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Abstract: The geometry, energy and electron density properties of the 1:1, 1:2 and 1:3 complexes
between cyclic (Py-M)3 (M = Au, Ag and Cu) and halide ions (F−, Cl− and Br−) were studied using
Møller Plesset (MP2) computational methods. Three different configurations were explored. In two
of them, the anions interact with the metal atoms in planar and apical dispositions, while in the
last configuration, the anions interact with the CH(4) group of the pyrazole. The energetic results
for the 1:2 and 1:3 complexes are a combination of the specific strength of the interaction plus a
repulsive component due to the charge:charge coulombic term. However, stable minima structures
with dissociation barriers for the anions indicate that those complexes are stable and (Py-M)3 can hold
up to three anions simultaneously. A search in the CSD confirmed the presence of (Pyrazole-Cu)3

systems with two anions interacting in apical disposition.
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1. Introduction

In biochemistry, supramolecular chemistry, molecular recognition and materials science,
non-covalent interactions are of utmost importance; examples of their importance are their role
in protein shapes [1], protein–protein interactions [2], anion recognition [3,4], drug recognition [5,6]
and absorption on surfaces [7]. The oldest and most important non-covalent interaction is the hydrogen
bond [8–12] but other interactions associated with atoms of columns 17–14 of the periodic table were
described in the literature [13] such as halogen [14], chalcogen [15,16], pnictogen [17,18] and tetrel
bonds [19,20], respectively. They were rationalized based on positive regions of the electrostatic
potential surrounding the atoms acting as Lewis acids, with these regions being known as σ-holes [21].

More recently, the possibility to find σ-hole regions within atoms of column 11 of the periodic
table (the coinage metals Cu, Ag and Au) in organometallic molecules or small nanoclusters was
described [22–25]. However, only a limited number of complexes between derivatives of coinage
atoms acting as Lewis acids and electron donors were explored in the literature [26]. This interaction
was named the regium bond or metal-coinage bond [27]. However, it is worth noting that gold is an
inert metal in bulk but in small nanostructures or in organometallic clusters it becomes a powerful
catalyst [28,29].

Focusing on complexes with gold derivatives, the structures of the OC· · ·AuX (with X = F,
Cl and Br) [30], H2S· · ·AuI [31] and H2· · ·AuCl [32] complexes were determined by microwave
spectroscopy. Additionally, the interaction of iodoperfluorobenzene derivatives with gold nanoparticles
was investigated by Obenchain et al. using different spectroscopic techniques [33]. Besides, the NMR
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properties of tri(3,5-bis-trifluoromethyl-1H-pyrazole-silver) were determined in solution and in the
solid state and compared with GIAO and ZORA calculated chemical shifts [34].

From the theoretical perspective, several computational studies were carried out in order to
characterize this new type of interaction, mainly focusing on Au derivatives. Some examples can
be: B· · ·AuX complexes, with B = OC, H2O, H2S, C2H2 and C2H4 and X = F, Cl and Br, which were
studied using the density functional theory at the BP86 level [35]. Additionally, the complexes between
acetylene and AuX (X = OH, F, Cl, Br, CH3, CCH, CN and NC) presenting a π regium bond were
also characterized at the MP2 computational level [36]. In addition, the strength and characteristics
of regium bonded complexes were compared with other non-covalent interactions, for instance with
halogen bond complexes by means of MP2 and coupled cluster (CCSD(T)) computational methods [37].
Furthermore, using atoms in molecules (AIM) and natural bond orbital (NBO) methods, the nature
of the complexes between H2O and H2S acting as the Lewis basis and AuCl as a Lewis acid was
characterized [38], and the intermolecular interaction between phosphines (XH2P with X = H, CH3,
F, CN and NO2) and MY molecules (M = Cu, Ag, Au and Y = F, Cl, Br and I) [39]. Cooperativity in
ternary complexes involving the regium bond was also explored [40–43]. The properties of complexes
of Au(I) and Au(III) were compared using the CCSD(T)/CBS computational level [44]. Additionally,
the spectroscopy of Au(CN)3 anions was described [45].

Focusing on diatomic Au2 and Aun clusters; the spectroscopic properties of the Au2 complexes
were calculated at the density functional theory (DFT) and coupled cluster levels [46,47]. Puru et al.
studied the role of superatom model in gold clusters and nanoparticles [48]. Besides, the complexes of
neutral and charged Au2 and Au with CO were examined at DFT (BP86, PW91 and B3LYP) and ab
initio (MP2 and CCSD(T)) levels [49]. Non-conventional hydrogen bonds were established between
small gold clusters (Au3–7) and formamide, formic acid, hydrogen fluoride and DNA bases [50–52].
In addition, the complexes between Aun clusters (n = 2–6) with NH3 and NCH were characterized at the
MP2 level [25] and the competition between halogen and regium bonds in binary complexes between
CF3X (X = Cl, Br) and Aun (n = 2, 3 and 4) clusters was also explored [53]. In fact, the electrostatic
properties of Aun clusters with n = 2, 13, 55 and 147 were compared with the interaction energy of
the mentioned complexes with CO and H2O [22]. It is also worth noting that different clusters of Au
and AuCl can form regium-π bonds with aromatic systems [23,24]. In a recent paper, we studied the
problem of regium vs. hydrogen bonds in M2· · ·HX complexes, with M = Au, Ag and Cu, in which we
found that regium bonds are not only competitive but in most of the cases stronger that hydrogen
bonds [54,55].

Triangular structures corresponding to nine-membered rings (three metal atoms and six atoms
of the ligands) are well-known and they were reported in the literature (Figure 1, left hand side),
for instance, imidazolates with coinage metals [56], phenylenes (most examples correspond to
o-tetrafluorophenylene) with mercury [57,58] and 1,2-dicarba-closo-dodecaboranes with gold(I) [59,60].
Pyrazolate ligands (Py) with coinage metals, forming regium bonds, are also common, in any oxidation
state: Cu(I)/Cu(II), Ag(I) and Au(I)/Au(III) [56,61–66]. Particularly, cyclic [Py-M(I)]3 systems with
M = Cu, Ag and Au were studied [67] and the experimental evidences of the (Py-Cu)3 systems
with simultaneous interactions of the three copper atoms with one hydroxyl group were recently
reviewed [68]. So, these aforementioned systems present very interesting features, which make them
good candidates for exhibiting regium bonds.
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Figure 1. Structure of the studied compounds. (a) General structure, full red circles the metal; empty 
blue circles the ligand. (b) Imidazolate ligands linked by N and C atoms. (c) Phenylene ligands linked 
by C atoms. (d) 1,2-Dicarba-closo-dodecaborane ligands linked by C atoms; the structure of 
1,2-dicarba-closo-dodecaborane was simplified. (e) Pyrazolate ligands linked by N atoms. 

On a different topic, interaction between charged systems, i.e., anion–anion and cation–cation 
are very interesting, and were found both within the gas phase [69–79] and crystal structures [80,81]. 
This rare type of interaction, which, in principle should be repulsive, should lead to unstable 
complexes, i.e., they will revert into the separated ions. However, in the last decade, it was 
demonstrated that complexes exhibiting positive interaction energies are indeed minima and 
therefore stable structures [82,83]. Some examples can be found in the literature in which two 
charged conducting spheres can attract each other when they are in a close range distance [84]. The 
F···F interaction in negatively charged dimers was studied at MP2 level and using 
symmetry-adapted perturbation theory [85,86]. 

In the present work we will focus our efforts in the study of trinuclear regium pyrazolate 
systems interacting with one, two and three anions simultaneously to infer whether regium bonds or 
hydrogen bonds can be established and stabilize structures, which in principle should not be stable. 
We will investigate the interaction of (Pz-M)3, M = Cu, Ag and Au, with three anions (F−, Cl− and Br−) 
limiting to the lowest oxidation states (I) of the three coinage metals (Figure 2). 

 
Figure 2. Schematic view of the possible complexes with X− (X = F, Cl and Br). The scheme shows the 
possible interaction sites. 

2. Results and Discussion 

2.1. Isolated (Pz-M)3 Monomers 

The isolated (Pz-M)3 compounds (M = Cu, Ag and Au) were optimized at the 
MP2/aug’-cc-pVDZ computational level. All three of them showed a D3h symmetry with each metal 
atom (M) located equidistantly between the two nitrogen atoms of the adjacent pyrazole rings. In 

Figure 1. Structure of the studied compounds. (a) General structure, full red circles the metal; empty
blue circles the ligand. (b) Imidazolate ligands linked by N and C atoms. (c) Phenylene ligands
linked by C atoms. (d) 1,2-Dicarba-closo-dodecaborane ligands linked by C atoms; the structure of
1,2-dicarba-closo-dodecaborane was simplified. (e) Pyrazolate ligands linked by N atoms.

On a different topic, interaction between charged systems, i.e., anion–anion and cation–cation
are very interesting, and were found both within the gas phase [69–79] and crystal structures [80,81].
This rare type of interaction, which, in principle should be repulsive, should lead to unstable complexes,
i.e., they will revert into the separated ions. However, in the last decade, it was demonstrated
that complexes exhibiting positive interaction energies are indeed minima and therefore stable
structures [82,83]. Some examples can be found in the literature in which two charged conducting
spheres can attract each other when they are in a close range distance [84]. The F· · ·F interaction
in negatively charged dimers was studied at MP2 level and using symmetry-adapted perturbation
theory [85,86].

In the present work we will focus our efforts in the study of trinuclear regium pyrazolate systems
interacting with one, two and three anions simultaneously to infer whether regium bonds or hydrogen
bonds can be established and stabilize structures, which in principle should not be stable. We will
investigate the interaction of (Pz-M)3, M = Cu, Ag and Au, with three anions (F−, Cl− and Br−) limiting
to the lowest oxidation states (I) of the three coinage metals (Figure 2).
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possible interaction sites.

2. Results and Discussion

2.1. Isolated (Pz-M)3 Monomers

The isolated (Pz-M)3 compounds (M = Cu, Ag and Au) were optimized at the MP2/aug’-cc-pVDZ
computational level. All three of them showed a D3h symmetry with each metal atom (M) located
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equidistantly between the two nitrogen atoms of the adjacent pyrazole rings. In fact, the calculated
M-N distances are 1.817, 2.039 and 1.970, Å for the copper, silver and gold derivatives, respectively.

To evaluate the areas of possible electrophilic attack, the molecular electrostatic potential (MESP)
was calculated and plotted on the 0.001 au electron density isosurface in Figure 3. MESP showed
negative (red) regions above and below of the pyrazole rings while the positive (blue) regions were
associated to the hydrogen atoms in the periphery. The values were associated with four stationary
points one minimum (over the pyrazole ring) and three maxima: two corresponding to the C-H bonds
and one over the center of the system (C3 axis), for each of the three systems were also indicated in
Figure 3 by their corresponding value. It is interesting to notice the dependence of the MESP sign along
the C3 axis with the metal considered. While for the Au derivative the maximum shows a negative
value (−22 kJ/mol), it becomes positive for silver (+28 kJ/mol) and very small and negative for copper
(−5 kJ/mol) derivatives. Regarding the maxima associated to the CH groups of the pyrazole, in all cases
the CH(4) exhibits is less positive MESP values than the CH(3) one, being the values of the former
between 70 and 77 kJ/mol and those for the latter between 97 and 80 kJ/mol.
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Stationary values are given in kJ/mol.

2.2. 1:1 Complexes

We began by studying the complexes established between a (Pz-M)3 unit and a single halide anion.
All the molecular graphs have been included in Tables S1–S3. Three different energetic minima were
found for each coinage metal derivative (Figure 4): (a) 1:1 apical, where the anion is located along the
C3 symmetry axes and interacting simultaneously with the three metal atoms, (b) 1:1 planar, where the
anion is within the molecular plane and simultaneously interacting with a metal atom and two CH(3)
groups and (c) 1:1 CH(4), in which the anion interacts directly with a single hydrogen atom from the
CH(4) group.
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The binding energies, Eb, obtained as the difference of the energy of the complex minus the energy
of the isolated monomers, for the 1:1 complexes were gathered in Table 1 and plotted in Figure 5.
All the binding energies are shown to be large and negative as expected for the interaction between
an anion with a neutral molecule, ranging between −204 and −35 kJ mol−1. The most stable complex
of each configuration highly depends on the metal atom and on the anion considered. For instance,
1:1 apical complexes were found to be the most stable for silver and copper derivatives, while for gold
derivatives 1:1 planar complexes are the most stable. The only exception is the copper complex with F–

where the planar complex is even more stable than the apical one. In all cases, the complexes showing
only the interaction with the CH(4) group are the least stables ones.

Table 1. Binding energy, Eb, (kJ mol−1) for the 1:1 complexes.

F− 1:1 Apical 1:1 Planar 1:1 CH (4)

Au −107.4 −120.4 −87.0
Ag −195.5 −153.3 −73.7
Cu −171.8 −204.0 −76.8
Cl−

Au −74.4 −88.9 −47.1
Ag −143.0 −116.8 −38.4
Cu −121.2 −111.9 −40.7
Br−

Au −78.2 −86.7 −43.2
Ag −142.3 −113.2 −35.2
Cu −112.9 −102.0 −37.3
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Considering the same configuration, 1:1 apical and planar complexes, the most stable complex for
a given anion corresponds to the silver derivative, followed by the copper and the gold derivative.
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The only exception corresponds to the 1:1 planar complexes with F− where the copper complex is
more stable than the silver one and the trend is Au < Ag < Cu. Similar trends, involving the metal
atom, were already described in the literature for M· · ·O interactions [87] and ethylene coinage metal
complexes [88]. For all of the different 1:1 CH(4) complexes, in order of the most to least stable
derivative we found gold, followed by copper and lastly silver.

Concerning the geometrical parameters, the M· · ·X− distances within the 1:1 apical and planar
configurations were influenced by the size of the metal (Au >Ag > Cu) and the anion (F < Cl < Br)
considered (Table 2). Focusing on configurations for the same metal and anion, in all the cases the
M-X distance in the planar configuration was about 0.12 Å shorter than the apical one. This can be
due to the fact that in the apical configuration, the anion was simultaneously interacting with three
metals and thus the interaction was weakening (as observed for the binding energies) and therefore
the M· · ·X− distance became longer. In the case of planar configuration, the anion was interacting with
only one metal, plus there was a geometrical constraint due to the interactions with the CH(3) groups.
Regarding the CH(4) configurations, the H· · ·X− distances found were shorter than those found for
the CH(3)· · ·X− ones. The dependence on H(3)· · ·X distances for a given anion change with the metal
atom shows the following trend: Ag > Au > Cu, while for the H(4)· · ·X− it is Ag > Cu > Au.

Table 2. Geometrical intermolecular M· · ·X− and H· · ·X− distances (Å) in the 1:1 complexes.

F− Cl− Br−

Complex Dist. Au Ag Cu Au Ag Cu Au Ag Cu

Apical M· · ·X 2.558 2.379 2.135 3.017 2.758 2.556 3.127 2.856 2.692
Planar M· · ·X 2.434 2.256 2.016 2.956 2.623 2.430 3.088 2.722 2.575

H(3)· · ·X 2.336 2.483 2.279 2.614 2.790 2.575 2.706 2.889 2.665
CH(4) H(4)· · ·X 1.508 1.554 1.551 2.317 2.366 2.357 2.507 2.556 2.547

No clear relationships between the binding energies and intermolecular distances were found for
any of the complexes, except for the CH(4) complexes. This can highlight the complexity of the M· · ·X−

interaction. The lack of correlation between those quantities can be associated with the electronic
repulsion between the anion and the rest of the atoms in the (Pz-M)3 system. Additionally, the number
of simultaneous interactions acting in 1:1 apical and planar configurations can play a role deviating the
correlation between Eb and M· · ·X− distances.

Finally, the QTAIM analysis of the electron density (Figure 4 and Tables S1–S3) indicates the
presence of three symmetrical bond paths in the apical configuration connecting the X− anion and the
three metal atoms. In the planar configuration, another three bond paths were found too, but in this
case only one of them connects the anion with the metal atom while the other two corresponded to
CH(3)· · ·X− interactions.

Regarding, CH(4) configuration only one bond path was found between the anion and the CH(4)
group. The electron density values of the intermolecular bond critical points (BCP; Table S4) present
positive values of the Laplacian and negative values of the total energy density for the anion–metal
bonds in the apical and planar configurations as an indication of the partial covalent nature of the
interaction [89,90].

2.3. 1:2 Complexes

After analyzing the 1:1 complexes and their binding energies, the arising question was: can those
negatively charged 1:1 complexes interact with another anion and produce stable structures? To address
this question, three different 1:2 configurations were considered using the 1:1 complexes configurations
as parental structures, i.e., 1:2 apical, 1:2 planar and 1:2 CH(4). There were a large number of possible
combinations for the second anion to interact with the 1:1 complex, but for the sake of simplicity only
two similar interactions will be explored simultaneously. In Figure 6 the structures corresponding to
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the 1:2 (Pz-M)3: Br2 complex were depicted as an illustrative example. In all the cases, the 1:2 apical
complexes show D3h symmetry while the planar and CH(4) ones present C2v symmetry.
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The binding energies for the 1:2 complexes (Table 3) varied from configuration to configuration
ranging from +140 to −82 kJ mol−1. In the case of complexes with the largest halogen anions, Br− and
Cl−, the binding energies are found to be positive indicating a repulsive force within the complex.
Only one exception was found for those anions, the 1:2 planar complex with silver were the binding
energies were negative (−24 and −26 kJ mol−1, respectively). In contrast, the complexes with F−

present negative binding energies save for the 1:2 apical complexes with gold, which was positive
(+113 kJ mol−1). As occurred for the 1:1 complexes, for each anion and configuration, the most stable
complex corresponded to the silver one, except for the 1:2 planar and CH(4) configuration with F−

where the 1:2 planar with copper and gold were a more stable complex.

Table 3. Binding energies (kJ mol−1) of the 1:2 complexes, (Pz-M)3: X2
− at the MP2/aug’-cc-pVDZ

computational level.

1:2 Apical 1:2 Planar 1:2 CH(4)

F(-)

Au 113.1 −35.7 −39.6
Ag −46.4 −79.0 −18.6
Cu −34.7 −82.3 −20.3

Cl(-)

Au 139.5 23.9 15.8
Ag 23.3 −25.8 29.2
Cu 93.5 2.1 28.1

Br(-)

Au 120.4 20.2 18.8
Ag 15.3 −24.0 31.2
Cu 94.1 10.6 30.3

However, the existence of a stable minimum with positive values of the binding energy resembles
to those minima in complexes between molecules with the same charge (anion–anion or cation–cation).
When an energy scan corresponding to the separation of one of the anions from the rest of the system
(X−· · ·Pz-M-X−) in the apical complexes is done, it is observed a maximum in the potential energy
surface that prevents the spontaneous dissociation of the anion (Figure S1 and Table S5). This fact has
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been previously described for anion–anion and cation–cation complexes in the literature [69,82,83].
The largest barriers were found for the F− anion, reaching up to 96 kJ mol−1 for the 1:2 (Pz-Cu)3:F2.
In contrast, the dissociation barriers for the 1:2 (Pz-Au)3:Cl2. and 1:2 (Pz-Au)3:Br2 were found to be
small, 9 and 7 kJ mol−1, respectively.

The energetic differences within the 1:2 complexes were clearly influenced by the electronic
repulsion between the two X− anions, which was essentially related to their X· · ·X interatomic distance
(Table S6). The shortest interatomic distances in the anions were found in the 1:2 apical complexes
(between 2.7 and 5.5 Å), followed by the 1:2 planar complexes (between 7.4 and 12.2 Å) being the longest
distances in the 1:2 CH(4) ones (between 13.2 and 16.0 Å), this means that the repulsive interaction
between anions within the 1:2 apical configuration will be larger than those in the planar and CH(4)
configuration. This is clearly observed in the binding energies for apical and planar configurations.
However, when CH(4) complexes were taken into account, they did not follow the trend. This can be
explained in terms of the type of interaction involved, since the binding energy depended both on the
type/strength of the interaction involved plus the electronic repulsion between the anions. It is clear
that while in the CH(4) the repulsion between the anions would be very small, the interaction C-H· · ·X
was also very weak.

One way to analyze the repulsion, or in other words, to narrow down the binding energy
contribution of the anion–anion repulsion is to correct the binding energy by subtracting the
charge–charge repulsion using the location of the anions with a charge of -1e [82]. As observed
for the value in Table S7, corrected binding energies were in all the cases negative, which was aligned
with the existence of those minima. However, in planar and CH(4) configurations, these values were
smaller, in the absolute value, than twice of those for the 1:1 complexes, as expected for two identical
charge transfer interactions over a neutral molecule. In contrast, in most of the 1:2 apical complexes
the corrected energy was larger (in absolute value) than twice the 1:1 complexes binding energies,
highlighting the importance of the charge transfer and polarization in these complexes.

Regarding the interatomic M· · ·X and H· · ·X distances (Table 4) in the 1:2 complexes, those were
found to be slightly longer than the ones found for 1:1 complexes. This was consistent with the fact
that the anions tend to separate from each other (due to Coulombic repulsion) while maintaining the
same interaction patterns shown in the 1:1 complexes. The only exception corresponded to the planar
1:2(Pz-Au)3:F2 where each anion exclusively interacted with one of the H(3) atoms as shown in its
molecular graph (Table S1).

Table 4. Intermolecular M· · ·X− and H· · ·X− distances (Å) in the 1:2 complexes.

F− Cl− Br−

Complex Dist. Au Ag Cu Au Ag Cu Au Ag Cu

Apical M· · ·X 2.613 2.437 2.211 3.226 2.845 2.707 3.339 2.949 2.892
Planar M· · ·X 4.424 a 2.327 2.090 3.325 2.734 2.639 3.455 2.849 2.962

H(3)· · · ·X b 1.592 2.179 2.260 2.591 2.720 2.550 2.727 2.827 2.640
CH(4) H(4)· · · ·X 1.619 1.660 1.659 2.478 2.538 2.532 2.696 2.775 2.756

a In this complex, the F− ions interact only with one H(3) atoms. b The shorter of the two X· · ·H(3) distances is listed.

Regarding the QTAIM analysis, the electron density properties (Table S8) show similar bond paths
between the anions and the (Pz-M)3 systems in 1:2 complexes than those found for 1:1 complexes, with
the aforementioned exception of the planar 1:2(Pz-Au)3:F2 complex. Another interesting feature of the
QTAIM analysis in 1:2(Pz-Au)3:F2 complex was the presence of a bond path linking the two F− anions.

As it is clear from the discussed result, the (Pz-Au)3 was capable of forming stable complexes
with two anions simultaneously, but what is the limit of those complexes? Can 1:2(Pz-M)3:X2 form
stable complexes with a third anion?
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2.4. 1:3 Complexes

Following the same premises as that of 1:2 complexes, 1:3 complexes for the planar and CH(4)
configuration were explored. Energetic minima structures were found for all the 1:3 CH(4) complexes
and also for four of the nine 1:3 planar complexes. However, for the rest of the possible complexes,
the anions dissociated spontaneously from the (Pz-M)3 molecule. In those stable cases, all the systems
present D3h symmetry. Two illustrative examples are shown in Figure 7.
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The binding energies for the 1:3 complexes are gathered in Table 5. As occurred for 1:2 complexes,
1:3 complexes exhibit positive binding energies ranging between 160 and 260 kJ mol−1, much larger
than those for the 1:2 complexes, although the structures found are still minima in the potential energy
surface. Binding energies suggest that CH(4) configurations were more stable than the corresponding
planar ones, while the other way around happened for the 1:2 complexes. In fact, in the latter, the shorter
X−· · ·X− distances (Table S9) in the planar configuration (between 7.5 and 9.4 Å) penalize the binding
energy versus those in CH(4) configuration where the anions were further away (between 13.2 and
15.6 Å). As for the 1:2 cases, removing the X−· · ·X− electrostatic repulsion term (Table S10) provided
with a better picture of the binding energies. Corrected Eb values were negative but smaller than three
times the binding energies found for the 1:1 complexes indicating a certain degree of anti-cooperativity
in the 1:3 complexes.

Table 5. Binding energies (kJ mol−1) for the 1:3 planar and CH(4) complexes.

F− Cl− Br−

1:3 Planar 1:3 CH(4) 1:3 Planar 1:3 CH(4) 1:3 Planar 1:3 CH(4)

Au Dissociation 136.2 Dissociation 188.1 Dissociation 188.2
Ag 224.6 160.3 260.2 203.1 252.3 201.9
Cu 252.1 163.9 Dissociation 206.3 Dissociation 205.0

Regarding the intermolecular M· · ·X and H· · ·X distances, selected geometrical parameters of the
1:3 minima are listed in Table 6. The comparison of these parameters with the corresponding in the 1:1
and 1:2 complexes ( Table 1; Table 3), indicates that within the (Pz-Ag)3X− planar configuration there
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was a lengthening in the M· · ·X− distance from 1:3 vs. the 1:2 (∆RM· · ·X = 0.084, 0.291 and 0.389 Å for
F−, Cl− and Br− respectively), which was larger than the difference between 1:2 and 1:1(Pz-Ag)3X−

complexes (0.071, 0.111 and 0.127 Å). This is an indication of a larger anti-cooperativity effect in the
former than in the later complexes. Additionally, these effects were more acute for heavier halogens
than for lighter ones. In case of CH(4) configuration, a similar pattern was found but the increment
was milder across the halogen series. Curiously, the metal M also has influence on the H· · ·X− along
the 1:1, 1:2 and 1:3 series for the CH(4) configuration, with a much larger increase for the (Pz-Cu)3X− >

(Pz-Ag)3X− > (Pz-Au)3X−.

Table 6. Geometrical intermolecular distances (Å) in the 1:3 complexes.

F− Cl− Br−

Complex Dist. Au Ag Cu Au Ag Cu Au Ag Cu

Planar M· · ·X 2.411 2.211 3.025 3.238
H(3)· · · ·X 2.461 2.387 2.863 2.942

CH(4) H(4)· · · ·X 1.735 1.777 1.781 2.651 2.740 2.743 2.864 2.969 2.970

The molecular graph of the 1:3 planar complexes show three BCP between each anion and the
(Pz-M)3 system, two of them with the CH(3) and one with the metal. In the case of the CH complexes
a single bond path per anion was found. The BCPs (Table S11) exhibited similar electron density
characteristics to those found for the 1:1 and 1:2 complexes.

A general analysis of all the BCPs extracted from this article shows excellent correlations
between the electron density and the interatomic distance for each pair of atoms involved in the
interactions (Figure S2). These results were in agreement with previous reports that have shown similar
relationships [91–93].

2.5. CSD Search

A search in the CSD looking for (Pz-M)3 interacting with halides was carried out to investigate
the number of crystals structures available. The search shows a total of thirteen crystal structures
with the presence of halogen atoms in apical disposition interacting with copper (II) atoms linking the
pyrazole rings. Of those structures, only one exhibited fluoride anions (CCDC refcode HUXWUU [94]),
chloride is present in 10 crystal structures (JALKIT [95], OBOQAY [96], OBOQEC [96], OBOQIG [96],
RETQIR [97], RUYGUN [98], RUYHAU [98], UWOMAW [99], VADYAB [100] and VAZCUX [101]) and
bromide in two (ELODIS [102] and ELODOY [102]). It was observed that, in all these cases, two of the
anions were simultaneously interacting with a single (Pz-M)3 molecule in the apical position as shown
in Figure 8.

Ten of these structures (OBOQAY, OBOQEC, OBOQIG, RETQIR, RUYGUN, RUYHAU, UWOMAW,
VAZCUX, ELODIS and ELODOY) present an additional halogen atom interacting with each copper
atoms in planar configuration (see Figure 8 for two examples). The charge of the systems was
compensated by the presence of bulky cations in the crystal (1-butyl-3-methyl-1H-imidazol-3-ium in
VAZCUX and tetra-n-butylammonium in the rest).

The discrepancies between the interaction energies found for the 1:2 complexes in which planar
complexes exhibited more negative interaction energies than apical ones could be due to the presence
of counterions in the crystal structures that compensate the charge of the systems and the the repulsion
of the anions that are absent in the gas phase calculations and due to crystal packing constraints.

The metal–halogen intermolecular distances were gathered in Table S12. As observed,
those distances ranged between 2.38 and 2.61 (Cu-F), 2.34 and 3.06 (Cu-Cl) and 2.50 and 3.06 Å
(Cu-Br), being the average distances 2.51, 2.61 and 2.72 Å for the Cu-F, Cu-Cl and Cu-Br interactions,
respectively. In the case of Cu-F, the computational distance (2.11 Å) was shorter than the crystal
one, while for the Cu-Cl and Cu-Br the computational distances were in fair agreement with the
experimental ones.
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3. Materials and Methods

The geometries of systems were fully optimized at the MP2 computational level [103] with a
combination of the aug’-cc-pVDZ and the aug-cc-pVDZ-PP basis sets [104,105]. The aug’-cc-pVDZ
basis set is built using aug-cc-pVDZ for C, N, F and Cl atoms and cc-pVDZ for the H atoms. For the
heavy (coinage) atoms (Cu, Ag and Au) the effective core potential basis set, aug-cc-pVDZ-PP was used.
Frequency calculations at the same computational level were carried out to confirm that the structures
obtained correspond to energetic minima. These calculations were carried out with the Gaussian-16
program [106]. The electronic energy and geometry of all systems were gathered in Tables S1–S3.

The binding energy was calculated as the difference of the electronic energy of the complexes minus
the sum of the energies of the isolated monomers in their minimum energy. Positive and negative values
of the binding energies correspond to unfavorable (repulsive) and favorable (attractive) interactions.

The topological characteristics of the electron density were studied within the quantum theory
of atoms in molecules (QTAIM) [107,108] framework with the AIMAll program [109]. The molecular
electrostatic potential (MESP) of the isolated monomers was represented with the Jmol program [110]
and analyzed on the 0.001 au electron density isosurface with the Multiwfn program [111].

A search in the Cambridge Structural Database (CSD) [112] (Version 5.41 with updates of March,
May and August 2020) was carried in order to find crystal structures of (Py-M)3 structures with
halides. It should be noted that complementary studies focused on the analysis of the crystal structures
that show the interaction between (Py-M)3 molecules and the hydroxyl anion are available in the
literature [68].

4. Conclusions

The interactions between trinuclear regium complexes of pyrazolate with anions (F, Cl and Br)
were studied by means of MP2 theory.

It was found that pyrazolate complexes could establish three type of modes of interactions, apical,
planar and CH(4) involving different type of interactions and the strength of each interactions was
highly dependent on the type of metal and anion considered.

Considering the 1:1 complexes, (Pz-Ag)3F− stood out as the strongest ones particularly within the
planar configuration.

The most interesting question, which lay beneath the study, was: can those negatively charged
(PzM)3X− complexes interact and form stable complexes with another anion? Energetically speaking,
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stable 1:2 complexes were found but the binding energy was shown to be positive, which indicates
a repulsive interaction. However, once the repulsion between anions was subtracted, the resulting
corrected binding energies were negative. Potential energy surfaces corresponding to the removal of
one of the anions indicated the existence of a barrier that prevented the anion dissociation.

Going one step forward, and trying to see what is the maximum number of anions that a pyrazolate
complex can hold, the 1:3 complexes were also explored, finding that (Pz-Ag)3X (F, Cl and Br) were
stable with large positive binding energies for both planar and CH(4) configurations.

A search in the CSD shows the presence of thirteen crystal structures of (Py-Cu)3 systems with
two anions interacting in apical disposition.

This study involving anion· · · anion interactions will be very useful to analyze future interaction
with transition metals and can bring more insight on these types of interactions, particularly in the
crystal structure domain.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/21/
8036/s1. Table S1. Molecular graph, electronic energy and geometry of the (Pz-Au)3:X− n complexes; Table S2.
Molecular graph, electronic energy and geometry of the (Pz-Ag)3:X− n complexes; Table S3. Molecular graph,
electronic energy and geometry of the (Pz-Cu)3:X− n complexes; Table S4. Electron density properties at the
intermolecular BCPs in the 1:1 complexes; Table S5. Barriers (kJ mol−1) and interhalogen distance (Å) in the
maximum of the dissociation curve (Figure S1) of the 1:2 apical complexes; Table S6. Interatomic distances (Å) of
the anions in the 1:2 complexes; Table S7. Anion-Anion repulsion corrected binding energies (kJ mol−1) in the
1:2 complexes; Table S8. Electron density properties at the intermolecular BCPs in the 1:2 complexes; Table S9.
Interatomic distances (Å) of the anions in the 1:3 complexes; Table S10. Anion-Anion repulsion corrected binding
energies (kJ/mol) in the 1:3 complexes; Table S11. Electron density properties at the intermolecular BCPs in the
1:3 complexes; Table S12. Anion-Metal distances in the CSD search; Figure S1. Energy profiles (kJ mol−1) as a
function of the X-X distance (Å) in the 1:2 apical complexes. Only one of the X anions in move further away from
the (Pz-M)3 system; Figure S2. Electron density at the BCP (au) vs. the interatomic distance (Å).
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