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Abstract: The diagnosis and prognosis of tuberculosis remains challenging and necessitates the
development of a new test that can accurately diagnose and monitor treatment responses. In this regard,
miRNA is becoming a potential diagnostic and prognostic biomarker which differentiates treatment
respondents from non-respondents for various non-infectious and infectious diseases, including
tuberculosis. The concentration of miRNAs varies based on cell type, disease, and site of infection,
implicating that selection of an optimal reference gene is crucial, and determines the quantification
of transcript level and biological interpretation of the data. Thus, the study evaluated the stability
and expression level of five candidate miRNAs (let-7i-5p, let-7a-5p, miRNA-16-5p, miRNA-22-3p
and miRNA-93-5p), including U6 Small Nuclear RNA (RNU6B) to normalize circulating miRNAs in
the plasma of 68 participants (26 healthy controls, 23 latent, and 19 pulmonary tuberculosis infected)
recruited from four health centers and three hospitals in Addis Ababa, Ethiopia. The expression levels
of miRNAs isolated from plasma of culture confirmed newly diagnosed pulmonary tuberculosis
patients were compared with latently infected and non-infected healthy controls. The qPCR data were
analyzed using four independent statistical tools: Best Keeper, Genorm, Normfinder and comparative
delta-Ct methods, and the data showed that miRNA-22-3p and miRNA-93-5p were suitable plasma
reference miRNAs in a tuberculosis study.

Keywords: tuberculosis; miRNA; reference miRNAs; qPCR (quantitative polymerase chain reaction);
miRNA-22-3p; miRNA-93-5p; endogenous controls; circulating miRNA

1. Introduction

Tuberculosis remains a major global health threat and affects about one third of the global
population with estimated incidents of 10 million new cases and deaths of 1.2 million people in the
year 2018. In the same year, the global report of drug-resistant tuberculosis was also about half a
million (417,000 to 556,000 people), in which 3.4% of the new cases and 18% of previously treated cases
had the chance to develop multidrug-resistant tuberculosis (MDRTB). Hence, the development of new
and novel diagnostic tools is one of the pillars to curb this challenge [1]. Depending on the methods
utilized, diagnosis of tuberculosis has various shortcomings. Low sensitivity and specificity, delay in
diagnosis, difficulty in diagnosis of child and extrapulmonary tuberculosis, lack of early detection of
treatment respondents and non-respondents, and absence of accurate disease progression markers
are some of the diagnostic challenges [2]. Thus, improving tuberculosis diagnosis though new and
innovative methods is needed to enhance tuberculosis control and management.
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Currently, various molecular markers have been developed and implemented to increase
tuberculosis diagnosis. Of these, miRNA is becoming a promising marker in diagnosis, as well
as in prognosis for both infectious and non-infectious diseases [3]. MicroRNAs (miRNAs) are short
(~19 to 24 nucleotides in length) noncoding, evolutionary conserved RNAs that are broadly expressed
in the genomes of animals and humans [4,5]. Earlier studies also reported that miRNA regulates
gene expression at the post-transcriptional level and is involved in a wide range of cellular processes,
including apoptosis, cell differentiation, and proliferations [6].

MicroRNA synthesized in the immune and non-immune cells are secreted out and enters
extracellular human body fluids, including blood plasma, urine, saliva, and semen. Such microRNAs
circulate in the bodily fluids, and the blood stream reaches various parts of the body distal to the
site of infection [7–9]. MicroRNA in the extracellular environments have shown extreme stability
in the fluids of mammals [7,10], at room temperature, and in adverse conditions, such as multiple
freeze–thaw cycles and RNase degradation. The stability at varied conditions add to the regulatory
role and differential expression in body fluids of health and disease’s state makes circulating miRNA a
promising biomarker for diagnosis, prognosis, and treatment monitoring for various types of diseases,
including tuberculosis [11,12].

The quantitative polymerase chain reaction (qPCR) is a widely applicable molecular technique
that is used to quantify the expression of transcripts in certain biological specimens. The comparison
between normal and diseased individuals with different groups requires a reference gene which is
stable in all the groups. Hence, selection and normalization of the reference gene is a crucial step in
qPCR experiments, which also affects the overall transcript level and its biological interpretations [13].

Basically, constant expression in all target cells and study groups, stability in different conditions,
and detectability are the key features of housekeeping genes [14]. However, it has been reported that
the stability of reference miRNA for studying circulating miRNA varies significantly among studies,
implicating the lack of universal reference miRNA. Although miRNA-16-5p and RNU6B was widely
accepted as an internal reference, miR-93, miR-22, miR-26a, miR-191, miR-320, and let-7i have also
been reported as an endogenous control for circulating miRNA in tuberculosis and non-tuberculosis
diseases [15]. Thus, this study aimed to identify stable endogenous circulating miRNA that will be
useful to normalize the genetic expression of plasma miRNA derived from tuberculosis-infected and
noninfected health controls.

2. Methods

2.1. Ethical Approval

The study protocol was reviewed and approved by the National Research Ethics Review Committee
(NRERC), Ministry of Innovation and Technology, Ethiopia (protocol number 3.10/13/2018) from
28 January 2018 to 28 January 2019 and Wonju Institutional Review Board (IRB), Yonsei University,
South Korea (Protocol Number 1041849-201709-BR-104-02) 10 October 2017 to 10 October 2018.
All participants were informed about the study objectives and procedures, and then consented for
collection of specimens (10 mL blood and sputum).

2.2. Study Design and Selection of Participants

A total of 68 study participants (26 health controls, 23 latently infected, and 19 pulmonary
tuberculosis infected) were recruited from selected hospitals and health centers in Addis Ababa,
Ethiopia. The cases were defined based the WHO guidelines [16]. Clinically diagnosed new cases
confirmed by acid-fast bacilli (AFB) and/or gene -X pert® and culture positive results were categorized
under pulmonary tuberculosis. Both the latently infected and healthy participants had no history of
tuberculosis infection. Those who had negative QFT-ELISA taken as a health control and contacts
with positive QFT-ELISA were considered as latently infected participants. Any other infection and
complications were set as exclusion criteria for all the study participants.
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2.3. Selection of Candidate miRNAs Reference

The candidate references circulating miRNA were initially selected based on the previous
studies and their applicability as endogenous controls in various studies [15,17]. Then, the selected
miRNAs were counter-checked with the small RNA sequencing data that was conducted on 30
plasma samples (10 pulmonary tuberculosis, 10 latently infected, and 10 health controls), and all
the selected miRNA were not reported in the differentially expressed results. Finally, five miRNAs
(let-7a-5p, let-7i-5p, miR-16-5p, miR-22-3p, miR-93-5p, and one small RNA (RNU6B) were selected as a
candidate endogenous control to normalize the gene expressions of circulating miRNA in the plasma
of study participants.

2.4. Sample Preparation and RNA Extractions

Ten mL of whole blood collected using EDTA vacutainer® tubes (Becton-Dickinson, Franklin Lakes,
NJ, USA) were centrifuged for 10 min at 3000 rpm to separate the plasma from cells and platelets [18].
Then, the plasma was stored in 1 mL aliquots at –80 ◦C for RNA extraction. Extraction of RNA was
done using the NucleoSpin®miRNA Plasma Kit, (Macherey-Nagel, Düren, Germany) following the
manufacturer’s protocol and modified by adding a RNA carrier described in previous studies [19].
The extraction of miRNA from fluid specimens has shortcomings. Thus, it has been reported
that carriers/co-precipitants, such as glycogen and yeast RNA extract, were useful to increase the
concentration by enhancing the recovery of nucleic acids during alcohol precipitations [19,20]. As a
result, 1 µg of yeast RNA carrier (Torulla Ambion®, Invitrogen, Rockville, MD, USA) for 300 µL plasma
was applied. Then, total RNA extracted from plasma was stored at −80 ◦C for RT-qPCR analysis.

2.5. Reverse Transcriptase and Real-Time Quantitative PCR

The RNA extracted from plasma were reverse-transcribed using the TaqMan® Reverse
Transcription Kit (Applied Biosystems, Waltham, MA, USA) to prepare the cDNA having a final
volume of 15 µL, which was a mixture of 7 µL TaqMan Master mix, 5 µL RNA templates, and 3 µL
of 5× RT primer. The TaqMan master mix in turn consisted of 0.15 µL 100 nm dTTP, 1 µL of 50 U/µL
MultiScribe Reverse Transcriptase, 1.5 µL of 10× reverse Transcriptase buffer, 0.19 µL of 20 U/µL RNase
inhibitor, and 4.16 µL of nuclease-free water. Then, reverse transcription was done using a Veriti™
96-Well Fast Thermal Cycler (Applied Biosystems, Waltham, MA, USA) with a parameter of 16 ◦C for
30 min, followed by 42 ◦C for 30 min, 85 ◦C for 5 min, and 4 ◦C cooling. The synthesized cDNA was
finally stored at −20 ◦C for qPCR.

The quantitative polymerase reaction (qPCR) of miRNAs were done using a TaqMan® miRNA
assay (Table 1) (Applied Biosystems, Waltham, MA, USA) mixed with TaqMan® Universal master mix
II and cDNA templates. The final reaction volume was 20 µL, containing 10 µL TaqMan® Universal
master mix II, 1 µL of 20× TaqMan® miRNA assay, and 9 µL of (1–10 ng) cDNA templates corrected
with RNase-free water. A plate containing the reaction mixture was sealed and transferred to the
CFX96® Touch Real-Time PCR Detection System (BioRad®, Hercules, CA, USA), and amplification
was performed, following a reaction cycle of 95 ◦C for 10 min, followed by denaturation at 95 ◦C for
15 s and annealing at 60 ◦C for 60 s.

Table 1. TaqMan® miRNA assay sets.

Candidate Reference Assay
No.

NCBI/miRbase
Accession Number Mature miRNA Sequence

RNU6B 001093 NR_002752 CGCAAGGATGACACGCAAATTCGTGAAGCGTTCCATATTTTT

hsa-let-7a-5p 000377 MI0000060 UGAGGUAGUAGGUUGUAUAGUU

hsa-let-7i-5p 002221 MI0000434 UGAGGUAGUAGUUUGUGCUGUU

hsa-miR-16-5p 000391 MI0000070 UAGCAGCACGUAAAUAUUGGCG

has-miR-22-3p 000398 MI0000078 AAGCUGCCAGUUGAAGAACUGU

hsa-miR-93-5p 001090 MI0000095 CAAAGUGCUGUUCGUGCAGGUAG
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2.6. Data Analysis

The qPCR data of each marker were valued numerically in terms of the mean and standard
deviation and t-test to assess the distributions among groups using SPSS version 21 statistical software
(SPSS Inc., Chicago, IL, USA) and GraphPad® Prism 7 (GraphPad Software, San Diego, CA, USA).
The stability of endogenous references was evaluated using four independent applications, such as
Norm finder [21], which is used for mathematical modeling and was designed by Anderson and
colleagues to assess the variation of candidate gene normalization and variation between samples in the
subgroups of the sample set [21], as well as Best Keeper [22], which is software that evaluates the stability
of reference miRNAs based on standard deviation (SD), correlation coefficient (R), and coefficient of
variation (CV). The stability of genes expressed was inferred by high R, Low SD, and CV values, and a
reference gene with SD greater than the one is concerned was deemed unacceptable [22]. The third
was comparative delta Ct methods, a model useful for identifying housekeeping genes through
analyzing the stability of genes by comparing the change in relative expression among different
samples. Genes were deemed stable when analysis of ∆Ct values in different samples remained
constant [23]. The fourth was Genorm algorisms, which was utilized to assess the stability of candidate
miRNA by calculating the pair-wise internal variation in all the proposed reference genes across all
the samples tested. The internal control of gene stability was defined by stability value (M). Hence,
the gene with the lowest value was the most stable, and in general, a value of ≤1.5 indicated a stably
expressed gene [24]. Finally, the selection of the best endogenous controls decided following the
comparative ranking methods have been described somewhere else [25].

3. Results

3.1. Base Line Characteristics of Participants

There was a total of 68 (38 male and 30 women) participants, of which 26 healthy controls,
23 latently infected, and 19 smear positive pulmonary tuberculosis patients were recruited in this study
(Table 2). The age distribution ranged from 18 to 62 years, with mean of 30.82 (±10.3) (Figure 1).

Table 2. Participants’ disease categories and sex distribution.

Groups

HC Count LTBI Count PTB Count Total Percent

Sex
male 11 15 12 38 55.9

female 15 8 7 30 44.1
Total 26 23 19 68

HC = health controls; LTBI = Latent Tuberculosis Infection, PTB = Pulmonary tuberculosis.
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3.2. qPCR Data Distributions

The qPCR data of all miRNAs were evaluated in terms of mean, homogeneity, and variances
using SPSS Version 21 (SPSS Inc., Chicago, IL, USA). The mean deviation of reading in all cases was
less than 0.5. (Table 3). In addition, the ANOVA analysis using GraphPad prism version 7 showed that
the expression data of miRNAs had no significant differences (p ≥ 0.05) among all the three groups of
participants (Figure 2).

Table 3. Statistical distribution and mean analysis report of miRNAs in study participants.

Candidate miRNAs

Groups let7a-5p let7i-5p miR16-5p miR22-5p miR93-5p

HC

Mean 26.35 25.49 22.23 28.78 26.79
n 26 26 26 26 26

SEM 0.27 0.25 0.23 0.25 0.23
SD 1.38 1.27 1.19 1.27 1.16
GM 26.31 25.46 22.20 28.75 26.76

LTBI

Mean 26.64 25.81 22.73 29.18 27.12
n 23 23 23 23 23

SEM 0.33 0.31 0.18 0.17 0.23
SD 1.58 1.47 0.86 0.823 1.08
GM 26.60 25.76 22.71 29.17 27.10

PTB

Mean 25.88 24.85 21.81 28.25 26.35
n 19 19 19 19 19

SEM 0.410 0.270 0.330 0.31 0.21
SD 1.81 1.19 1.46 1.34 0.92
GM 25.82 24.82 21.77 28.22 26.33

Total

Mean 26.32 25.42 22.28 28.77 26.78
n 68 68 68 68 68

SEM 0.190 0.160 0.15 0.15 0.13
SD 1.58 1.36 1.22 1.20 1.10
GM 26.27 25.38 22.25 28.74 26.75

HC = health controls; LTBI = Latent Tuberculosis Infection, PTB = Pulmonary tuberculosis, SEM = Standard
deviation of the mean, SD = Standard deviation, GM = Geometric mean.Diagnostics 2020, 10, x FOR PEER REVIEW 6 of 13 
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3.3. Reference Gene Stability Analysis by Best Keeper, Norm Finder, GeNorm, Comparative Delta Ct Methods
and Comprehensive Ranking

The distribution of qPCR cycle data of all selected miRNAs was evaluated in terms of mean,
homogeneity, and variances using SPSS Version 21 over all samples (SPSS Inc., Chicago, IL, USA).
The analysis demonstrated that there were no significant differences among the expression data of
miRNAs with statistical p values ≤ 0.05 (Table 3). The data of RNU6B was excluded from the analysis
because of their poor Cq values and the reading was above the threshold level (data not shown),
whereas the rest of the five miRNAs’ expression were evaluated using four independent algorisms:
GeNrom, NormFinder, BestKeepers, and Comparative Delta Ct methods.

3.3.1. NormFinder

Assessment of stability of candidate reference miRNAs using NormFinder modeling [21] showed
that the stability value of all selected candidate reference miRNAs were less than 1, but miR-22-3p was
the most stable reference miRNA with a stability value of 0.485, followed by let-7i-5p and miR-93-5p
with values of 0.611 and 0.756, respectively, and miR-16-5p was the least stable reference miRNA, with
a stability value of 0.983 (Table 4 and Figure 3).

Table 4. Stability value of candidate miRNA calculated using NormFinder application software.

Gene Name Stability Value

miR-22-3p 0.485
let-7i 0.611

miR-93-5p 0.756
let-7a 0.970

miR-16 0.983
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3.3.2. Best Keepers

The expression data (qPCR data) of all categories were analyzed using BestKeepers software [22].
In terms of correlation coefficient (R), let-7i-5p displayed the highest value, but the standard deviation
(SD) was greater than 1. Thus, it could not be taken as a stable marker. However, miR-16-5p, miR-22-3p,
and miR-93-5p had SDs of less than one, and as a result, they were considered as stable markers
(Table 5A,B). Of these, miR-93-5p was the most stable, with a SD of 0.82; whereas let-7a was the least
stable (SD = 1.203) endogenous marker (Figure 4). The correlation analysis explained by the Bestkeeper
index (BKI) revealed that all the selected five endogenous genes showed a significant correlation,
with p values of 0.001 (Table 5B).
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Table 5. Analysis result of reference miRNA performed by Best Keeper application software:
(A) Crossing Point (CP) values of candidate reference miRNA, where miR-93-5p resulted in the
lowest SD (0.82) and Coefficient of Variance (CV) (3.06) values. (B) Correlation coefficient (R) result of
selected miRNAs.

A. Data of housekeeping Genes by Best Keeper

let-7a let-7i miR-16 miR-22-3p miR-93-5p

No. of participants 68 68 68 68 68
GM 26.27 25.38 22.25 28.74 26.75
AM 26.32 25.42 22.28 28.77 26.78
min 22.47 21.10 18.66 24.99 23.68
max 30.26 28.73 24.65 31.24 29.68
SD [+/-] 1.20 1.01 0.94 0.90 0.82
CV [%] 4.57 3.97 4.20 3.14 3.06

B. Pearson correlation coefficient (R)

let-7a let-7i miR-16 miR-22-3p miR-93-5p

BestKeeper vs. coefficient of
correlation [R]

0.870 0.901 0.761 0.895 0.797

p-value 0.001 0.001 0.001 0.001

GM = Geometric mean, AM = Arithmetic mean, SD = Standard deviation, CV= Coefficient of Variance.
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3.3.3. Comparative Delta CT

The analysis of qPCR data through comparative delta Ct methods, as described in previous
research [23] revealed that miR-22-3p was the most stable endogenous control with an average standard
deviation of 0.949, followed by let-7i-5p and miR-93-5p with values of 1.01 and 1.0, respectively,
whereas miR-16-5p was the least stable, with an average SD of 1.22 (Table 6 and Figure 5).

Table 6. Average standard deviation result of selected miRNAs calculated by Best Keeper software.

Genes Average of SD

miR-22-3p 0.95
let-7i-5p 1.01

miR-93-5p 1.06
let-7a-5p 1.20

miR-16-5p 1.22

SD = Standard deviation.
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3.3.4. Genorm

Candidate miRNA stability analysis using Genorm demonstrated that all five miRNAs were
within the acceptable limit (stability value (M) ≤ 1.15) [24]. However, miR-22-3p and miR-93-5p were
the two best reference miRNAs, having an equal stability value of 0.629, followed by let7-i-5p and
let-7a-5p with values of 0.841 and 0.999, respectively. On the other hand, miRNA-16-5p turned out to
be the least stable, with a value of 1.087 (Table 7 and Figure 6).

Table 7. Stability of endogenous miRNA calculated using the GeNorm application. MiR-22-3p and
miR-93-5p showed equal stability values (0.629), whereas miR-16-5p was the least stable.

Gene Name Stability Value

miR-22-3p/miR-93-5p 0.629
let-7i 0.841
let-7a 0.999

miR-16 1.087
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3.3.5. Comprehensive Ranking

This method was employed to analyze the geometric ranking values that determines the stability
of the reference gene. Consequently, miRNA-22-3p and has-let7a-5p were the best and least stable,
with ranking values of 1.19 and 4.40, respectively; whereas miR-93-5p and let-71-5p came in second
and third, with geometric mean values of 1.73 and 2.83, respectively (Table 8 and Figure 7).
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Table 8. Geometric mean ranking values of reference miRNAs assessed by comprehensive
ranking methods.

Genes GM of Ranking Values

miR-22-3p 1.19
miR-93-5p 1.73
let-7i-5p 2.83

miR-16-5p 4.23
let-7a-5p 4.40

GM = Geometric mean.
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4. Discussion

MicroRNA is a class of small RNA (18 to 24 nucleotides) that play regulatory roles in gene expression
at the post-transcriptional level, either through translational repression or mRNA degradation [26,27].
They regulate almost one-third of the known protein coding sequences, and are involved in various
cellular processes, including cell proliferation, apoptosis, and signaling pathways [4,28]. The mature
miRNAs that are found in varieties of bodily fluids, circulating miRNA, also regulate a wide range of
processes, both in immune and non-immune cells, and affect their genes expression. Mounting evidence
has reported that the level of circulating miRNA, up/down or deregulation are associated with specific
physiological conditions. Thus, the variation in gene expression can be utilized as diagnostic and
prognostic markers in many non-infectious and infectious diseases, including tuberculosis [11,29–31].
The stability in nature and various external conditions, expressions associated with changes in
physiological conditions, abundance in bodily fluids, and noninvasiveness emphasize circulating
miRNA as a source of stable biomarkers [9–11,32].

The quantitative polymerase chain reaction (qPCR) is the most powerful and common technique
used for quantification of nucleic acid molecules that reflects the biology of tested samples. The data
accuracy and quality that results from qPCR can be affected by several factors, including biological
variability, sample storage conditions, nucleic acid extraction, cDNA synthesis, qPCR data computation,
and reference gene (internal control) validation [13]. However, the lack of universal endogenous
controls for miRNA in biofluids remains an impediment for accurate analysis of circulating miRNAs’
expression. Therefore, the validation of an optimum endogenous control is a crucial step in qPCR
experiment that ensures the reliability of data generated as well [13]. In this study, we examined
the suitability of six candidate reference genes: let-7i-5p, let-7a-5p, miRNA-16-5p, miRNA-22-3p,
and miRNA-93-5p, as well as RNU6B to normalize the expression of target miRNA in plasma.

Although RNU6B and miR-16 are the most common reference genes utilized to normalize
circulating miRNA expression, recent studies have reported that both are not stable markers
(endogenous control) in serum and plasma samples of all disease types [33,34]. Thus, a wide
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range of miRNA has been reported as endogenous controls. Of these, miR-93-5p, let-7a, miR-221,
miR-26a, miR-191, and miR-320a have been commonly identified stable circulating miRNAs for various
types of diseases and pathological conditions [15]. Our observation also confirmed that the expression
of RNU6B is highly variable and was excluded from further data analysis, as its readings were above
the threshold (data not shown).

We employed multiple algorithms, such as Best Keepers, geNorm, Normfinder, and Comparative
delta CT [35], to identify the best suitable circulating miRNAs in the plasma of tuberculosis-infected
and non-infected controls. The computation using Normfinder algorithms [21] revealed that all the
five selected miRNAs had a stability value of less than 1, indicating that they can be selected as a
reference marker. However, miR-22-3p was the most stable, with a value of 0.485 (Table 4 and Figure 3).
Similarly, analysis of qPCR data using comparative delta Ct methods [23] also proved that miR-22 was
the most stable endogenous, with a gene stability value of 0.949 (Figure 5 and Table 6). In line with our
observations, miR-22 combined with miR-26a and miR-221 were also proposed as reference miRNAs
for circulating miRNA in hepatitis B infected patients [36].

Evaluation of miRNAs expression data performed using Bestkeepers modeling [22] revealed
that miR-93-5p, miR-22-3p, and miR-16-5p had acceptable standard deviations (i.e., <1). Of them,
miR-93-5p was the most stable with a value of 0.82, followed by miR-22-3p and miR-16-5p with SDs of
0.90 and 0.94, respectively (Table 5 and Figure 4). In addition, the computation of qPCR data using
geNorm [24] resulted in both miR-93-5p and miR-22-3p as stable reference miRNAs with stability
values of 0.629 (Figure 6 and Table 7), which is comparable to a cohort study conducted to normalize the
expression of circulating miRNA in the plasma of tuberculosis-infected and non-infected participants,
which reported that miR-93 was the most stable reference gene [17].

It has been well-reviewed that miR-93-5p is one of the most common circulating miRNAs reported
as an internal reference control for both cancer and other diseases [15]. Song et al. employed multiple
algorithm tools to analyze the stability of circulating microRNA, and reported miR-93, combined with
miR-16, as a stable serum miRNA for gastric carcinoma patients and healthy controls [37]. In another
study, miR-93-5p, together with miR-25-3p and hsa-miR-106b-5p, were proposed as internal references
for serum miRNA in colorectal cancer patients [38]. Similarly, miR-93-5p and miR-425-5p were
identified as stable endogenous markers in the plasma of vulvar carcinoma [39] and miR-93 with
miR-101-3p in the plasma of individuals associated with major depression disorder [40].

Finally, comprehensive ranking analysis, which examined the overall geometric ranking [35]
showed miR-22-3p as the most stable, followed by miR-93-5p with values of 1.19 and 1.73, respectively
(Figure 7 and Table 8), whereas miR-16-5p was the least stable, with a value of 2.83. In general,
the ranking order of stability was as follows: miR-22-3p > miR-93-5p > let-7i-5p > let-7a-5p > miR-16-5p
(Table 9).

Table 9. Overall stability ranking order of miRNAs. MiR-22-3p and miR-93-5p were first and second in
ranking order, whereas miR-16-5p was the least stable.

Ranking Order (Better-Good-Average)

Method 1 2 3 4 5
Delta CT miR-22-3p let-7i miR-93-5p let-7a miR-16

BestKeeper miR-93-5p miR-22-3p miR-16 let-7i let-7a
Normfinder miR-22-3p let-7i miR-93-5p let-7a miR-16

Genorm miR-22-3p/miR-93-5p let-7i let-7a miR-16
Recommended

comprehensive ranking miR-22-3p miR-93-5p let-7i let-7a miR-16

In summary, the stability and gene expression of circulating miRNA can be affected by various
conditions associated with either the host or environment, or both. Thus, setting an optimal endogenous
control is important to get a reliable result that indicates the clinical conditions. Our study implicated
that miR-22-3p and miR-93-5p were stably expressed and can be utilized as an endogenous reference to
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normalize gene expression data for circulating miRNAs obtained from plasma of tuberculosis-infected
and non-infected health controls.
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