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Recent advances in technology have led to the rise of new-age data sources (e.g.,

Internet of Things (IoT), wearables, social media, and mobile health). IoT is becoming

ubiquitous, and data generation is accelerating globally. Other health research domains

have used IoT as a data source, but its potential has not been thoroughly explored and

utilized systematically in public health surveillance. This article summarizes the existing

literature on the use of IoT as a data source for surveillance. It presents the shortcomings

of current data sources and how NextGen data sources, including the large-scale

applications of IoT, can meet the needs of surveillance. The opportunities and challenges

of using these modern data sources in public health surveillance are also explored. These

IoT data ecosystems are being generated with minimal effort by the device users and

benefit from high granularity, objectivity, and validity. Advances in computing are now

bringing IoT-based surveillance into the realm of possibility. The potential advantages

of IoT data include high-frequency, high volume, zero effort data collection methods,

with a potential to have syndromic surveillance. In contrast, the critical challenges to

mainstream this data source within surveillance systems are the huge volume and variety

of data, fusing data from multiple devices to produce a unified result, and the lack

of multidisciplinary professionals to understand the domain and analyze the domain

data accordingly.
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INTRODUCTION

The function of public health systems is to understand and respond to health trends affecting
populations (1). This is achieved through public health surveillance, that is, the ongoing collection
and analysis of population health indicators. Traditional surveillance data collection can be
cumbersome, expensive, and slow, often relying on paper-based and digitally extracted data
sources. Social media and crowdsourcing are data sources that can be leveraged for surveillance data
(2, 3). Sources like Twitter, Facebook, Google, and Reddit have been successfully used to explore
behavior and health outcomes (4–6). These are now being accepted as potential data sources across
several health domains (7, 8).
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Another promising data source is the increasing number
of devices (e.g., smart home monitors, wearables) and the
technology to interconnect them. Internet of Things (IoT)
technologies have become mainstream within communities
and individual households (9). Wearables and sensors can
track personalized parameters of healthy living, including sleep,
physical activity, and sedentary behavior (10, 11). These devices
can provide insights into population health, diseasemanagement,
and active assisted living services (12, 13). IoT data has several
advantages over traditional surveillance data: high volume
and frequency of data collection, data triangulation, real-time
availability, and minimal acquisition effort.

Existing literature discusses the potential use of the IoT data
sources for different purposes within multiple domains including
healthcare. Among healthcare domain, area specific application
can be seen for pediatric, geriatrics, chronic disease supervision,
private health, and fitness management (14, 15), but no single
study exists to put together the views to utilize the IoT data with
specific emphasis on public health surveillance.

This article summarizes the existing literature on the use
of IoT as a data source for surveillance. We discuss the
shortcomings of current data sources and how IoT can meet
the needs of surveillance. Challenges facing the large-scale
application of IoT data to surveillance are also explored.

PUBLIC HEALTH SURVEILLANCE AND
CHALLENGES WITH EXISTING DATA
SOURCES

Public health recommendations focus on the social determinants
of health and health equity (16). Surveillance is the process by
which ongoing health data are collected, analyzed, and reported,
and it is critical to informing public health services. In 1968,
the World Health Organization listed 10 essential data sources
for surveillance (17) (Figure 1: Traditional data sources) that at
the time relied on paper-based data collection and manual data
entry. Surveillance capability has evolved enormously alongside
advances in technology. It now includes digital data extracted
from several sources (Figure 1: Modern data sources), offering
reduced processing time, fewer errors, and reduced lag between
data collection and its use.

The above said, surveillance data are still often obtained
from questionnaire-based surveys online surveys, in-person
or telephone-based interviews (18), and such data collection
requires enormous resources and funding (19, 20). Data quality
can be compromised by declining response rates (18), recall bias
(21), and low granularity of the data (22) as in the traditional
data collection system, there is a limited number of subjects
provide their inputs. Without complete and comprehensive
information, the value of the data reduced. For example, fewer
subjects with a smaller n, really only impacts the precision of
the estimates that come from surveillance. To further explain,
the system might not get very precise incidence estimates, which
may or may not be a problem depending on the goal of the
system. The bigger issue with declining response rates is that
they usually do not happen at random and meaning you’re a

less representative set of results. This is an issue if the factors
that lead to making it into surveillance also relate to the issue
you are trying to measure with the surveillance system. Current
data used for the surveillance have challenges like missing
data, under-reporting, inconsistencies, invalid data, illegible
handwriting, non-standardization of vocabulary, measurement
error, and inappropriate fields (23). Traditional data sources used
in surveillance are often delayed. For example, at least 1 year
is required for getting a Canadian Community Health Survey
(CCHS) update. “Public Health Ontario” in Canada affirms
interdependent gaps within surveillance, insufficient data to build
comprehensive health indicators (24), and an absence of existing
mechanisms to capture some of healthcare’s vital components.

Current surveillance relies on both prospective and
retrospective data collection, analysis, and reporting (25).
The current pandemic has highlighted the essential need for
real-time public health surveillance to improve the evidence-
based decision-making process (26). Our evolving knowledge
about chronic diseases, their risk factors, and management also
demands the modernization of surveillance (25). Real-time
responses to emerging public health threats require real-time
and systematic data collection.

NEXT-GENERATION DATA SOURCES FOR
PUBLIC HEALTH SURVEILLANCE

Researchers have attempted to build and analyze health
indicators using innovative data sources (27–29). They are
exploring the use of smartphones (30), online searches (31), social
media (7), wearables (32), ambient sensors (33), electronic health
records (EHRs) (27, 34), medical-administrative records (27),
and pharmacy sales (28) to broaden the scope of surveillance.

As a source of surveillance data, information technologies
are potentially advantageous because their near-universal
uptake by a significant portion of the population creates
vast quantities and varieties of data (22). For example,
wearable data from six billion nights has been used to
understand sleep duration, quality, and change in pattern
with time (35, 36). Effective use of big data for surveillance
requires innovative analytical methods such as data
integration (32) and data visualization (28, 37, 38). Big
data analytics is becoming mainstream in public health,
integrating knowledge and skills from health informatics and
biostatistics (39).

THE INTERNET OF THINGS AS A NOVEL
DATA SOURCE

The Internet of Things (IoT) is a technological innovation
through which devices can communicate with each other
in real-time through an internet connection (40). For
example, several household devices are interconnected
to achieve a common objective, such as monitoring
temperature or motion (40). Integrated devices can include
different sensors, mobile phones, mobile applications,
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FIGURE 1 | Conceptual framework of NextGen Public Health Surveillance with Traditional, Modern, and NextGen data sources. Traditional and modern data sources

extracted from Declich and Carter (17).

wearable devices, and Radio-Frequency Identification (RFID)
tags (40).

IoT devices have accelerated data collection (13, 41).

Connectivity among people, machines, and organizations
increases as device availability and affordability improve (22).

This increase in connectivity is because of the ease of use

of the devices, user-friendly designs, and internet speed.
These parameters reduced the time gap within communication,

broaden the scope of communication by providing different
choice, be it audio visual, text, or hybrid of multiple methods.

People can interact with the machines and vice versa,

which was not possible earlier due to lack of technological
progress. In 2011, the number of interconnected devices
overtook the actual number of people globally (42). The
potential for data generation is exponential (41). As the
IoT data has already been successfully used in multiple
setups to monitor individual health outcomes and report on
environmental conditions, some of the best use cases has been
described below.

Use of IoT Data to Support Individual
Health Outcomes
The management of chronic conditions has traditionally relied
on patients interacting with their healthcare providers in person.
However, patients spendmost of their time outside the clinic. IoT
monitoring provides an opportunity to collect real-time health
information between patient-healthcare provider interactions.

Smart devices, such as wristbands, with IoT technology
have been developed to measure individual physiological data,
including physical activity (10, 43), sedentary time (44), oxygen
saturation (45–47), heart rhythm (45, 46), muscle tremors (48),
spinal posture (49), brainwaves (50), sleep (51), diet (52, 53),
electrodermal activity monitoring for sympathetic response (44)
and oral health care (54). With regards to specialized medical
care, IoT technology has been used to cater to the need of
cardiovascular (18), cardiopulmonary (18) and ophthalmology
(55). With regards to different categories of populations, IoT has
been used to help to monitor indicators related to women’s health
(56), including pregnancy (57), soldiers at the country borders
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(58), nursing care at the hospitals (59), the elderly population
in the long-term-care homes (60), persons with neurological
conditions at the rehabilitation center (49), and also for persons
with respiratory complaints including asthma (61).

IoT devices have a multipurpose use within the healthcare
field, such as their capabilities can range from providing prenatal
care to rehabilitation to monitoring seniors or athletes. IoT
devices have successfully provided real-time health information
on maternal and fetal health between regular appointments (57).
By monitoring vital signs using sensors, IoT platforms have
been designed to provide people with diabetes with feedback
and notifications to mitigate the risk of complications (62–64).
Additionally, wearable devices have been used to detect falls and
changes in behavioral activity for seniors living independently
(65–68). Monitoring systems have also been developed to
evaluate sports rehabilitation (69–72). IoT can support individual
outcomes by allowing patients to manage their health outside of
the clinical setting.

Use of IoT Data to Monitor Environmental
Conditions
The IoT can also monitor environmental conditions in areas
where we live, work, and play. Monitoring air purification
in hospital settings plays a role in mitigating hospital-related
infections (73). Monitoring air quality is already used to quantify
climate change impact (74) and has the potential to help
mitigate its impact in the future (75). IoT has been employed
to monitor hospital circulating air volume, ozone concentration,
temperature, humidity, and leaked ultraviolet intensity (73).
Preventive behavior like hand washing can also be monitored
(76). Indicators of healthy outdoor environments, such as water
pollution and air quality, have been another target of IoT health
research (61, 77, 78).

THE INTERNET OF THINGS IN PUBLIC
HEALTH SURVEILLANCE

IoT data has been successfully used in other health domains
but has not yet been fully used in public health. In response
to the pandemic, the 2020 Riyadh Declaration made several
recommendations to address the shortcomings in global public
health response systems (79). The Declaration prioritized the
need for scalable and sustainable digital health technologies and
the adoption of health intelligence (79). There is a growing
interest in using IoT data for building public health indicators
at various levels (80–82).

Advantages of IoT in Public Health
Surveillance
IoT data have the potential to overcome shortcomings of current
surveillance. IoT data sources provide high-frequency data with
greater usability, and much of the device infrastructure for
surveillance is already in place (i.e., smartphones, wearable
technologies, internet access). Currently, worldwide more than
three billion smartphone users (83), 722 million users of several

kinds of wearable devices (84), and more than 1.2 billion smart-
home connected devices exist (85). IoT data benefits from
essential features like high granularity (22), objectivity (32),
and validity (86). These “user-generated data ecosystems” are
being generated with minimal effort by the device users and
researchers. To date, the monetary cost to participants and
researchers is low, suggesting that public health monitoring
costs would likewise be minimal (87, 88). Finally, IoT enables
near real-time data collection (89). This can significantly reduce
the time gap between health events, data collection, reporting,
and intervention.

Here we have assessed IoT’s current attributes using
the framework for evaluating public health surveillance by
Groseclose et al. (90), which outlines nine features of surveillance
systems to consider (Table 1). As summarized in the table,
the major advantages of IoT data sources appear to be high-
frequency data collection, the potential to have syndromic
surveillance, zero effort data collection method, high volume,
and variety of data. The major disadvantages appear to be lack
of representativeness within a single data source, private players’
involvement as the data owner, the need for a high technological
system to store, clean, and analyze the data, and interoperability.
In addition to the above points, data privacy concerns of users are
a potential disadvantage of acceptance of this technology from
the user point of view (81).

Challenges to Using IoT in Public Health
Surveillance
The challenge now is how to access and analyze the data
being gathered. Some IoT companies create sharable, research-
oriented data sources, such as “donate your data” from ecobee,
a smart thermostat company in Canada (91). ecobee’s smart
home products include motion and temperature sensors, and
research teams have access to longitudinal data from thousands
of households with a data granularity of 5 min intervals.

Other IoT companies publish studies from their own smart
devices using artificial intelligence algorithms for population-
level measurements. For example, Fitbit wearables recorded sleep
data from over six billion nights of its customers’ sleep (35),
the most prominent sleep dataset ever collected. Similarly, Oura
Health used IoT data gathered from their Oura ring, a wearable
sensor that tracks key signals from the human body (sleep,
heart rate, skin temperature, physical activity), delivering critical
insights to help an individual harness their body’s potential daily
and also to monitor vital health indicators (92).

Another hurdle is the ability to fuse data from multiple
devices to produce a unified result. Several research projects have
focused on making IoT data fusion viable in the real world by
designing computing infrastructure and data fusion techniques
(89, 93). Real-time IoT analysis from multiple health monitoring
devices may overwhelm current computational capabilities, such
as using multiple devices to monitor each football player’s
physiological indicators during a game (94). A distributed
computational framework to handle complex computational
needs was developed by Higinio et al. for health surveillance (94).
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TABLE 1 | Analysis of IoT as a data source for public health surveillance, using Groseclose et al. (90)# framework for evaluating public health surveillance.

Attributes (definition) Features of IoT data

Simplicity

“The system’s structure and

ease of operation. The

system should be as simple

as possible.” (90)

• Data collection/extraction from users without complex interactions using Application Programming Interface (APIs) that the

manufacturer often provides.

• Easy access to the data, which is often collected by passive sensors, minimizing the burden for the user.

• IoT systems rapidly generate large volumes of data in real-time, creating challenges associated with managing, hosting, and analyzing

big data.

• Diverse types of data being generated: numeric, images, text, or audio.

• Collects vast amounts of data from the same individual, often supporting longitudinal analysis.

Flexibility

“Ability to adapt to changing

information needs or

technological operating

conditions with little

additional time, personnel,

or allocated funds.” (90)

• Application Programming Interfaces (APIs) make it easy to adapt to the technology to the end-users being used, type of data, type

of database, type of storage, and security requirements.

• New IoT data sources that use APIs can easily be integrated into systems, also affording changes in a data structure as technologies

evolve.

• Changes in case definition can be updated in algorithms rather than requiring changes to data collected since systems can access

the raw data.

• The system can be automated to generate alert systems without manual effort which can help public health officials identify

potential signals for future outbreaks early.

Data quality

“Completeness and validity

of the data recorded in the

system.” (90)

• IoT data often suffers from missing, inaccurate, and incomplete data.

• Wearable sensors that require participants to recharge and remember to interact with the device often have larger volumes of missing

data.

• Ambient sensors often generate continuous and complete datasets as they are always connected, powered on, and streaming.

• Technology development is leading to improved data quality across all IoT sensors.

Acceptability

"Willingness of persons and

organizations to participate

in the system.” (90)

• IoT technologies are pervasive, and in the community, a part of the population is already using those technologies to generate data.

• IoT adoption is accelerating in the last decade and is predicted to be much higher in the near future.

• Recent advancement in technology used “skin interfaced sensors” not only monitor physical activities and vital signs but also keep

track of molecular biomarkers of the human body (104).

• Users need to agree to share their data, as it has already been collected.

Sensitivity

“At the level of case

reporting: the proportion of

cases of a disease or event

detected by the system.

Ability to detect outbreaks

over time and evaluation of

surveillance system.” (90)

• IoT sensors, in most cases, do not focus on the detection of specific diseases such as COVID-19 or influenza but rather on symptoms

like fever, abnormal heart rate, or change in gait pattern.

• IoT technology is ideal for supporting syndromic surveillance by collecting data about healthy behaviors and health variables in

real-time.

• IoT technology will collect data that is often indirectly associated with health and health risk behaviors (e.g., indoor motion data to

quantify sleep patterns, phone mobility data used to quantify response to COVID-10 policies).

• IoT will provide extensive participant data with a higher likelihood of the presence of events.

• The longitudinal nature of the data can detect future anomalies using Artificial Intelligence models within the healthcare sector and

send alerts to policymakers. The longitudinal and continuity nature of the data will provide richer insights into population behaviors,

which increases the likelihood of getting the events of interest.

Positive predictive value

“The proportion of reported

cases that actually have the

event under surveillance.”

(90)

• The proportion of the presence of IoT within the community is increasing and predicting the true positive cases will be easier using

IoT data by identifying early alerts.

• The detection of specific diseases is possible, as technologies such as lab on a chip (106, 107) allow for real-time detection of

pathogens and contaminants.

• Positive predictive value seems to be in a disadvantageous position with the current IoT data environment, but this might change in

the future.

Representativeness

“Ability to accurately

describe the occurrence of

a health-related event

overtime and distribution of

the population by place and

person.” (90)

• Large number of participants can provide access to data who were not represented in the traditional data collection method.

• IoT technologies are ubiquitous, highly pervasive, and are generating data 24/7.

• Data mining from sensors already owned by the population generates a biased sample, with data from the wealthier and more

physically active part of the population.

• Studies can supplement biased samples by deploying targeted studies to collect data from under-represented subgroups of

the population.

Timeliness

“Reflects the speed

between steps in a system.”

(90)

• Data is often collected at high frequencies, often affording access to data in the near real-time.

• An increase in the data’s granularity and the longitudinal nature of the data can provide richer insights, for instance, faster alerts of

anomalies for specific health issues, and support the creation of innovative indicators.

• In the near future, the IoT data source may become helpful to identify future pandemic and climate-related emergencies. Immediate

assessment of the impact of policy changes (for example, “work from home” during the pandemic) can be possible using IoT data.

• Improvement from traditional data sources where data collection often happens once yearly or less frequently.

Stability

“Ability to rely on the system

for availability and to collect

manage and provide data

without failure. Ability to be

operational when needed.”

(90)

• Private cloud systems can provide the necessary data security and maintain the users’ privacy.

• Redundant, always available, more stable public health surveillance platforms/systems can be built using private cloud solutions,

having the capacity to collect uninterrupted data without failure. IoT manufacturers and IoT data custodians can deliver such

redundant and stable systems for their consumers’ everyday use.

• The disadvantage of these IoT data manufacturers is ever-changing company environment (for example, corporate and big private

entities) might not provide a stable source of data. The alternative source of data should be listed as a backup plan to support and

strengthen when required.

#Groseclose et al. (90).
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The use of each smart devices’ computing capabilities effectively
shared advanced health monitoring applications (94).

Regarding technical challenges related to IoT, some of the
critical issues are energy optimization, hardware compatibility,
security, and data connectivity (95). A recent study by Iwendi
et al. in 2020 shows that there are certain highly specialized
algorithm such as a “hybrid meta-heuristic algorithm” has the
potential to optimize the energy consumption of the sensors
related to wireless sensor networks (95).

Aberration detection identifies unusual incidents or
information trends with possible significance to clinical or
public health (96). Methods for detecting such aberrations have
also evolved significantly. Current modeling methods can now
analyze individual surveillance data collected from different
sources and integrate multiple covariates (97). The algorithms
used for signal recognition have improved over the last decade
and are now better equipped to utilize advanced informatics to
capture surveillance data aberrations (96, 97) accurately.

In 2018, Faverjon C. and Berezowski J. elaborated on IoT
data’s utility for aberration detection (97, 98). Two studies have
shown that user data from wearables (Fitbit and the Oura
ring) could detect early signs of COVID-19 infection (99–103).
Evidence shows the risk of hospitalization related to COVID-19
can be calculated from self-reported symptoms and predictive
physiological signs by combining different health and behavioral
data from consumer wearable devices; this may help identify
pathological changes weeks before observation using traditional
epidemiological monitoring (99, 100). As described in the study
using Fitbit wearable, it has the potential to detect almost half
of COVID-19 positive cases 24 h before participants reported the
onset of symptoms with 70 percent specificity (103). Besides joint
effort by multiple countries to develop vaccines and potential
drugs to prevent and treat COVID-19, skin-integrated and
skin interfaced sensors, positioned at optimal locations of the
body, might address the ongoing and critical need for objective,
continuous, and sensitive tools to detect COVID-19 symptoms
early in the general population (101, 104). A research study
highlighted a practical approach for managing epidemics using
digital technologies with a roadmap to a rapid and universal
diagnostic method for the population level detection of several
respiratory infections in advance of symptoms (102). These
anomalies could predict future outbreaks (97) and prevent the
spread of infectious diseases (105).

NEXTGEN PUBLIC HEALTH
SURVEILLANCE

The COVID-19 pandemic has revealed a need to strengthen
our public health surveillance and response systems. With the
availability of public data and advances in collection and analysis,

there is an opportunity to strengthen existing surveillance

systems by harnessing complementary data sources like IoT-
based data (31).

Figure 1 describes the NextGen surveillance systems’
conceptual framework. The first layer describes the sources
of public health data. The second layer represents the data
architecture. Once the data integration process is completed,
data manipulation and analysis can be possible using statistics,
machine learning, and deep learning algorithms. This process
will help discover new public health indicators and advance our
understanding of existing disease risk factors.

CONCLUSION

Current public health surveillance systems have unique
challenges in getting the relevant data at the right time and
utilizing those data sources for policy-level decision-making.
There is a considerable volume of non-traditional data being
self-generated by the public through their ubiquitous use of
smart devices. Public health has the potential to utilize the
real-time, longitudinal data collected through the Internet
of Things (IoT) necessary for health surveillance. Advances
in computing are now bringing IoT-based surveillance into
the realm of possibility. The advantages of IoT data include
high-frequency, high volume, zero effort data collection method,
with a potential to have syndromic surveillance.
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