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The rates of escape and reversion in response to selection pressure arising from

the host immune system, notably the cytotoxic T-lymphocyte (CTL) response,

are key factors determining the evolution of HIV. Existing methods for estimating

these parameters from cross-sectional population data using ordinary differential

equations (ODEs) ignore information about the genealogy of sampled HIV

sequences, which has the potential to cause systematic bias and overestimate cer-

tainty. Here, we describe an integrated approach, validated through extensive

simulations, which combines genealogical inference and epidemiological model-

ling, to estimate rates of CTL escape and reversion in HIV epitopes. We show that

there is substantial uncertainty about rates of viral escape and reversion from

cross-sectional data, which arises from the inherent stochasticity in the evolution-

ary process. By application to empirical data, we find that point estimates of rates

from a previously published ODE model and the integrated approach presented

here are often similar, but can also differ several-fold depending on the structure

of the genealogy. The model-based approach we apply provides a framework for

the statistical analysis and hypothesis testing of escape and reversion in popu-

lation data and highlights the need for longitudinal and denser cross-sectional

sampling to enable accurate estimate of these key parameters.
1. Introduction
Cytotoxic T-lymphocytes (CTLs) are implicated in the control of human

immunodeficiency virus 1 (HIV-1). In fact, they are thought to be the most impor-

tant mediators in reducing viraemia in individuals able to control HIV

infection, showing association with repression of viral replication in long-term

non-progressors [1–3]. Epitopes are presented to CTLs by human leukocyte anti-

gen (HLA) class I proteins at the surface of almost all nucleated cells in the body.

The collection of epitopes which may be presented by the HLA class I molecules

is determined by an individual’s combination of alleles at these highly variable

loci. Mutations in or close to epitopes in the viral sequence can result in alterations

to the binding affinity to the HLA class I, reduce CTL recognition or abrogate

T-cell receptor binding. Such mutations are known as escape mutations.

Examples of escape mutations have been described in almost all proteins encoded

in the HIV-1 genome [4–12], with the strongest signal of association with host

HLA type at the HLA-B locus [13,14]. After an escape event takes place, escape

mutations in the virus may be transmitted between individuals and thus have

the potential to spread across the infected population [4,15], or revert through

selection pressure within hosts whose immune responses do not drive escape

in a given epitope [16,17]. Associations between HLA type and putative CTL

escapes have been demonstrated statistically in population studies [18], though
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Figure 1. The inference problem. (a) The cartoon in displays the dynamic processes which may occur along a branch within the transmission tree. Time increases
from left to right. A susceptible individual is shown in light blue. An individual infected with a virus which is wild-type at the epitope under consideration is green,
and individuals with a viral strain with the escape mutation are red. HLA-matched hosts are darker rectangles, HLA-mismatched hosts are lighter circles. From left to
right, transmission of a variant which is wild-type at the epitope under investigation occurs within the population. This strain may escape within an HLA-matched
host. Transmission of an escaped viral strain to an individual who is HLA-mismatched can occur. This strain may then revert in this HLA-mismatched host. Viruses
exist within these environments over their evolutionary history. Thus, associated to a collection of individuals sampled at the present (shown at the tips in (b)) is a
colour-coded transmission tree, illustrated in (b). A transmission event is associated with each coalescence, but due to incomplete sampling, unseen transmission
events also occur. These are shown by black crosses. This sampled transmission tree is embedded in the full transmission tree, shown in the second tree in grey. We
have sequence data and colourings at the tips of a sampled transmission tree. Using these data, we hope to reconstruct the embedded tree in (b), and use this
reconstruction to make inferences about the unknown full transmission process.
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these results have been called into question [19], and it is

suggested that the frequency at which escape events take

place is lower than previously thought. More recent studies

[20–22] have shown that there is a large variation in time to

escape observed across epitopes, ranging from days to years.

There is strong interest in understanding the selective pressures

applied to the virus at the level of the population as there are

clear implications for any putative vaccine. To date, simple

ordinary differential equation (ODE)-based models have been

used to estimate the expected time to escape and reversion by

using cross-sectional data across hosts. Such estimates make

use of only a small portion of the available data, namely pres-

ence or absence of an escape mutation and the HLA type of

the sampled hosts (which we denote E), and disregard any

remaining sequence information. These methods also make

assumptions about the independence of the sampled data

that could potentially lead to bias in estimates. Furthermore,

deterministic models only provide point estimates and thus
cannot provide meaningful confidence regions that account

for phylogenetic uncertainty.

Figure 1 illustrates the inference problem that we are

addressing. We wish to infer three rates: the rate of viral

escape (switching from dark green to dark red in figure 1a),

the rate of viral reversion (switching from pink to light

green in figure 1a) and the transmission rate. If the underlying

transmission tree was known, then the problem would be

straightforward. However, we have only a collection of tip

labellings (sequence data and HLA information) which are

the culmination of an embedded subtree of the full process.

To make statements about parameters of the full transmission

tree, we must reconstruct the subtree together with the dynamic

processes occurring along its lineages through time.

We apply dynamic programming in combination with exist-

ing software to combine phylogenetic and statistical approaches

with well-studied, ODE-based modelling to integrate availa-

ble sequence data. By combining these two frameworks we
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determine more informed estimates and credible regions

of population-level escape and reversion rates, (lesc, lrev)

which incorporate the underlying dependency structure

present in the viral genealogy. There are four key steps in

our inference:

— make the mild assumption that the genealogy, G, and

HLA/escape information, E, are conditionally indepen-

dent given the sequence information with the epitope

removed; X;

— genealogies are sampled from the posterior conditional on

X using the program BEAST [23], with a coalescent prior for

an exponentially growing population whose rate par-

ameter is sampled in the Markov chain Monte Carlo

(MCMC);

— for each sampled genealogy, we evaluate the posterior

density for (lesc, lrev) using a modification of Felsen-

stein’s peeling algorithm [24] based on the processes in

figure 1a; and

— tree-specific posteriors are averaged to produce a final

posterior density for (lesc, lrev).

We envisage similar methodologies being applied to a wide

range of problems. Our model represents an addition to the

highly active area of phylodynamics, in which both stochastic

and deterministic approaches are being developed [25–27].

To test the robustness of our integrated method, we per-

form a series of simulations and compare the results with

those of an existing ODE-based dynamical model [28]. Nota-

bly, our method does not require assumptions about the start

time of the epidemic, or transmission rate during the expo-

nential growth phase, as these are estimated by the model.

When nucleotide substitution rates are fixed at estimates

generated from empirical sequence data, we find that in

simulation studies our model successfully estimates escape

and reversion rates. By altering the nucleotide substitution

rate, we find that a lack of information about the genea-

logy (through lower substitution rates) can dramatically

affect escape and reversion rate estimations using our

integrated approach, though we find that the rates of substi-

tution found in HIV are sufficiently large for this effect to be

considered negligible.

The integrated approach is then applied to estimate escape

and reversion rates in four previously identified epitopes. The

four epitopes were chosen in order to explore as much of

the space of escape and reversion rates as possible on the

basis of previous estimates generated using population-level

data. Again, we compare our integrated method with the

ODE method which generated these estimates [28]. We illus-

trate the benefit of setting our approach in a model-based

framework by demonstrating some simple hypothesis tests.

Our model provides evidence for the hypothesis that rates

of escape and reversion within host are slower than pub-

lished estimates generated experimentally from individual

case studies [20], and highlights the large amount of uncer-

tainty inherent in estimates that make use of cross-sectional

population data.
2. Methods
We wish to estimate escape and reversion rates within host,

taking into account the dependency structure between sampled
individuals arising from the phylogenetic tree. Throughout, we

define hosts with an HLA type known to confer an escape

mutation in the virus as HLA-matched, and those without

such an HLA type as HLA-mismatched. We have the HLA

types and cross-sectional viral sequences from a collection of

hosts, taken from the Swiss–Spanish intermittent treatment

trial (SSITT) [16,29]: a collection of 79, 67 and 53 HLA-typed

sequences for the genes gag, pol and nef, respectively. Epitopes

and associated HLA types are considered one at a time, indepen-

dent of other epitopes. We consider four previously defined

epitopes. These epitopes were chosen in order to test our

method across as wide a range of escape and reversion rate par-

ameter space as possible—based on previous rate estimates [28].

The chosen epitopes are shown in table 1 in column 1. Through-

out, we abbreviate these epitopes by their first three amino acids

(e.g. TST). By removing the epitope under consideration from

sequences and determining the presence or lack of an escape

mutation, we consider data from two processes. The sequence

data with epitope removed, X, allow us to perform inference

on the genealogy, G. The combination of HLA type and presence

or lack of escape, E (which we refer to as HLA/escape infor-

mation), provides information about the dynamical processes

shown in figure 1a, which occur along the lineages of G over

time. By assuming escape information is uninformative about

G, G and E are conditionally independent given X (P(GjX, E) �
P(GjX)). This allows us to consider these two processes separ-

ately, with the second conditional on the first. Details are

provided in the electronic supplementary material, §S1. By

adding a collection of time-stamped data, taken from the Los

Alamos HIV sequence database [31] to this HLA-typed cross-

sectional sequence data, we create a DNA multiple sequence

alignment [32] and perform some data-trimming. These time-

stamped data are required for BEAST to estimate a scaling from

units of time measured in generations to years. After data-

trimming, the resulting number of HLA-typed SSITT sequences

are 55, 54 and 48 for gag, pol and nef, respectively. Given the

alignment, genealogies are sampled using BEAST with a standard

coalescent prior for an exponentially growing population whose

rate parameter is estimated in the MCMC. Taking a sample of

genealogies from the BEAST output, we consider the embedded

tree for which we have HLA and escape information, and deter-

mine the likelihood of parameters (lesc, lrev) using a modification

of Felsenstein’s peeling algorithm [24]. Our peeling algorithm

is based on the transitions shown in figure 1a. Defining

ða; bÞ : a; b [ f0; 1g, where a [ f0; 1g denotes fHLA mismatch,

HLA matchg, and b [ f0; 1g denotes fno escape mutation,

escape mutationg in the epitope under investigation. In our

model, transmission between individuals takes place at rate l,

individuals are assumed to be HLA-matched with probability

q. Transitions between the states in the continuous time

Markov chain may be described by the instantaneous rate

matrix Q in equation (2.1), where Qi,j describes the transition

from state i to state j. l̂ðtÞ ¼ lp0ðTMRCA � tÞ, where t increases

towards the present. TMRCA is the time before the present of

the most recent common ancestor (MRCA), where t ¼ 0. p0(t) is

the probability that a lineage at time t in the past does not

have any sampled descendants [33], and depends on the

sampling proportion at the present, r. Details of the derivation

of p0(t) excluded from the original paper are provided in elec-

tronic supplementary material, §S2. The p0(T 2 t) scaling is

required to avoid double counting of transmission events. We

assume the state at the root node does not have the escape

mutation. In our peeling algorithm, we must account for the

fact that each internal node in the sampled genealogy corre-

sponds to exactly one transmission event. For each sampled

genealogy, we evaluate the two-dimensional posterior surface

for the parameters of interest (lesc, lrev) using our peeling algor-

ithm on a 50 � 50 lattice of parameter space that encompasses
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high probability density (within a factor of 1000 of the maxi-

mum density as determined by hill-climbing), conditional on E
with a uniform prior over (10220, 103) � (10220, 103). We then

integrate over 1000 samples from the BEAST output to produce

a final posterior density for (lesc, lrev), and define credible

regions for our estimates. A description of the data and full

details of the method are provided in electronic supplementary

material, §S3.

As in ODE models of escape and reversion [28], we make a var-

iety of assumptions. We assume homogeneous mixing in the

infected population. We suppose that the infected population is in

exponential growth and assume constant rates of escape in HLA-

matched hosts, and constant rates of reversion in HLA-mismatched

hosts. We ignore variation within individuals’ viral populations.

All escape mutations within a given epitope are assumed to occur

at the same rate, and HLA types are considered to two digits. It is

assumed that a single individual seeded the epidemic, and we

suppose individuals with the corresponding HLA type are always

able to make an immune response. Finally, recombination is not

considered in our estimation of the genealogy, G.

ð0;0Þ ð0;1Þ ð1;0Þ ð1;1Þ

Q¼

ð0;0Þ
ð0;1Þ
ð1;0Þ
ð1;1Þ

�l̂ðtÞq 0 l̂ðtÞq 0

lrev �lrev� l̂ðtÞq 0 l̂ðtÞq
l̂ðtÞð1�qÞ 0 �lesc� l̂ðtÞð1�qÞ lesc

0 l̂ðtÞð1�qÞ 0 �l̂ðtÞð1�qÞ

0
BBB@

1
CCCA :

ð2:1Þ

3. Results
(a) Simulations
Under our model, assuming the population of infected individ-

uals is in exponential growth, the process generating states at

the leaves is a birth–death process [34] with escape and rever-

sion events added. The birth rate is l, and the death rate, m, is

equal to the rate of becoming non-infectious (through death or

otherwise). Throughout our simulations, q ¼ 0.15, l ¼ 0.45534

yr21 (established from the average of a BEAST run on gag

data), m ¼ 0.1 yr21. Where required, we sample 500 genea-

logies from BEAST output. We find that this is sufficient due

to the low variance in maximum a posteriori (MAP) estimates

across sampled trees. This is due to uncertainty in the geneal-

ogy being concentrated at deep nodes, which have little

impact upon the likelihood of observing data at the tips. We

find the most recent coalescent events which have far more

power to inform estimates are more consistent across sampled

genealogies. There are three steps in our data simulation:

(1) Generate a full birth–death tree forwards through time

with an MRCA of 25 years.

(2) Simulate HLA class I and escape information along

lineages. Set the sampling proportion at the present, r,

such that the expected number of present day tips is

200, and sample extinct tips at rate n such that the

expected number of historically sampled tips is 50. For

step 3, we consider the embedded subtree defined by

the sampling and discard HLA/escape information at

historically sampled tips.

(3) Simulate sequence information at the tips, X, each 500

nucleotides long, using mutation parameters, Q (set at

the average of the required parameters from a BEAST

run on SSITT gag sequences) and a GTR þ I þ G model

of substitution. Historical sequences are required by

BEAST to estimate a scaling from time measured in

generations to years.
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(i) Testing the integrated method and comparison with
existing approach

We test and compare our model with a differential equation

approach previously described [28]. It can be shown that

the dynamics of our model when the sampling proportion

is zero match the relative proportions through time of the

ODE model during exponential growth, and that this is

equivalent to assuming a completely star-like genealogy in

which all lineages emanate from the MRCA (see the elec-

tronic supplementary material, §S4). We perform three

simulation studies:

(1) For each of the (lesc, lrev) parameter sets f(2,0.5), (0.5,0.5),

(0.5,0.05), (0.05,0.05), (0.05,0.01)g yr– 1, we apply steps

1–3. Using HLA/escape information at the present day

tips, E and sequence information X, we apply the inte-

grated method and ODE model. This process is

repeated four times for each (lesc, lrev), and we compare

the results. The ODE model requires an estimate of the

transmission rate, death rate and the initiation time of

the epidemic. We fix these parameters at their true

values. We bootstrap E 10 000 times to provide an estimate

of sampling uncertainty under the ODE model. Estimates

ofm and r are required under the coalescent tree prior in an

exponentially growing population, which we set at the

truth. In order to define an approximation to confidence

regions for sampling under the ODE method, we use the

Mahalanobis distance measure [35] (see the electronic sup-

plementary material, §S3) widely used in cluster analysis,

which takes covariance between escape and reversion rates

into consideration. Two instances of estimating the par-

ameter set (0.5, 0.05) yr– 1 are shown in figure 2a. Rate

estimates based on the four simulations given the five

parameter sets are shown in electronic supplementary

material, figures S1–S5.

(2) We investigate further by running steps 1–2 1000 times

for each of the parameter sets in step (1) comparing the

MAP estimate under the integrated model on the true

tree obtained in step 1 with the ODE point estimate.

Results are shown in figure 2b and electronic supplemen-

tary material, §S8. We also check how both methods vary

with the number of sampled tips by running this simu-

lation on samples of size 60, 100, 200 and 500 in

electronic supplementary material, figures S6–S9,

respectively. This approximation to the full integrated

approach is reasonable as we find point estimates for

the MAP under the full method are similarly spread

(e.g. compare figure 2c with electronic supplementary

material, figure S8 row 1). The number of samples in

the empirical data in the SSITT for the genes gag, pol

and nef is 55, 54, and 48, respectively.

(3) We examine the ability of the integrated method to estimate

true underlying parameters over a large number of simu-

lations. Setting the truth at (lesc, lrev) ¼ (2, 0.5) yr21, we

run steps 1–3 100 times and, for each, apply our full inte-

grated method. Results are shown in figure 2c.

(ii) Robustness to tree topology and impact of mutation rate
In order to estimate the impact of uncertainty in the tree top-

ology, we performed two tests. First, we run steps 1–2,

permute tip labellings E in the true tree 250 times, re-estimating

(lesc, lrev) each time using our peeling algorithm. Setting the
true values at (lesc, lrev) ¼ (0.6, 0.1) yr21. (lesc, lrev) is set at

an intermediate escape and reversion rate as such rates have

the greatest amount of clustering in the true tree. Second, we

apply steps 1–3, but multiply each substitution rate in step 3

by a factor of 5 and 0.2, before applying the integrated

method. The truth is set at (lesc, lrev) ¼ (2, 0.5) yr21.

(b) Simulation results
(i) Simulations with known underlying tree

(simulation study (2))
By determining MAP of 1000 instances of HLA and escape

data, supposing we know the true underlying genealogy,

we find our integrated method best estimates the true rates

when the truth lies in the centre of our range of parameter

simulations. Results are shown in figure 2b and electronic

supplementary material, figure S8. The proportion of MAP

estimates within a factor of 2 of the truth was f0.771, 0.825,

0.809, 0.468, 0.268g for parameter sets (lesc, lrev) ¼ (2, 0.5),

(0.5, 0.5), (0.5, 0.05), (0.05, 0.05), (0.05, 0.01) yr21. This

makes sense: very high or low escape leads to a lack infor-

mation to discern from either an infinite rate, or a rate of

0. Such estimates will result by chance under non-zero

rates, the extreme example is data in which all individuals

show escape. Our integrated approach substantially outper-

forms the ODE method when escape and reversion rates

are slow. As we increase the number of sampled tips in gen-

ealogies (see the electronic supplementary material, figures

S6–S9, sampling 60, 100, 200 and 500 tips, respectively), we

see increased accuracy under both methods, most notable at

fast and slow rates. We find that the integrated method con-

sistently outperforms the ODE method, even when the

number of sampled tips is low.

(ii) Simulations with unknown underlying tree (simulation
studies (1) and (2))

We conduct four simulations over the five parameter sets of

escape and reversion rates (lesc, lrev) ¼ (2, 0.5), (0.5, 0.5),

(0.5, 0.05), (0.05, 0.05), (0.05, 0.01) yr– 1 shown in figure 2a
and electronic supplementary material, §§S1–S5, and a

further 100 simulations for (2,0.5) yr– 1 shown in figure 2c.

We find large variation in the size of credible regions across

genealogies, particularly for low underlying rates. In the

large simulation shown in figure 2c, true parameters lie

within the 50, 90 and 95 per cent credible regions 79, 92

and 95 times of 100.

(iii) Comparison with ordinary differential equation method
We find that in general, the ODE method estimates the truth

well, particularly when escape and reversion rates are fast.

This makes sense: along branches culminating in tips, fast

escape and reversion leads to convergence to the equilibrium

distribution, which is independent of the tree. For slower

rates however, our integrated method is favourable. This

can be seen in single simulation runs in figure 2a and

electronic supplementary material, §§S1–S5, and in rate

estimates assuming the true tree is known (figure 2b and

electronic supplementary material, figure S8). Here, the inte-

grated approach performs far more favourably, with a tighter

distribution about the truth in all parameter sets. However,

as would be expected, the signal begins to drop under both

models as underlying rates are reduced further. For the
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using a two-dimensional kernel density estimate [36,37].
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underlying parameter sets f(2,0.5), (0.5,0.5), (0.5,0.05),

(0.05,0.05), (0.05,0.01)g, the proportion of ODE point estimates

and MAP estimates within a factor of 2 were f0.768, 0.823,

0.570, 0.214, 0.055g and f0.771, 0.825, 0.809, 0.468, 0.268g,
respectively (the corresponding values within a factor of 10

were f0.982, 0.999, 0.913, 0.679, 0.356g and f0.982, 0.999,

0.990, 0.850, 0.515g, respectively). Knowledge of the trans-

mission tree increases accuracy of rate estimations across the

parameter space of (lesc, lrev), particularly when escape and

reversion rates is low.
(iv) Robustness to tree topology and impact of mutation rate
By shuffling tip labellings, we investigate robustness of

estimates to the tree topology. We find, in addition to an

increase in the variance of estimations, a systematic bias

towards higher rate estimates, shown in electronic supple-

mentary material, figure S10. This makes intuitive sense:

reduction in knowledge of tip labellings will act to randomize

any clustering (or lack of clustering) present in the true tree of

escaped and wild-type strains at the epitope under consider-

ation, leading to a forced increase (decrease) in the lower

bound of the number of escape and reversion events in the

tree, increasing (reducing) rate estimates. To investigate the

effect of mutation rate on estimates, we multiply and divide

substitution rates by a factor of 5. This is displayed in electronic

supplementary material, figure S12. As the mutation rate is

increased, we see a reduction in the variance and increase in

the accuracy of estimates as we would expect. It is important

that this observation is considered in pathogens in which
mutation rates are far lower and phylodynamic methods are

beginning to be applied. Electronic supplementary material,

figures S10 and S11 demonstrate that a lack of knowledge of

the underlying genealogy can seriously impact any parameter

estimations leading to potentially spurious results.
(c) Analysis of real data
The result of applying the integrated method to the availa-

ble SSITT data is displayed in figure 3 and summarized in

table 1. The cross-sectional proportion sampled, r, is set at

0.003, based on incidence data [38]. The first aspect to note,

which was also present in many of our simulations, is the

similarity between the simple ODE method and the MAP

from the integrated approach. This is not surprising as the

purely dynamical model [28] can be written as a compo-

site likelihood, which results from the assumption that all

lineages are independent and of equal weight. The success

of composite likelihoods is reflected in the similarity seen.

However, looking more closely at the TAF and RPM epitopes

(table 1), we see that the estimate of the underlying genealogy

is playing a strong role. The maximum clade credibility trees

for the BEAST runs of TAF and RPM using TREEANNOTATOR [23]

are shown in figure 3a. We see that in the case of TAF, the

escape rate is approximately six times lower in the MAP esti-

mate than the ODE estimate. This is reflected in the clustering

seen in the tree. Of the 24 individuals who have a consen-

sus escape, 13 occur in clusters of two or more. Moreover,

singleton-escaped lineages coalesce deep into the tree.

These combine to reveal the existence of a lower escape rate
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than that seen in the ODE approximation, combined with trans-

mission of escapes indicative of a very low reversion rate.

Contrast this to the rate approximation in RPM. Recent coalesc-

ent events in which one lineage has the escape variant, whereas

the other does not leads to faster escape and reversion estimates

under the integrated approach. Second, we note the large

amount of uncertainty arising through the evolutionary process

in our estimations. This can be explained through two main fac-

tors: the lack of seen transmissions close to the present, and

uncertainty in the states deep into the ancestry. Improvement

in each will result from increased sampling. An increase at

the present will increase the number of recent coalescent

events, and increased historical sampling will add confidence

to inferred states deep in the genealogy. Throughout, we have

considered the coalescent in an exponentially growing popu-

lation as our prior on the genealogy, as a birth–death prior

with historical sampling and sampling at the present is cur-

rently untested in BEAST. Use of a birth–death prior would

increase uncertainty in the time to the MRCA owing to its

stochastic nature. Indeed, the deterministic nature of the

coalescent underestimates uncertainty in TMRCA in an epidemic

setting. However, using a sampled birth–death prior allows us

to sample large portions of the infected population completely

correctly, increasing our power to infer dynamical parameters.

Unfortunately, the long-terminal branches indicative of expo-

nential growth means that it will always be difficult to

estimate parameters of such dynamical models.

Major advantages of the model-based framework are that

we obtain meaningful credible intervals for our parameter

estimates, and gain a statistical framework in which hypotheses

about these parameters can be tested. For example, consider the

null hypothesis that escape and reversion rates are common

across the four epitopes, with the alternative that they each

have distinct rates. Using a likelihood-ratio test, we reject the

null hypothesis ( p ¼ 0.00014). Testing the difference in escape

and reversion rates between RPM and KRW, we find the data

cannot reject the null hypothesis that there is a common escape

and reversion rate across these two epitopes ( p ¼ 0.412).

Validation of our use of the likelihood-ratio test is given in

electronic supplementary material, §S5.
4. Discussion
We have combined a dynamical modelling approach with

cross-sectional sequence data to infer escape and reversion

rates at CTL epitopes within hosts while taking the underlying

genealogy into account. We compared our integrated approach

with this ODE-based method through simulations and par-

ameter estimates using cross-sectional data from the SSITT

study cohort. Our model is set in a statistical framework and

makes use of the information present in sequence data for

parameter estimates. We gain meaningful credible regions

which consider uncertainty in the true underlying genealogy.

A strong benefit of our integrated method is that it provides

a probabilistic framework in which hypotheses can be tested.

Our most striking conclusion is the large amount of uncertainty

present in rates estimates using cross-sectional sequence data.

Great care must therefore be taken before strong conclusions

are made on the basis of such estimations.

Under the ODE approach outlined in Fryer et al. [28],

sequence information outside the epitope under consideration

is redundant. Cross-sectional data are considered to have
arisen independently, up to initial conditions. We show that

this is equivalent to the assumption of a completelystar-like phy-

logeny in electronic supplementary material, §S4. Given this

major assumption of the ODE method, we expected our inte-

grated method to perform more accurately in simulations. We

find that this is indeed the case, the presented model consistently

outperforms the simpler ODE-based approach, particularly

when strong clustering of escape mutations is more likely to be

present in the true tree. Despite this improvement, we find that

the ODE method recaptures escape and reversion rates relatively

well in simulations, in spite of its simplifying assumptions.

In order to incorporate the underlying dependency struc-

ture present in the genealogy of our samples, and assuming

exponential growth, there are two major processes to decide

between: the coalescent in an exponentially growing popula-

tion [39–41] (which we chose) and the sampled birth–death

process [33,42]. In the case of the birth–death process, a large

number of likelihoods describing the process have been con-

structed [33,43–45], differing only in what the author(s)

decide to condition on. We summarize the links between

each likelihood in electronic supplementary material, §S6.

Our choice between exponential coalescent and sampled

birth–death process determines the prior on the genealogy.

One major distinction is that the sampled birth–death

process considers a subpopulation within a larger stochasti-

cally growing population, and the exponential coalescent

assumes that the subpopulation is a tiny subset within a

very large deterministically growing population. There are

benefits and drawbacks to each. Under a birth–death prior,

the sum of seen transmissions informed by the prior and

unseen transmissions given by the matrix Q is the overall

transmission rate over time—a desirable property which the

coalescent lacks [42]. The birth–death process incorporates

early stochasticity, which more accurately represents the

truth in an epidemic setting. Additionally, no coalescent

assumption is required, making the prior suitable for datasets

in which the number of samples is comparable to the total

population size. This is becoming increasingly relevant as

such datasets are becoming more commonplace [46]. Under

the exponential coalescent, inclusion of time-stamped datasets

is straightforward. By contrast, under the birth–death process,

assumptions about the sampling rate of these historical events

must be made [47], which are often invalid for many datasets.

However, both are only priors on tree shape and if the data are

strong, then the distribution from which the trees are sampled

will be near identical. We show an interesting link between the

two processes in electronic supplementary material, §S7.

In our estimates, we are fundamentally restricted by

coalescence events in the genealogy. Long-terminal branches

are indicative of exponential growth, yet the greatest power

to inform our parameter estimates comes from coalescence

events occurring in the recent history of the virus. Thus,

obtaining extra information from the genealogy is intrinsi-

cally difficult. Greater sampling at the present will increase

the occurrence of recent coalescence events, and provide

greater power to distinguish high and low rates from infinity

and zero, respectively. However, the inclusion of more and

more sequence data calls the coalescent assumption into

question. Dense sampling can also lead to a breakdown of

the assumed connection between the genealogy and the

transmission tree owing to lineage sorting [48]. Including

time-stamped data with tip information would allow esti-

mation of ancestral states with greater confidence, and thus



0.2

0.1

0

TAFTIPSI
(a) (b) (c)

RPMTYKAAV

escape rate (yr–1) escape rate  (yr–1)
0 0.5

0

0.3

0.6

0.9

2.0

5.0

1 10 100 1000 0 0.1 0.2 0.3

re
ve

rs
io

n 
ra

te
 (

yr
–1

)

TST

RPM

KRW

TAF

Figure 3. (a) The maximum clade credibility tree for cross-sectional data for epitopes TAFTIPSI and RPMTYKAAV, with tips coloured as in figure 1. (b,c) 95%
and 99% credible regions under our integrated method. (c) A zoom in of the rectangle in (b). Axes are linear on [0,1] and on a log scale for values more than 1. Colourings
are shown in upper right figure legend of (b). Coloured diamonds are MAP estimates of (lesc, lrev), ODE method estimates are filled circles.

rspb.royalsocietypublishing.org
ProcR

SocB
280:20130696

8

increase our ability to infer escape and reversion rates. If

longitudinal and cross-sectional sequence data could be com-

bined, this would dramatically increase power to estimate

rates. Unfortunately, current methods cannot support this

extension due to the use of the genealogy as a proxy for the

transmission tree. It is clear that greatest power to estimate

these parameters lies in longitudinal sampling within cohorts

of hosts, but here we create another collection of issues: recom-

bination plays a large role within hosts [49], and we would

require longitudinal sequences across a large number of indi-

viduals in order to make any meaningful statements about

rate estimates across the infected population.

Models that attempt to integrate the underlying genealogy

are currently being developed to incorporate epidemiological

dynamics outside the exponential growth phase [50] assumed

under this model. Another potential improvement would be to

co-estimate escape and reversion rates within the MCMC

scheme. Our model also makes many assumptions about the

underlying biological processes. For example, overlapping epi-

topes which are prevalent across the HIV genome [51] mean

that mutations conferred by one HLA type could be incorrectly

inferred to be the result of selection due to another HLA type.

Violation of this assumption of selectively neutral sites outside

the epitope of interest will affect branch lengths more than top-

ology, so should not greatly alter our estimates and their

ordering within genes. It is through changes in topology in

the recent history of the data that estimates will be most drasti-

cally altered. HLA types are considered to two digits and

escape mutations within a given epitope are grouped together

owing to the relatively small dataset. All individuals with the
restricting HLA type are assumed to be capable of making a

response which drives selection at the epitope under investi-

gation. With larger datasets, such complications could be

included in a similar model in the same framework with

more parameters. Throughout, we assume homogeneous

mixing. This assumption may affect our estimates and will

have the greatest impact if the HLA distributions are strongly

segregated across the host population. Considering individuals

from across continents, for example, would be highly inap-

propriate. HLA distributions across Europe are relatively

homogeneous, so we feel that this assumption is reasonable.

A variety of other hypotheses could be tested by extending

the model in the presence of extra data. For example, given dis-

ease outcome information, HLA typing and sequence

information, is it possible to discern that escape mutations

are associated with faster disease progression?

We have constructed a model that integrates sequence

data and considers the evolutionary history, transmission

and set of dynamical processes together. The model was cre-

ated using existing techniques, and we use it to address

pressing practical questions. While we created the presented

model to answer a specific question, we believe that similar

integrated models making use of epidemiological and viral

sequence data may be more broadly applied. Such models

can be used to estimate various parameters of interest more

accurately with the help of sequence data.
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grant (no. 090532/Z/09/Z) to G.M., and by the Oxford Martin
School to A.M. Many thanks to Helen Fryer and Jonas Schlüter for
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