EOMW Stockholm 2017 – 12th European Oral Microbiology Workshop

OPEN ACCESS

Tavlor & Francis

Taylor & Francis Group

Antibacterial effects of bio-inspired nanostructured materials

Monika Astasov-Frauenhoffer^a, Khaled Mukaddam^b, Irmgard Hauser-Gerspach^a, Joachim Köser^c, Thilo Glatzel^d, Marcin Kisiel^d, Laurent Marot^d and Sebastian Kühl^b

^aDepartment of Preventive Dentistry and Oral Microbiology, University Center for Dental Medicine, University of Basel, Basel, Switzerland; ^bDepartment of Oral Surgery, Oral Radiology and Oral Medicine, University Center for Dental Medicine, University of Basel, Basel, Switzerland; ^cInstitut für Chemie und Bioanalytik, Hochschule für Life Sciences, Muttenz, Switzerland; ^dDepartment of Physics, University of Basel, Basel, Switzerland; Switzerland

ABSTRACT

Several properties of bio-inspired surfaces like chemical composition, surface topography, surface hydrophilicity and even surface charge could influence bacterial adhesion to implant materials. Therefore, a nanostructured surface is being investigated to avoid bacterial colonization by their physico-mechanical and chemical aspects.

Both smooth and rough-surfaced titanium (PT, SLA) and zirconia (M and ZLA) surfaces were used as controls. Titanium SLA was modified by two-step-etching to create nanostructured surface. Antibacterial properties of the materials were tested by adhesion of *Porphyromonas gingivalis* (ATCC 33277). The vitality of bacteria was assessed by Live/Dead BacLight[™] Bacterial Viability Kit or by conventional culturing on Columbia blood agar.

Conventional culturing revealed reduction of bacteria on nanostructured titanium $(5.27\pm0.8 \times 10^4 \text{ CFU/mm}^2)$ in comparison to rough-surfaced control materials (ZLA 6.16 ±4.86 × 10⁴ and SLA 1.53±0.75 × 10⁵ CFU/mm²). However, smooth-surfaced control materials (M 2.25±0.84 × 10⁴ and PT 6.63±5.77 × 10³ CFU/mm²) showed similar results to the nanostructured material. Live/dead staining demonstrated the antimicrobial efficacy of the nanostructured material revealing reduction of vital bacteria population up to 70%. This effect was not observed on the control materials (bacterial vitality ≥95%).

In conclusion, nanostructured titanium surface shows a reduction of vital bacteria. Therefore, bio-inspired nanostructures can modify the bacteria-titanium interaction.