepsis. This difference may
be due to the low expression of MHC-II and co-stimulatory
molecules on pDCs (79). It is likely that CD1c+ DCs are more
sensitive than pDCs for predicting the severity of sepsis. Future
studies will use a larger cohort of patients to strengthen
our conclusion.

We also report for the first time, that G-CSF markedly
suppresses the generation and functionality of CD1c+ DCs and
pDCs. Recent reports show that G-CSF not only mobilizes HSCs
from the BM into the peripheral blood, but also modifies the
bone marrow microenvironment (80, 81). In addition to the
observation that G-CSF facilitates the proliferation,
differentiation, and maturation of neutrophils to treat or
prevent neutropenia in clinical patients (82–85), our results
demonstrated that G-CSF inhibited the differentiation and
proliferation of CD1c+ DCs and pDCs. In contrast to our
results, Shaughnessy et al. showed that the administration of
G-CSF in eight patients with graft-versus-host disease (GVHD)
could mobilize more pDCs into the PB (86). The discrepancy
may result from DC development modulated by the complex in
vivo environment, whereas our research focuses on the effect of
the signaling of G-CSF on DC development. We also found that
A B

FIGURE 7 | G-CSF impairs the expression of pro-DC development transcription factors in cultured human HSPCs in vitro. On D14 of culture, (A) HLA-DR
expression on HSPC-DC subsets after G-CSF treatment for 7 days. (B) mRNA was collected to measure gene expression using real time RT-PCR. Results are
representative of three independent experiments. Error bars indicate mean ± SD. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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G-CSF could impair the activation and maturation of DCs by
HLA-DR, as well as the cytokine secretion function of DCs (e.g.,
IL-12, and IFN-b). Similar to our results, Reddy et al. reported
that the administration of G-CSF to mice resulted in donor DCs
that produced low levels of TNF-a and IL-12 in acute GVHD
(22). Another study reported that G-CSF-stimulated PBMCs of
healthy donors contained predominantly T helper 2-inducing
DCs (19, 87). These results suggest that G-CSF may alter DC
functionality. The impact of G-CSF on HSC differentiation into
DCs has not been previously examined in-depth. Our results
demonstrate that G-CSF inhibited the differentiation and
development of CD1c+ DCs and pDCs. These results
prompted us to investigate DC depletion when sepsis patients
were administrated G-CSF as a treatment for neutropenia.

Furthermore, our results demonstrate that G-CSF is
associated with key transcriptional factors required for DC
development. Our results showed that both FLT3 and IRF8
expression regulating the DC development were decreased.
Similarly, the expression of genes that regulate cDCs (ZBTB46,
BATF3, and IRF4) and pDCs (TCF4 and IRF4), respectively, were
also declined. However, the gene, CEBPA, which promotes
granulopoiesis, was increased. These findings suggest that G-
CSF may play a dual role, promoting granulocyte lineage
differentiation (71, 88, 89), as well as inhibiting DC
development and functionality. Additional studies are needed
to elucidate the mechanism by which G-CSF regulates these DC-
related transcriptional factors.

Our results indicate that the pro-inflammatory factor, IFN-g,
also plays an important role in the differentiation and
development of DCs. Previous studies have reported that IFN-
g has a pro-inflammatory potential in sepsis (90, 91) and can
even drive immune suppression and induce secondary infections
(33). Moreover, many studies have shown that IFN-g directly
regulates the differentiation and function of HSCs during
infection, but not during steady-state hematopoiesis (37, 92,
93). For example, during acute lymphocytic choriomeningitis
virus (LVMV) infection, IFN-g impairs HSC self-renewal and
restoration of the number of HSCs (93). During a chronic
infection, IFN-g activates quiescent HSCs (37) and induces
myeloid differentiation to defend against infection (92, 94). In
addition, it has been reported that IFN-g may upregulate the
expression of MHC-class I/II on DCs and promote the
production of cytokines important for T cell-mediated immune
responses. Indeed, a lack of IFN-g signaling in mature IFNR-/-

DCs results in the reduced expression of intercellualr cell
adhesion molecule-1 (ICAM-1), CD86, IL-1b, and IL-12p70
(95, 96). In addition to its role in DC activation during the
acute phase of sepsis, IFN-g can exert tolerogenic effects in DCs
during the later phase (18, 97). There are currently a limited
number of reports that have investigated the effects of IFN-g on
the generation of DC subsets. Consistent with our study,
Laustsen et al. found that IFN-g priming promoted HSPC
generation of pDCs (98). Interestingly, we also found that IFN-
g mainly suppresses CD1c+ DC proliferation and differentiation.
To our knowledge, this is the first report describing this effect of
IFN-g on CD1c+ DC generation.
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In conclusion, our study demonstrates that the impaired
generation of CDPs and increased apoptosis rates of DCs
contribute to the DC defects observed in sepsis patients. It is
likely that the production of G-CSF and IFN-g during sepsis
plays an important role in suppressing DC development and
differentiation. These findings may have important implications
for improving the understanding of both the pathology and
immunosuppression associated with sepsis.
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GLOSSARY

DC dendritic cell
HSPC hematopoietic stem and progenitor cell
cDC conventional DC
pDC plasmacytoid DC
PB peripheral blood
HLA-DR human leukocyte antigen DR
APC antigen presentation cell
MPP multipotent progenitor
CMP common myeloid progenitor
GMDP granulocyte macrophage DC progenitor
MDP monocyte and DC progenitor
CDP common DC progenitor
Ye Yersinia enterocolitica
Ec Escherichia coli
Sa Staphylococcus aureus
Lm Listeria monocytogenes
IVA influenza A virus
HIV human immunodeficiency virus
LVMV Lymphocytic choriomeningitis virus
GVHD Graft-versus-host disease
SIRS Systemic inflammatory response syndrome
MODS Multiple Organ Dysfunction syndrome
PRISM-III pediatric risk of mortality score-III
IL-1b interleukin-1b
IFN-g interferon-g
TNF-a tumor necrosis factor-a
G-CSF granulocyte-Colony stimulating factor
LPS lipopolysaccharide
IL-10 interleukin-10
TGF-b transforming growth factor-b
FLT3L FMS-like tyrosine kinase 3 ligand
SCF stem cell factor; IL-3: interleukin-3
TPO thermoplastic polyolefin
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