
Stmol: A component for building
interactive molecular
visualizations within streamlit
web-applications

J.M. Nápoles-Duarte1*, Avratanu Biswas2,3, Mitchell I. Parker4,5,
J.P. Palomares-Baez1, M. A. Chávez-Rojo1 and
L. M. Rodríguez-Valdez1

1Laboratorio de Química Computacional, Facultad de Ciencias Químicas, Universidad Autónoma de
Chihuahua, Nuevo Campus Universitario, Chihuahua, Mexico, 2Doctoral School of Biology, University
of Szeged, Szeged, Hungary, 3Biological Research Centre, Szeged, Hungary, 4Molecular and Cell
Biology and Genetics (MCBG) Program, Drexel University College of Medicine, Philadelphia, PA,
United States, 5Program in Molecular Therapeutics, Fox Chase Cancer Center, Philadelphia, PA,
United States

Streamlit is an open-source Python coding framework for building web-

applications or “web-apps” and is now being used by researchers to share

large data sets from published studies and other resources. Here we present

Stmol, an easy-to-use component for rendering interactive 3D molecular

visualizations of protein and ligand structures within Streamlit web-apps.

Stmol can render protein and ligand structures with just a few lines of

Python code by utilizing popular visualization libraries, currently Py3DMol

and Speck. On the user-end, Stmol does not require expertise to

interactively navigate. On the developer-end, Stmol can be easily integrated

within structural bioinformatic and cheminformatic pipelines to provide a

simple means for user-end researchers to advance biological studies and

drug discovery efforts. In this paper, we highlight a few examples of how

Stmol has already been utilized by scientific communities to share

interactive molecular visualizations of protein and ligand structures from

known open databases. We hope Stmol will be used by researchers to build

additional open-sourcedweb-apps to benefit current and future generations of

scientists.

KEYWORDS

python package, streamlit, protein visualization, open source, stmol

1 Introduction

Scientific web-applications or “web-apps” are powerful tools for sharing

computational methods and large datasets exploration with other researchers who

may or may not have scientific programming expertise. Creating such web-apps has

become increasingly common with many recent studies producing new computational

methods for analyzing results from large-scale experimental campaigns, such as high-

OPEN ACCESS

EDITED BY

Jessica Andreani,
UMR9198 Institut de Biologie Intégrative
de la Cellule (I2BC), France

REVIEWED BY

Isman Kurniawan,
Telkom University, Indonesia
Stéphane Téletchéa,
Université de Nantes, France
Robert Hanson,
St. Olaf College, United States

*CORRESPONDENCE

J.M. Nápoles-Duarte,
jnapoles@uach.mx

SPECIALTY SECTION

This article was submitted to Biological
Modeling and Simulation,
a section of the journal
Frontiers in Molecular Biosciences

RECEIVED 10 July 2022
ACCEPTED 29 August 2022
PUBLISHED 23 September 2022

CITATION

Nápoles-Duarte JM, Biswas A,
Parker MI, Palomares-Baez JP,
Chávez-Rojo MA and
Rodríguez-Valdez LM (2022), Stmol: A
component for building interactive
molecular visualizations within
streamlit web-applications.
Front. Mol. Biosci. 9:990846.
doi: 10.3389/fmolb.2022.990846

COPYRIGHT

© 2022 Nápoles-Duarte, Biswas, Parker,
Palomares-Baez, Chávez-Rojo and
Rodríguez-Valdez. This is an open-
access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution
or reproduction is permittedwhich does
not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Technology and Code
PUBLISHED 23 September 2022
DOI 10.3389/fmolb.2022.990846

https://www.frontiersin.org/articles/10.3389/fmolb.2022.990846/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.990846/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.990846/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.990846/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.990846&domain=pdf&date_stamp=2022-09-23
mailto:jnapoles@uach.mx
https://doi.org/10.3389/fmolb.2022.990846
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.990846

throughput drug screens or development of machine learning

algorithms aiding biomedical sciences. This fundamental

breakthroughs can then be easily leveraged by other

researchers to make further scientific advancements. However,

building user-friendly web-apps can be difficult, since it can be

time-consuming and not all researchers possess the front-end

coding expertise (e.g., HTML, Javascript, React, Typescript)

required to make simple, interactive user interfaces.

Streamlit (https://github.com/streamlit/streamlit) is an open-

source library that allows researchers to create web-apps with just a

few lines of Python code without any need for front-end coding

skills. Already, Streamlit has been extensively used by researchers

to make scientific web-apps (Parker et al. (2022); Kui et al. (2022);

Absar et al. (2022); Li et al. (2022b); Li et al. (2022a)). These web

applications allow an easy and intuitive way that researchers gain

novel scientific insights by enabling easy exploration of large data

sets. For this, it is easy to deploy basic charts (bar, scatter, etc.) or

tabular forms (data frame, tables, etc.). Recently, Lee et al. (2022),

published a web-app called “StarGazer,” a hybrid intelligence

platform for drug target prioritization and digital drug

repositioning using Streamlit front-end, developed by the

AstraZeneca team (https://github.com/AstraZeneca/StarGazer).

This platform works with multi-source and multi-omics data

and is based on a target prioritization scoring system which

displays scores for genes related to phenotypic traits in a

Streamlit dashboard. Likewise, in the field of biomedical

sciences, Kiss et al. (2022) built a web-application for early

prediction of acute necrotizing pancreatitis by artificial

intelligence, which uses XGBoost machine learning algorithm

for the prediction of pancreatic necrosis. The model relies on

data from 2,387 patients with acute pancreatitis and was deployed

as an online app using Streamlit (http://necro-app.org/). Another

recent contribution in the field of computational biology with

Streamlit based web-app, is the “iCarboxE-Deep”, a server to

identify carboxy-glutamate post-translational modification

(PTM) sites Naseer et al. (2022). iCarboxE-Deep web-app,

using Deep Convolutional Neural Network (CNN) based

classifier can predict the 4-carboxyglutamate sites in protein

sequences with increased accuracy and F1-score of 0.874

(https://share.streamlit.io/sheraz-n/carboxyglutamate/app.py). In

sum, Streamlit serves as a powerful tool which democratizes the

creation of web-apps for sharing scientific software and data.

Structural bioinformatics and cheminformatics have been

early adopters of Streamlit for building web-apps to share

computational methods and large data sets analysis. However,

these fields rely heavily on interactive 3D and 2D molecular

visualizations of protein and ligand structures, which is not

supported by out-of-the-box Streamlit. Therefore, we created

Stmol (https://github.com/napoles-uach/stmol), a component

for rendering interactive 3D molecular visualizations of

protein and ligand structures within Streamlit web-apps.

Stmol utilizes libraries, such as Py3DMol Rego and Koes

(2014), and Speck https://github.com/wwwtyro/speck. In

Figure 1, we can see the star history for the GitHub repository

of stmol project, which shows the constant growing interest of

the scientific community towards the component.

In this paper, we demonstrate how to create Stmol rendered

molecular visualizations within Streamlit web-apps, introduce

how to contribute to the project, and present some use cases of

Stmol to give a glimpse how its capabilities.

2 Methods

The fundamental aspect of the Stmol package to render 3D

molecular visualization at the Streamlit frontend, is highly

dependent on the showmol()function. Its value resides in the

simplicity that it offers to convert the HTML objects behind

py3Dmol. This makes it possible to build a WebGL-based view

object structured entirely around Py3Dmol Python package and

further calling the Stmol function showmol(), to display a 3D

structure in the Streamlit web-app. For instance, an object

defined as, obj = py3Dmol.view(query=′pdb:1ubq′), can be easily

visualized and interacted at the frontend using, showmol(obj).

Albeit, the simplicity of the showmol()function, it offers

tremendous extensibility to build more complex visualizations.

Furthermore, with the intend to make visualization and handling

of 3Dmol/py3DMol objects easier, Stmol package offers several

intuitive functions for the user to build web apps using extremely

simple Python scripts. Stmol functions can be organized in two

broad categories—1) building py3Dmol molecular objects and 2)

post-processing molecular objects.

FIGURE 1
Star history plot of the stmol GitHub repository (untill July,
2022).

Frontiers in Molecular Biosciences frontiersin.org02

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://github.com/streamlit/streamlit
https://github.com/AstraZeneca/StarGazer).This
https://github.com/AstraZeneca/StarGazer).This
http://necro-app.org/
https://share.streamlit.io/sheraz-n/carboxyglutamate/app.py
https://github.com/napoles-uach/stmol
https://github.com/wwwtyro/speck
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

2.1 Building py3Dmol objects

Stmol in its current state offers three functions to build

py3Dmol objects, each of which returns a py3Dmol object.

Functions, with their usage are as follows.

• makeobj—Building the molecular visualization from a file

with a valid extension (e.g., pdb,xyz, etc.). Thereby,

allowing users to upload and visualize the data

• render_pdb—Quick visualization of structures from the

Protein Data Bank (PDB) based on their associated four

letter identifier

• obj_upload—Useful to work with Streamlit widget

st.file_upload(). Returns the corresponding py3Dmol

object from the uploaded file

Each of the above functions, can be easily implemented for

building py3Dmol objects and visualized using the showmol()

function as shown in Figure 2.

2.2 Post-processing py3Dmol objects

Likewise, the py3Dmol objects can be further customized. In

the context of making Stmol, a tool to leverage this processes at

ease, we added few post-processing functions which are enlisted

below:

• add_hover—Viewing atom’s labels on mouse hovering

• render_pdb_resn,render_pdb_resi—Labelling residues

within a protein

FIGURE 2
Schematic representation of a typical workflow to create py3Dmol objects and visualize using Stmol package at the user-end.

FIGURE 3
Schematic representation of post-processing utilities offered by Stmol. (A) Hover function to obtain atom’s information. (B) Rendering residue
to add residue labels. (C) Adding simple geometries.

Frontiers in Molecular Biosciences frontiersin.org03

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

• add_box,add_sphere,add_cylinder—Adding basic

geometries

• add_model—Aggregate a new model to an existing

py3Dmol object

Figure 3, demonstrates the flow of work for some of these

functions. These functions add new features to existing py3Dmol

objects.

The Stmol package aims to broaden the molecule rendering

functionalities. We are open for contributions to the Stmol project

repository inGitHub (https://github.com/napoles-uach/stmol). Two

possible ways to contribute to the stmol library are, with the static

HTML components and with the bidirectional components, the

latter which sends and receives information to/from the backend.

The tree of the directories is shown below:

stmol/

__init__.py

utils.py

example.py

front-end/

public/

src/

MyComponent.tsx

The relevant folders for the purpose of making contributions

are included in the tree.

Here we briefly explain how to proceed if new features are

going to be contributed to the project using simple examples.

2.3 Static contributions

A recent addition in a form of static HTML wrapper is the

speck_plot function, which helps in rendering Speck structures

(https://github.com/wwwtyro/speck) within the Streamlit web-

application. In brief, Speck is an open-source browser based

WebGL molecule renderer written primarily in the JavaScript

programming language, that produce attractive high quality

molecular figures displaying salient features such as ambient

occlusion, pixel-perfect atoms and bonds, depth-aware outlines,

and depth of field. The speck_plot static wrapper incorporates the

Python packages such as ipyspeck and ipywidgets. AnHTML string is

passed at the front-end using Streamlit’s components.html() API.

Modules

import streamlit.components.v1 as components

import ipywidgets as widgets

from ipywidgets import embed

import ipyspeck

Static wrapper function

def speck_plot(_xyz, wbox_height="700px",

wbox_width="800px”, component_h = 700,

component_w = 800, scroll = False):

Read the xyz file

spec_xyz = ipyspeck.speck.Speck(data = _xyz)

Create the widget box

widg = widgets.Box([spec_xyz],

layout=widgets.Layout(height=

wbox_height,width=wbox_width))

Embed the widget box in the streamlit html component

sc = embed.embed_snippet(widg)

html = embed.html_template.format(title="", snippet=sc)

components.html(html,height =

component_h, width = component_w,scrolling=scroll)

return spec_xyz

Thus, importing the speck_plot function from the stmol

module along with a few simple Streamlit syntaxes can be

used to build and deploy a minimalist Streamlit web-app

(Figure 4).

2.4 Bidirectional contributions

The Bidirectional component inclusion, requires

implementation of both back and front-end–commonly

written using HTML, Javascript, React, Typescript, etc. A

bidirectional Component in Streamlit has two parts, the front-

end and a python API. The frontend, is build in HTML, plus

React or Typescript code, and it is possible to incorporate other

packages using the npm package manager. On the other hand,

the Python API is used to instantiate and communicate to the

front end. Stmol currently does not have this kind of

functionality which could have some advantages like

retrieving the atoms or ligands information by clicking on the

atoms. We are still exploring this possibility, and it is part of the

plan for Stmol in the near future. Further information on

bidirectional components can be found in the Streamlit

documentation (https://docs.streamlit.io/library/components).

Currently, there are a few known limitations of Stmol. First,

Stmol does not provide in-built highlighting option for the

protein structure (e.g., drug binding sites). Second, the present

static Stmol wrapper lacks bidirectional functionality. Third, the

speck_plot function is currently only compatible with. xyz format

of proteins and lacks argument to tweak with the visualized

protein structure. Therefore, we plan to include such

functionalities in future releases of Stmol. Further, we call the

community to participate and contribute to the improvement of

this open-source project.

Frontiers in Molecular Biosciences frontiersin.org04

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://github.com/napoles-uach/stmol
https://github.com/wwwtyro/speck
https://docs.streamlit.io/library/components
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

3 Results

As discussed previously, the development of any web-app

with Streamlit front-end, requires only the knowledge of Python

programming. In this section, we will be implementing the stmol

Streamlit component and build a demo Streamlit web-app. Stmol

depends on following Python libraries, streamlit, py3Dmol,

ipyspeck and ipywidgets which are installed together with the

package. The pip python package manager can be used for the

installation of the mentioned packages with the following

command,

pip install stmol

The root folder consists of the python file app.py (refer to the

GitHub folder) consisting of following few lines of code.

#Importing the installed libraries

import streamlit as st

from stmol import showmol

import py3Dmol

#1.Calling Streamlit widgets

st.sidebar.title(′Demo app′)
style = st.sidebar.selectbox(′style′, [′cartoon′, ′stick′,
′sphere′])
#2.Using Py3Dmol methods

xyzview = py3Dmol.view(query=′pdb:1A2C′)
xyzview.setStyle({style:{′color′:′spectrum′}})
xyzview.setBackgroundColor(′white′)
#3.Calling the stmol function called showmol

showmol(xyzview, height = 500,width=800)

The above code is almost self-explanatory. The sections to

emphasize can be well divided into:

1) Calling Streamlit widgets

2) Using Py3Dmol methods

3) Calling the stmol function called showmol to render the

resulting protein

The app.py file, can run locally from the command terminal

with the following command,

streamlit run app.py

The resulting web-app on running successfully should appear

in a new tab of the default internet browser window as a localhost

(Figure 5).

In order to deploy the web-app for external usage and global

availability over internet, a requirements.txt file needs to be

created, which consists of the dependencies crucial for

running the web application. The common practice in

FIGURE 4
Screen-capture of the Streamlit web-app demonstrating the speck-plot rendering function.

Frontiers in Molecular Biosciences frontiersin.org05

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

creating requirements.txt file is by using Python libraries, such as

pipreqs. In the above demo app, the content of the

requirements.txt file consists of streamlit, stmol and py3Dmol.

The application can be hosted over Streamlit Cloud (https://

streamlit.io/cloud), which utilizes code pushed to a Github

repository. With future Streamlit Cloud pulls, any changes in

the code alteration from the GitHub path will be automatically

(or can be manually) rebooted. Demo application and examples

can be accessed through this link (See Figure 6 for a Screenshoot).

3.1 Use cases of STMOL

In this section we aim to briefly highlight few significant

implementations of Stmol package in development of scientific

web-apps.

Example 1—Rascore. Rascore (Parker et al., 2022) is a

Streamlit based web-app for analyzing the 3D structure of the

tumor-associated RAS proteins (KRAS, NRAS, and HRAS—the

most common cancer drivers). Rascore allows researchers to

quickly benchmark candidate RAS inhibitors (through structure-

based and ligand-based approaches) with other RAS directed

inhibitors previously tested, providing a data-driven approach

for accelerating RAS drug discovery. Rascore helps scientists to

explore and compare published structural models of RAS

proteins in the Protein Data Bank (PDB) in ways that

simplify biological study of these proteins and facilitate RAS

drug discovery. The code can be found at https://github.com/

mitch-parker/rascore. The Rascore server utilizes py3Dmol for

residue annotation and finally renders the molecular object to the

Streamlit frontend using the showmol() function, shown in

Figure 7. In the latest release of Stmol, render_pdb_resn()

function can be used for the same purpose. Implementation

of this similar feature has been added as an example application

here—https://napoles-uach-stmol-home-pom051.streamlitapp.

com/Examples.

Example 2—RMG web based input file generator. RMG

Input File Generator is an user interface developed by the

creators of RMG Briggs et al. (1996), a Density Functional

Theory code for electronic structure calculations for the

modeling of materials and molecules. It allows to build the

input files, by following provided examples or by upload of

atomic structure files, shown in Figure 8. The code can be

found at https://github.com/RMGDFT/rmgwebinterface. The

FIGURE 5
Streamlit web-app running on the browser on local server on executing the app.py Python file.

Frontiers in Molecular Biosciences frontiersin.org06

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://streamlit.io/cloud
https://streamlit.io/cloud
https://github.com/mitch-parker/rascore
https://github.com/mitch-parker/rascore
https://napoles-uach-stmol-home-pom051.streamlitapp.com/Examples
https://napoles-uach-stmol-home-pom051.streamlitapp.com/Examples
https://github.com/RMGDFT/rmgwebinterface
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

FIGURE 6
Demo application. This is a more advanced example where residues are highlighted andmolecular surface is included with transparency. In this
case, the user experience is enriched with Streamlit widgets.

FIGURE 7
Screen-captures showing use case of the Stmol package for the development of the Rascore Web-app. Among its options are “Main Menu”,
“Database Overview” and “Explore Conformation” sections where Stmol is used to visualize the structures.

Frontiers in Molecular Biosciences frontiersin.org07

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

FIGURE 8
Screen-captures of RMG web-app. The showmol() function was called for the purpose of rendering crystalline structures. The end user can
select the options accepted by the RMG code and visualize the crystal using repetition cells.

FIGURE 9
Screen-captures of TIMED web app. Images courtesy of Leonardo V. Castorina who is one of the contributors of the TIMED project. TIMED
tackle the “Inverse Folding Problem” aiming to identify the residue sequence that will reliably fold into a given structure.

Frontiers in Molecular Biosciences frontiersin.org08

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

molecular rendering of the .xyz file format can be further

simplified using the obj_upload() function of Stmol package.

This example makes evident that Stmol is being also used in the

field of Computational Materials Science, where visualization of

3D structures is also of importance.

Example 3—TIMED user interface. TIMED (Three-

dimensional Inference Method for Efficient Design) is a

Convolutional Neural Network model trained to solve the

“Inverse Folding Problem” (Castorina et al. (2022)). The input

for TIMED is a 3D shape (empty backbone) and the output are

the subunits at the positions of the backbone. The Streamlit user

interface for TIMEDallows to select a given protein by the PDB code

or uploading a backbone/PDB file and run the model to get

probabilities at specific positions. The code can be accessed at

https://github.com/wells-wood-research/timed-design, shown in

Figure 9.

4 Discussion

We present an open-source python package, stmol, which serves

as a plugin to render 3D molecular visualization of protein within

Streamlit web-apps. The Stmol component enables researchers from

different scientific backgroundswith varying front-end programming

expertise to quickly and easily deploy interactive web applications to

serve several purposes, such as visualization of experimental or

simulated data among several scientific communities working on

similar projects. This tool has been well embraced by the science

enthusiasts within the Streamlit community, as evident from the

constant growth of users since its first release.

Stmol provides an easy way for bioinformatic and

cheminformatic researchers to create web-apps that guide

structure-based and ligand-based drug design through molecular

visualizations. In this paper, we highlighted Rascore (Figure 7) a

Streamlit web-app which utilizes Stmol for visualization of drug-

bound (and unbound) structures of a high-priority cancer target

called RAS proteins. Since the launch of Rascore in April, this web-

app has accrued over 3,000 users from academia and the

pharmaceutical industry who are using the app to guide

development of the next generation of RAS inhibitors. Similarly,

we envision other researchers will use Stmol to quickly build

Streamlit web-apps for the purpose of streamlining drug discovery

related to other therapeutic targets. In other scenarios, due to its

nature, the contribution of Stmol to drug discovery is limited to the

task of visualization, and in this sense it has the potential to be used

in conjunction with other packages (e.g., Rdkit, ProLIF, Vina) to

build molecular docking interfaces on the browser with all the

benefits that this implies, being the reduction of costs in specialized

software one of them.We envision other possible applications, but

some will require improvements in the library that are for now in

the future plans for this project, like improving the interactivity

and retrieval of information e.g. displaying atom distances, and

also features more oriented to drug discovery.

Although there are many possible improvements to Stmol,

we believe that this is a project that deserves attention, and that its

use along with Streamlit will be more common in future

publications by the bioinformatics community. Nowadays, for

Stmol the main objective is to make it simpler for scientist to get

through the process related to visualization of molecular

structures in the deployment of web apps with Streamlit.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found here: https://github.com/napoles-uach/stmol.

Author contributions

All authors contributed to the writing and correction of the

article. JN-D, MIP and AB contributed with the code. JN-D

supervised the project.

Funding

Scholarship for AB was provided by the “Stipendium

Hungaricum” program of the Hungarian Ministry of Foreign

Affairs and Trade and the Tempus Public Foundation. Fellowship

funding provided to MIP by NIH NIGMS grant F30 GM142263.

Acknowledgments

We want to thank Ted Ricks and Tim Conkling of the

Streamlit team for useful discussions in the development of the

component.We want to thank the Faculty of Chemical Sciences of

the Autonomous University of Chihuahua for supporting this

project, in its development and publishing.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.

Frontiers in Molecular Biosciences frontiersin.org09

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://github.com/wells-wood-research/timed-design
https://github.com/napoles-uach/stmol
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

References

Absar, N., Das, E. K., Shoma, S. N., Khandaker, M. U., Miraz, M. H., Faruque, M.
R. I., et al. (2022). The efficacy of machine-learning-supported smart system for
heart disease prediction. Healthcare 10, 1137. doi:10.3390/healthcare10061137

Briggs, E. L., Sullivan, D. J., and Bernholc, J. (1996). Real-space multigrid-based
approach to large-scale electronic structure calculations. Phys. Rev. B Condens.
Matter 54, 14362–14375. doi:10.1103/PhysRevB.54.14362

Castorina, L. V., Subr, K., and Wood, C. W. (2022). TIMED-Design: Efficient protein
sequence design with deep learning.Zenodo 2022, 6997495. doi:10.5281/zenodo.6997495

Kiss, S., Pintér, J., Molontay, R., Nagy, M., Farkas, N., Sipos, Z., et al. (2022). Early
prediction of acute necrotizing pancreatitis by artificial intelligence: A prospective
cohort-analysis of 2387 cases. Sci. Rep. 12, 7827. doi:10.1038/s41598-022-11517-w

Kui, B., Pintér, J., Molontay, R., Nagy, M., Farkas, N., Gede, N., et al. (2022). Easy-
app: An artificial intelligence model and application for early and easy prediction of
severity in acute pancreatitis. Clin. Transl. Med. 12, e842. doi:10.1002/ctm2.842

Lee, C., Lin, J., Prokop, A., Gopalakrishnan, V., Hanna, R. N., Papa, E., et al.
(2022). Stargazer: A hybrid intelligence platform for drug target prioritization

and digital drug repositioning using streamlit. Front. Genet. 13, 868015. doi:10.
3389/fgene.2022.868015

Li, W., Hong, T., Liu, W., Dong, S., Wang, H., Tang, Z.-R., et al. (2022a).
Development of a machine learning-based predictive model for lung metastasis in
patients with ewing sarcoma. Front. Med. 9, 807382. doi:10.3389/fmed.2022.807382

Li, W., Zhou, Q., Liu, W., Xu, C., Tang, Z.-R., Dong, S., et al. (2022b). A machine
learning-based predictive model for predicting lymph node metastasis in patients
with ewing’s sarcoma. Front. Med. (Lausanne). 9. doi:10.3389/fmed.2022.832108

Naseer, S., Ali, R. F., Fati, S. M., and Muneer, A. (2022). Computational
identification of 4-carboxyglutamate sites to supplement physiological studies
using deep learning. Sci. Rep. 12, 128. doi:10.1038/s41598-021-03895-4

Parker, M. I., Meyer, J. E., Golemis, E. A., Dunbrack, J., and Roland, L. (2022).
Delineating the RAS conformational landscape. Cancer Res. 82, 2485–2498. doi:10.
1158/0008-5472.CAN-22-0804

Rego, N., and Koes, D. (2014). 3Dmol.js: Molecular visualization with WebGL.
Bioinformatics 31, 1322–1324. doi:10.1093/bioinformatics/btu829

Frontiers in Molecular Biosciences frontiersin.org10

Nápoles-Duarte et al. 10.3389/fmolb.2022.990846

https://doi.org/10.3390/healthcare10061137
https://doi.org/10.1103/PhysRevB.54.14362
https://doi.org/10.5281/zenodo.6997495
https://doi.org/10.1038/s41598-022-11517-w
https://doi.org/10.1002/ctm2.842
https://doi.org/10.3389/fgene.2022.868015
https://doi.org/10.3389/fgene.2022.868015
https://doi.org/10.3389/fmed.2022.807382
https://doi.org/10.3389/fmed.2022.832108
https://doi.org/10.1038/s41598-021-03895-4
https://doi.org/10.1158/0008-5472.CAN-22-0804
https://doi.org/10.1158/0008-5472.CAN-22-0804
https://doi.org/10.1093/bioinformatics/btu829
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.990846

	Stmol: A component for building interactive molecular visualizations within streamlit web-applications
	1 Introduction
	2 Methods
	2.1 Building py3Dmol objects
	2.2 Post-processing py3Dmol objects
	2.3 Static contributions
	2.4 Bidirectional contributions

	3 Results
	3.1 Use cases of STMOL

	4 Discussion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

