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Abstract. Gastric cancer (GC) is one of the most common types 
of cancer worldwide. Patients must be identified at an early 
stage of tumor progression for treatment to be effective. The 
aim of the present study was to identify potential biomarkers 
with diagnostic value in patients with GC. To examine 
potential therapeutic targets for GC, four Gene Expression 
Omnibus  (GEO) datasets were downloaded and screened 
for differentially expressed genes (DEGs). Gene Ontology 
and Kyoto Encyclopedia of Genes and Genomes  (KEGG) 
analyses were subsequently performed to study the func-
tion and pathway enrichment of the identified DEGs. A 
protein‑protein interaction (PPI) network was constructed. 
The CytoHubba plugin of Cytoscape was used to calculate 
the degree of connectivity of proteins in the PPI network, and 
the two genes with the highest degree of connectivity were 
selected for further analysis. Additionally, the two DEGs 
with the largest and smallest log Fold Change values were 
selected. These six key genes were further examined using 
Oncomine and the Kaplan‑Meier plotter platform. A total of 
99 upregulated and 172 downregulated genes common to all 
four GEO datasets were screened. The DEGs were primarily 
enriched in the Biological Process terms: ‘extracellular matrix 
organization’, ‘collagen catabolic process’ and ‘cell adhesion’. 
These three KEGG pathways were significantly enriched in 
the categories: ‘ECM‑receptor interaction’, ‘protein digestion 
and absorption’, and ‘focal adhesion’. Based on Oncomine, 
expression of ATP4A and ATP4B were downregulated in GC, 
whereas expression of the other genes were all upregulated. 
The Kaplan‑Meier plotter platform confirmed that upregulated 
expression of the identified key genes was significantly asso-
ciated with worse overall survival of patients with GC. The 

results of the present study suggest that FN1, COL1A1, INHBA 
and CST1 may be potential biomarkers and therapeutic targets 
for GC. Additional studies are required to explore the potential 
value of ATP4A and ATP4B in the treatment of GC.

Introduction

Gastric cancer (GC) is a malignant tumor that originates 
in the epithelium of the gastric mucosa and is one of the 
most common types of malignant tumors in the world (1). 
According to GLOBOCAN 2018, there were >1,000,000 new 
cases of GC and ~783,000 deaths in 2018, thus making it the 
cancer type with the fifth highest incidence rate and the third 
highest mortality in the world (2). The poor five‑year survival 
rate of GC is primarily due the advanced stage of gastric 
tumors at the initial diagnosis in the majority of patients, 
and thus limits treatment opportunities (3). According to the 
Cancer Staging Manual, 8th edition, of the American Joint 
Committee on Cancer, only 30% of GC cases are diagnosed 
prior to metastasis, and the five‑year survival for pathological 
Tumor‑Node‑Metastasis stage groups are between 68‑80% 
for stage I, 46‑60% for stage II, 8‑30% for stage III and 5% 
for stage IV (4). Therefore, identifying potential biomarkers 
for patients with early GC is critical for improving patient 
outcomes.

In recent years, a variety of bioinformatics methods have 
contributed greatly to the discovery of biomarkers associ-
ated with tumor development, diagnosis and prognosis (5‑8). 
The combined use of multiple databases of biological 
information for the analysis of cancer has also yielded 
certain breakthroughs. Yong et al (9) used Gene Expression 
Omnibus  (GEO), Oncomine, Search Tool for Recurring 
Instances of Neighbouring Genes (STRING) and other data-
bases for bioinformatic analysis, and concluded that PPP2CA 
may function as an oncogene and a prognostic biomarker 
or therapeutic target in the progression of colorectal cancer. 
Troiano et al (10) used the GEO database and Oncomine to 
examine the expression of BIRC5/Survivin in oral squamous 
cell carcinoma and showed that Survivin expression was 
upregulated compared with non‑cancerous tissue. In addition, 
immunohistochemistry staining showed that cytoplasmic 
expression of Survivin was associated with poor overall 
survival in patients with oral squamous cell carcinoma. It may 
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be beneficial to use multiple datasets and analysis tools to 
determine the potential mechanisms underlying development 
and progression of GC, and to identify potentially novel and 
specific diagnostic biomarkers for early detection of GC to 
improve the survival of patients.

In the present study, the expression profiles from four 
datasets (GSE13911, GSE19826, GSE54129 and GSE118916) 
in human GC and normal gastric tissue samples were obtained 
from the GEO database and analyzed to identify differentially 
expressed genes (DEGs). Gene Ontology (GO) and pathway 
enrichment analysis were performed to identify the biological 
functions and pathways of the DEGs. STRING and Cytoscape 
were used to construct a protein‑protein interaction  (PPI) 
network, and a total of six key genes were selected from 
the PPI network and DEGs. The value of the key genes was 
validated using the Oncomine and Kaplan‑Meier platforms to 
further increase the reliability of the results and confirm the 
prognostic value of the key genes.

Materials and methods

Microarray data. The key word ‘gastric cancer’ was searched 
in the GEO database (ncbi.nlm.nih.gov/geo/), and a total of 
9,224 datasets on human GC were retrieved. In the present 
study, four gene expression profiles from the GEO database 
were used, as they have not been studied together previously. 
The four datasets were: GSE13911  (11), GSE19826  (12), 
GSE54129 and GSE118916  (13). Among these, GSE13911, 
GSE19826 and GSE54129 were based on the GPL570 platform 
[(HG‑U133_Plus_2) Affymetrix Human Genome U133 Plus 
2.0 Array]. GSE118916 was based on the GPL15207 platform 
[(PrimeView) Affymetrix Human Gene Expression Array].

Identification of DEGs. DEGs between GC samples and 
normal controls were identified using the GEO2R online 
analysis tool (ncbi.nlm.nih.gov/geo/geo2r); |log FC|≥1.0 and 
corrected P<0.05 were used as the cutoff criteria. The common 
DEGs of the four gene expression profiles were screened using 
Wayne analysis in Funrich (funrich.org/).

GO and KEGG enrichment analyses of DEGs. After obtaining 
the common DEGs, GO (14,15) and KEGG (16) analyses of 
the DEGs were performed using the Database for Annotation 
Visualization and Integrated Discovery (DAVID) online 
tool (17,18), with P<0.01 used as the threshold for significance. 
GO was used to identify the enrichment functions of three 
independent categories of genes; biological process  (BP), 
cellular component (CC) and molecular function (MF). KEGG 
was used to search for the pathways associated with the identi-
fied genes (19). Only the top 10 BP, CC and MF terms, and 
the KEGG pathway with the smallest P‑value were selected 
for further examination in the present study. The figures were 
generated using the OmicShare tools (omicshare.com/tools), a 
free online platform for data analysis.

PPI network construction. To explore the interaction between 
DEGs, the DEGs were analyzed using STRING  (20) to 
generate a PPI network. PPI pairs with a combined score >0.4 
were extracted, and disconnected nodes in the network were 
hidden. Subsequently, the PPI network was visualized using 

Cytoscape (21) and the degree of each protein node was calcu-
lated using the cytoHubba (22) plug‑in in Cytoscape.

Identification of key genes. The two genes with the highest 
degree of connectivity in the PPI network, the two genes with 
the largest logFC values and the two genes with the smallest 
logFC among the shared DEGs were selected and considered 
key genes.

Analysis of key genes in Oncomine. The Oncomine database 
(oncomine.org/) was used to explore the mRNA expression 
differences of six key genes between GC and normal gastric 
tissue. Oncomine is a chip‑based gene database and integrated 
data mining online cancer microarray database designed to 
facilitate the discovery of novel biomarkers from genome‑wide 
expression analysis (23).

Survival analysis of key genes. The Kaplan‑Meier plotter (24) 
is an online tool that can assess the effect of 54,000 genes 
on survival in 21 types of cancer. The largest datasets include 
breast (n=6,234), ovarian (n=2,190), lung (n=3,452) and gastric 
cancer (n=1,440) cancer. The primary purpose of the tool is to 
discover and validate biomarkers for survival. Online survival 
analysis of the selected key genes based on the GC database 
was performed using Kaplan‑Meier Plotter. The hazard 
ratio (HR) with 95% confidence intervals (CIs) and log‑rank 
P‑values were calculated.

Results

Identification of DEGs. GSE13911 includes 38 GC samples and 
31 normal samples, GSE19826 contains 12 GC samples and 15 
normal samples, GSE54129 contains 111 GC samples and 21 
normal samples, and GSE118916 contains 15 GC samples and 
15 normal samples (Table Ⅰ). In GSE13911, there are 26 intes-
tinal, 4 mixed, 6 diffuse and 2 unclassified gastric carcinoma 
tissues, as well as 31 normal adjacent tissues. Unfortunately, 
information on the histological subtypes were not available 
in the other datasets. In the datasets, 1,001 upregulated and 
2,304 downregulated DEGs were identified in GSE13911, 
407 upregulated and 753 downregulated DEGs were identified 
in GSE19826, 1,852 upregulated and 2,083 downregulated 
DEGs were identified in GSE54129, and 977 upregulated 
and 903 downregulated DEGs were identified in GSE118916. 
Wayne analysis identified 99 common upregulated genes and 
172 common downregulated genes were obtained from the 
4 datasets (Table Ⅱ; Fig. 1).

Table Ⅰ. Information for four gene expression profiles from 
Gene Expression Omnibus.

	 Gastric		  Total
Dataset ID	 cancer	 Normal	 Number	 Platform

GSE13911	 38	 31	 69	 GPL570
GSE19826	 12	 15	 27	 GPL570
GSE54129	 111	 21	 132	 GPL570
GSE118916	 15	 15	 30	 GPL15207
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GO and KEGG pathway enrichment analyses of DEGs. GO 
and KEGG pathway enrichment analyses of the DEGs was 
performed using the online tool DAVID, and the results are 
presented in Table III. GO analysis showed that in BP, the 
DEGs were primarily enriched for the GO terms: ‘extracellular 

matrix organization’, ‘collagen catabolic process’, ‘cell adhe-
sion’, ‘collagen fibril organization’ and ‘digestion’ (Table III; 
Fig. 2A). CC analysis revealed that the DEGs were significantly 
enriched for the terms: ‘extracellular space’, ‘extracellular 
matrix’, ‘extracellular exosome’, ‘extracellular region’ and 

Table II. The differentially expressed genes identified from the four gene expression profiles, between gastric cancer and normal 
tissues.

Differentially
expressed genes	 Gene terms

Upregulated	 INHBA CST1 COL11A1 FAP COL10A1 FNDC1 COL8A1 SERPINH1 CDH3 THBS2 CLDN1 
	 TNFRSF11B SPP1 COL1A2 SFRP4 SULF1 CPXM1 BMP1 MFAP2 COL1A1 CTHRC1 BGN 
	 RARRES1 IGF2BP3 THBS4 COL6A3 SRPX2 OSR2 HOXB7 TIMP1 ASPN THY1 FKBP10 PRRX1 
	 SDS APOE PMEPA1 COL12A1 GPNMB FBN1 ADAM12 C3 APOC1 COL5A1 SPARC EPHB2 NID2 
	 CMTM3 PLEKHO1 TNFRSF10B EHD2 FN1 MMP11 COCH AMIGO2 COL5A2 OLFML2B 
	 KLHL23 SPOCK1 CDH11 TWIST1 RAB31 SULF2 FGD6 VCAN ITGBL1 PCOLCE HAVCR2 
	 THBS1 DNM1 IGFBP7 PLAU TMEM158 COL3A1 FLNA EDNRA LEF1 LIPG FZD2 GXYLT2 
	 S100A10 LGALS1 NRP2 SIRPA ANTXR1 CD9 LIF COL4A2 TGM2 COL6A1 PDPN KCNJ8 ACTN1 
	 GPR161 ZAK RCN3 BAG2 BHLHE40 COL4A1

Downregulated	 ATP4A ATP4B KCNE2 AQP4 GIF LIPF GKN1 GKN2 DPCR1 PGC SOSTDC1 ESRRG MUC6 SST 
	 FBP2 CPA2 VSIG1 CXCL17 PDIA2 CCKBR TMED6 CHGA TFF2 PSCA FUT9 CA9 SCNN1G 
	 GUCA2B C16orf89 SLC26A9 KLK11 CWH43 DNER PSAPL1 CNTN3 ALDH3A1 GATA5 SCGB2A1 
	 UGT2B15 RDH12 CLIC6 NRG4 CLDN18 CAPN9 SLC16A7 SSTR1 FBXL13 TCN1 VSIG2 AKR1B10 
	 B3GNT6 FOLR1 MUM1L1 CHGB MAL TRIM50 AKR7A3 KIAA1324 PAIP2B SULT2A1 PTPRZ1 
	 ARX LIFR ALDH1A1 HYAL1 BEX5 CA2 CYP2C18 ME1 SCNN1B ADH7 GCNT2 ACER2 FMO5 
	 HPGD RASSF6 TFF1 TMEM171 CA4 KCNJ16 LDHD KCNJ15 GABRB3 HOMER2 TMPRSS2 
	 LYPD6B KLHDC7A ARHGAP42 PLAC8 IGFBP2 CAPN13 SYTL5 PDGFD RNASE1 RORC 
	 CYP2C9 EPN3 PBLD METTL7A ZBTB7C UBL3 SH3RF2 RNASE4 ARHGEF37 ALDH6A1 RAB27B 
	 SULT1B1 PKIB PXMP2 GPRC5C RIMBP2 ATP8A1 FAM20A PIGR GOLM1 CYP3A5 FAM46C 
	 C9orf152 COBLL1 FA2H SORBS2 DGKD SGK2 TMEM220 ANG PLLP MYCN C1orf116 FGD4 
	 SLC41A2 ADAM28 MAGI1 GRAMD1C IQGAP2 GULP1 SYTL2 DHRS7 OASL RNF128 DBT ELL2 
	 RAB27A NOSTRIN NEDD4L PPFIBP2 AKR1C3 PELI2 SMPD3 PTPRN2 RASEF TMEM92 ABCC5 
	 GALNT12 LMO4 NTN4 TMEM116 ID4 ELOVL6 ALDOB EPB41L4B CD36 GALNT5 SH3BGRL2 
	 MAGI3 MICALL1 HIPK2 MAOA WWC1 SLC7A8 CDC14B FAM107B SUCLG2

Upregulated genes are listed from largest to smallest fold change values. Downregulated genes are listed from smallest to largest fold change values.

Figure 1. Venn diagram of shared differentially expressed genes. (A) Upregulated and (B) downregulated genes from four gene expression profiles.
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Table III. GO term and KEGG pathway enrichment analyses of the 271 differentially expressed genes.

Category	 Term	 Description	 Count	 P‑Value

BP term	 GO:0030198	 Extracellular matrix organization	 23	 1.28x10‑13

BP term	 GO:0030574	 Collagen catabolic process	 14	 7.06x10‑12

BP term	 GO:0007155	 cell adhesion	 30	 3.59x10‑11

BP term	 GO:0030199	 Collagen fibril organization	 9	 7.87x10‑08

BP term	 GO:0007586	 Digestion	 10	 3.19x10‑07

BP term	 GO:0035987	 Endodermal cell differentiation	 7	 2.13x10‑06

BP term	 GO:0001501	 Skeletal system development	 11	 3.42x10‑05

BP term	 GO:0008202	 Steroid metabolic process	 7	 3.60x10‑05

BP term	 GO:0071230	 Cellular response to amino acid stimulus	 7	 6.04x10‑05

BP term	 GO:0006805	 Xenobiotic metabolic process	 8	 1.45x10‑04

BP term	 GO:0042060	 Wound healing	 8	 1.70x10‑04

BP term	 GO:0006081	 Cellular aldehyde metabolic process	 4	 4.70x10‑04

BP term	 GO:0030277	 Maintenance of gastrointestinal epithelium	 4	 6.20x10‑04

BP term	 GO:0010107	 Potassium ion import	 5	 6.98x10‑04

BP term	 GO:0007584	 Response to nutrient	 7	 7.50x10‑04

BP term	 GO:0002576	 Platelet degranulation	 8	 7.99x10‑04

BP term	 GO:0060021	 Palate development	 7	 8.64x10‑04

BP term	 GO:0010812	 Negative regulation of cell‑substrate adhesion	 4	 0.001003
BP term	 GO:0001503	 Ossification	 7	 0.001131
BP term	 GO:0030168	 Platelet activation	 8	 0.001523
BP term	 GO:0051216	 Cartilage development	 6	 0.001703
BP term	 GO:0010628	 Positive regulation of gene expression	 12	 0.001721
BP term	 GO:0001523	 Retinoid metabolic process	 6	 0.001977
BP term	 GO:0016525	 Negative regulation of angiogenesis	 6	 0.002125
BP term	 GO:0055114	 Oxidation‑reduction process	 19	 0.002857
BP term	 GO:0032964	 Collagen biosynthetic process	 3	 0.003084
BP term	 GO:0008284	 Positive regulation of cell proliferation	 16	 0.003752
BP term	 GO:0001649	 Osteoblast differentiation	 7	 0.004274
BP term	 GO:0022617	 Extracellular matrix disassembly	 6	 0.005144
BP term	 GO:0071711	 Basement membrane organization	 3	 0.005647
BP term	 GO:0050891	 Multicellular organismal water homeostasis	 3	 0.005647
BP term	 GO:0001525	 Angiogenesis	 10	 0.005716
BP term	 GO:0042476	 Odontogenesis	 4	 0.007007
BP term	 GO:0010575	 Positive regulation of vascular endothelial growth	 4	 0.007007
		  factor production
BP term	 GO:0050909	 Sensory perception of taste	 4	 0.008568
BP term	 GO:0001937	 Negative regulation of endothelial cell proliferation	 4	 0.008568
BP term	 GO:0040037	 Negative regulation of fibroblast growth factor	 3	 0.008901
		  receptor signaling pathway
BP term	 GO:0042572	 Retinol metabolic process	 4	 0.009418
CC term	 GO:0005615	 Extracellular space	 63	 9.65x10‑17

CC term	 GO:0031012	 Extracellular matrix	 28	 2.46x10‑14

CC term	 GO:0070062	 Extracellular exosome	 87	 1.68x10‑12

CC term	 GO:0005576	 Extracellular region	 61	 4.86x10‑12

CC term	 GO:0005788	 Endoplasmic reticulum lumen	 20	 4.73x10‑11

CC term	 GO:0005581	 Collagen trimer	 15	 5.56x10‑11

CC term	 GO:0005604	 Basement membrane	 9	 1.82x10‑05

CC term	 GO:0005578	 Proteinaceous extracellular matrix	 22	 3.57x10‑10

CC term	 GO:0016324	 Apical plasma membrane	 16	 2.29x10‑05

CC term	 GO:0009986	 Cell surface	 20	 3.51x10‑04

CC term	 GO:0005887	 Integral component of plasma membrane	 34	 0.004256
CC term	 GO:0005886	 Plasma membrane	 79	 0.004569
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‘endoplasmic reticulum lumen’ (Table III; Fig. 2B). For MF, 
the DEGs were enriched for the GO terms: ‘platelet‑derived 
growth factor binding’, ‘collagen binding’, ‘extracellular 
matrix binding’, ‘inward rectifier potassium channel activity’ 
and ‘SMAD binding’ (Table III; Fig. 2C). According to KEGG 
pathway analysis, the DEGs were primarily enriched for the 
pathway terms: ‘ECM‑receptor interaction’, ‘protein digestion 
and absorption’, ‘focal adhesion’, ‘amoebiasis’ and ‘gastric 
acid secretion’ (Table III; Fig. 2D).

PPI network construction. Based on the STRING predic-
tion results, a PPI network with 211 nodes and 741 sides was 
constructed in Cytoscape (Fig. 3), and the number of segments 
connected to each gene in the figure represents its degree.

Identification of six key genes. The two genes with the most 
nodes were FN1 and COL1A1. In the PPI network, FN1 was 
the most prominent, with the highest degree of connectivity 
at 52. The degree of connectivity of COL1A1 is 43 (Table Ⅳ). 
Expression of these two genes is upregulated in GC tissues. 
Additionally, of those DEGs shared among the four gene 
expression profiles, the two DEGs with the largest logFC and 
the two DEGs with the smallest logFC values were selected. 
The higher the logFC in the upregulated DEGs, the greater 

the increase in expression of the gene. Similarly, the lower 
the logFC values in the downregulated DEGs, the greater 
the decrease in expression of the gene. When sorting DEGs 
according to logFC, the logFC of GSE19826 was used as the 
standard, as chip GSE19826 represented a homogenous cancer 

Table III. Continued.

Category	 Term	 Description	 Count	 P‑Value

CC term	 GO:0030141	 Secretory granule	 6	 0.004319
CC term	 GO:0031093	 Platelet alpha granule lumen	 5	 0.008125
CC term	 GO:0031090	 Organelle membrane	 6	 0.008522
MF term	 GO:0048407	 Platelet‑derived growth factor binding	 6	 2.55x10‑07

MF term	 GO:0005518	 Collagen binding	 8	 2.37x10‑05

MF term	 GO:0050840	 Extracellular matrix binding	 6	 3.05x10‑05

MF term	 GO:0005242	 Inward rectifier potassium channel activity	 4	 0.002802
MF term	 GO:0046332	 SMAD binding	 5	 0.003328
MF term	 GO:0005201	 Extracellular matrix structural constituent	 12	 2.77x10‑09

MF term	 GO:0001758	 Retinal dehydrogenase activity	 3	 0.004132
MF term	 GO:0005178	 Integrin binding	 11	 2.77x10‑06

MF term	 GO:0005509	 Calcium ion binding	 27	 1.47x10‑05

MF term	 GO:0008201	 Heparin binding	 12	 2.07x10‑05

MF term	 GO:0016491	 Oxidoreductase activity	 9	 0.008547
MF term	 GO:0008083	 Growth factor activity	 8	 0.009105
KEGG pathway	 hsa04512	 ECM‑receptor interaction	 16	 5.16x10‑11

KEGG pathway	 hsa04974	 Protein digestion and absorption	 14	 7.73x10‑09

KEGG pathway	 hsa04510	 Focal adhesion	 18	 2.67x10‑07

KEGG pathway	 hsa05146	 Amoebiasis	 10	 1.63x10‑04

KEGG pathway	 hsa04971	 Gastric acid secretion	 8	 4.23x10‑04

KEGG pathway	 hsa04151	 PI3K‑Akt signaling pathway	 17	 7.35x10‑04

KEGG pathway	 hsa00830	 Retinol metabolism	 7	 0.00124
KEGG pathway	 hsa00982	 Drug metabolism‑cytochrome P450	 7	 0.001703
KEGG pathway	 hsa00980	 Metabolism of xenobiotics by cytochrome P450	 7	 0.002628
KEGG pathway	 hsa05204	 Chemical carcinogenesis	 7	 0.003889

GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological processes; CC, cellular component; MF, molecular 
function.

Table Ⅳ. The 10 genes with the largest degree of connectivity 
in the protein‑protein‑interaction network.

Rank	 Gene	 Degree

  1	 FN1	 52
  2	 COL1A1	 43
  3	 COL1A2	 38
  4	 COL3A1	 37
  5	 FBN1	 35
  6	 BGN	 32
  6	 COL5A2	 32
  8	 TIMP1	 31
  9	 SPARC	 30
10	 THBS2	 28
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tissue population at each Tumor‑Node‑Metastasis stage (25), 
which increases the accuracy of the expression profile 
(Table Ⅴ). The two DEGs with the largest logFC values were 
INHBA (logFC=4.35) and CST1 (logFC=4.18)  (Table Ⅵ). 
The two DEGs with the smallest logFC values were ATP4A 
(logFC=‑6.46) and ATP4B (logFC=‑5.91)  (Table  Ⅶ). 
Therefore, these six genes were selected as key genes.

Analysis of the six key genes in Oncomine. The Oncomine 
database was used to confirm the expression of the six key 
genes in 20 different types of cancer. The results showed that 
there were statistically significant differences in their expres-
sion. In the Oncomine database, there were no studies showing 
low expression of FN1, COL1A1, INHBA or CST1 in GC, but 
there were six, eight, seven and four studies showing increased 

expression, respectively. For ATP4A and ATP4B, the reverse 
was observed with no studies showing high expression, but 
seven and six studies, respectively, showing decreased expres-
sion (Fig. 4).

After comparing the expression levels of these six genes in 
cancerous and normal gastric tissue, the expression levels of FN1, 
COL1A1, INHBA and CST1 in GC tissues were significantly 
higher compared with the control group, and the expression 
levels of ATP4A and ATP4B in GC tissues were significantly 
lower compared with the control group (Table Ⅷ; Fig. 5).

In addition, meta‑analyses of the six key genes in GC in the 
Oncomine database also supported the findings that expression 
of FN1, COL1A1, INHBA and CST1 is upregulated in GC, 
whereas expression of ATP4A and ATP4B is downregulated 
in GC (11,12,26‑28). The studies and references involved are 

Figure 2. Gene Ontology terms and KEGG pathway enrichment analyses of 271 differentially expressed genes. Top 10 terms of enrichment for (A) BP, (B) CC 
and (C) MF. (D) Top 10 enriched KEGG pathways. KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular component; 
MF, molecular function.
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shown in Fig. 6. In the meta‑analyses, P=‑0.000, FC≥2.0 and 
gene rank ≤300 were selected as the cutoff criteria.

Survival analysis of the six key genes. To identify the 
prognostic value of the six potential key genes, overall survival 
curves based on differential expression of the six key genes 
were plotted using Kaplan‑Meier plotter (Fig. 7). There were 
1,440 patients with GC on the Kaplan‑Meier plotter platform 
who were suitable for the analysis of overall survival. The 
curves indicate that overexpression of the six key genes is 
significantly associated with decreased overall survival times 
of patients with GC. However, it is worth noting that ATP4A 
and ATP4B were significantly downregulated in GC samples 
in the present study.

Discussion

GC is a complex heterogeneous disease with high incidence 
and mortality rates, and poses a serious threat to afflicted 
patients. Therefore, it is important to identify biomarkers 

that are meaningful for both diagnostic and prognostic 
assessment (29).

In the present study, 271 DEGs were screened, including 
99 upregulated and 172 downregulated genes, by analyzing 
four gene expression profiles containing a combined 176 GC 
tissue samples and 82 normal gastric tissue samples. Of the 
causes of cancer‑associated deaths, 90% are the result of 
metastasis (30). In the present study, GO enrichment results 
showed that the occurrence and development of GC was 
closely associated with metastasis. GO analysis indicated 
that DEGs were primarily associated with extracellular 
matrix organization, collagen catabolic process and cell 
adhesion. Collagen is the primary component of the extra-
cellular matrix and of the interstitial microenvironment. 
Collagen can provide a scaffold for tumor cell growth and 
induce migration of tumor cells (31,32). There is evidence 
that collagen synthesis increases in the presence of a gastric 
tumor (33). Zhou et al (32) reported that collagen components 
are quantitatively and qualitatively reorganized in the tumor 
microenvironment of GC, and collagen width was identified 

Figure 3. Protein‑protein interaction network of differentially expressed genes. Red indicates upregulated genes, and green represents downregulated genes.
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as a useful prognostic indicator for GC  (32). In addition, 
studies have shown that changes in cell‑cell adhesion and 
cell‑matrix adhesion can promote cancer cell metastasis (34). 
MF analysis showed that the DEGs were significantly 

enriched in platelet‑derived growth factor binding. It has been 
demonstrated that inhibition of platelet‑derived growth factor 
receptor‑a can reduce the proliferation of gastrointestinal 
stromal tumor cells with mutant v‑kit Hardy‑Zuckerman 4 

Table Ⅴ. The expression data from GSE19826 in gastric cancer.

Tissue type	 Accession no.	 Title	 Stage

Noncancer tissue	 GSM495051	 CB2008210‑1N	 n/a
Gastric cancer tissue	 GSM495052	 CB2008210‑1T	 II
Noncancer tissue	 GSM495053	 CB2008210‑2N	 n/a
Gastric cancer tissue	 GSM495054	 CB2008210‑2T	 IV
Noncancer tissue	 GSM495055	 CB2008210‑3N	 n/a
Gastric cancer tissue	 GSM495056	 CB2008210‑3T	 I
Noncancer tissue	 GSM495057	 CB2008210‑4N	 n/a
Gastric cancer tissue	 GSM495058	 CB2008210‑4T	 II
Noncancer tissue	 GSM495059	 CB2008210‑5N	 n/a
Gastric cancer tissue	 GSM495060	 CB2008210‑5T	 III
Noncancer tissue	 GSM495061	 CB2008210‑6N	 n/a
Gastric cancer tissue	 GSM495062	 CB2008210‑6T	 IV
Noncancer tissue	 GSM495063	 CB2008210‑7N	 n/a
Gastric cancer tissue	 GSM495064	 CB2008210‑7T	 IV
Noncancer tissue	 GSM495065	 CB2008210‑9N	 n/a
Gastric cancer tissue	 GSM495066	 CB2008210‑9T	 III
Noncancer tissue	 GSM495067	 CB2008210‑12N	 n/a
Gastric cancer tissue	 GSM495068	 CB2008210‑12T	 II
Noncancer tissue	 GSM495069	 CB2008210‑13N	 n/a
Gastric cancer tissue	 GSM495070	 CB2008210‑13T	 I
Noncancer tissue	 GSM495071	 CB2008210‑14N	 n/a
Gastric cancer tissue	 GSM495072	 CB2008210‑14T	 III
Noncancer tissue	 GSM495073	 CB2008210‑15N	 n/a
Gastric cancer tissue	 GSM495074	 CB2008210‑15T	 I
Normal gastric tissue	 GSM495075	 CB2008210‑3C	 n/a
Normal gastric tissue	 GSM495076	 CB2008210‑5C	 n/a
Normal gastric tissue	 GSM495077	 CB2008210‑9C	 n/a

Table Ⅵ. The 10 genes with the largest logFC values in 
GSE19826.

Rank	 Name	 LogFC

  1	 INHBA	 4.35
  2	 CST1	 4.18
  3	 COL11A1	 4.11
  4	 FAP	 3.91
  5	 COL10A1	 3.72
  6	 FNDC1	 3.27
  6	 COL8A1	 3.17
  8	 SERPINH1	 2.97
  9	 CDH3	 2.95
10	 THBS2	 2.94

FC, fold change.

Table Ⅶ. The 10 genes with the smallest logFC values in 
GSE19826.

Rank	 Name	 LogFC

  1	 ATP4A	‑ 6.46
  2	 ATP4B	‑ 5.91
  3	 KCNE2	‑ 5.88
  4	 AQP4	‑ 5.81
  5	 GIF	‑ 5.75
  6	 LIPF	‑ 5.53
  6	 CHIA	‑ 5.51
  8	 GKN1	‑ 5.49
  9	 GKN2	‑ 5.44
10	 DPCR1	‑ 4.83

FC, fold change.
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feline sarcoma viral oncogene homolog (KIT) by affecting 
the KIT‑dependent transcription factor ETV1 (35).

KEGG pathway analysis showed that the DEGs were 
primarily enriched in ECM‑receptor interaction, protein 
digestion and absorption, and focal adhesion. ECM‑receptor 
interaction serves a vital role in several types of cancer (36‑38). 
The interaction between membrane receptors of tumor cells and 
ECM proteins serve an important role in tumor invasion and 
metastasis (39), and ECM‑receptor interaction serve a crucial 
role in the process of tumor shedding, adhesion, degradation, 
movement and hyperplasia (38). In addition, the non‑steroidal 
anti‑inflammatory drug celecoxib may exhibit anti‑GC effects 
by inhibiting the expression of various proteins and inhibiting 
leukocyte transendothelial migration and focal adhesion (40), 
which provides a possible mechanism for future investiga-
tions of the role of focal adhesion in GC and developing new 
anti‑GC drugs.

The degree of connectivity of a gene in a PPI network 
reflects its association with GC. The greater the connectivity, 
the closer a gene is to the disease mechanism. The logFC values 
of DEGs reflects the level of up or downregulation of the gene. 
The higher the logFC values in the upregulated DEGs, the 
greater the degree of upregulation of the gene, and the lower 
the logFC values in the downregulated DEGs, the greater the 
degree of downregulation (41‑43). Thus it was hypothesized 
that the DEGs with the highest and lowest logFC values would 
be the genes most closely associated with disease mechanisms.

In the present study, the two genes with the highest degree 
of connectivity in the PPI network, and the two DEGs with 
the largest and smallest logFC values, were all selected as key 
genes. These were FN1, COL1A1, INHBA, CST1, ATP4A and 

ATP4B. These six key genes were verified in the Oncomine 
database. Expression of FN1, COL1A1, INHBA and CST1 were 
upregulated in GC, and expression of ATP4A and ATP4B 
were downregulated, consistent with the results obtained from 
analysis of the GEO datasets. Furthermore, survival analysis 
showed that upregulation of the six key genes was significantly 
associated with worse overall survival, and downregulation of 
ATP4A and ATP4B expression predicted a more favorable 
prognosis for patients with GC, providing novel insights into 
potential GC treatment strategies.

FN1 was the gene with the highest degree of connectivity. 
It is expressed in a wide range of healthy plasmalemmas, 
lamina propria mucosae and smooth‑muscle cell layers, and 
it is involved in a variety of cellular processes including 
embryogenesis, blood coagulation, wound healing, host 
defense and metastasis (44). As a glycoprotein involved in 
cell adhesion and migratory processes, FN1 is hypothesized 
to be associated with signaling pathways associated with 
cancer (13). Expression of FN1 is significantly increased in 
anti‑chemotherapy osteosarcoma cell lines and tissues, and 
is associated with a poor prognosis (45). Knockdown of FN1 
gene expression results in reduced cell proliferation, increased 
cellular senescence and apoptosis, and reduced migration 
and invasion, by blocking the activation of the PI3K/AKT 
signaling pathway (46). Furthermore, downregulation of FN1 
inhibits proliferation, migration and invasion, and thus reduces 
progression of colorectal cancer (47). The results of the present 
study suggest that FN1 may be a potential biomarker and ther-
apeutic target for diagnosis and treatment of GC, consistent 
with previous studies (13,48,49), and thus further confirming 
the significance of FN1 in GC.

COL1A1 is one of the most important components of the 
ECM, and it is highly expressed in most connective tissues and 
various human solid tumors (50). It is also the primary compo-
nent of type I collagen, which serves a key role in tumor cell 
adhesion and invasion (51). A mechanistic study revealed that 
COL1A1 and COL1A2 affects angiogenesis in GC, and their 
expression is also significantly associated with progression of 
GC (52). In addition, Zhang et al (53) further confirmed that 
overexpression of COL1A1 promoted GC cell proliferation 
in vitro. These previous studies support the use of COL1A1 as 
a key potential GC biomarker in the present study.

INHBA is a member of the transforming growth factor‑β 
(TGF‑β) superfamily, which is closely associated with tumor 
proliferation and expression is upregulated in lung cancer (54), 
GC (12) and colon cancer (55), where INHBA expression is 
closely associated with their prognosis. In a study of GC, 
Chen et al  (56) found that INHBA gene silencing reduced 
migration and invasion of GC cells by blocking the activation 
of the TGF‑β signaling pathway. They suggested that INHBA 
was a potential target for GC therapy  (56). Another study 
showed that INHBA mRNA expression in GC may be a useful 
prognostic biomarker for patients with stage II or III GC who 
receive adjuvant chemotherapy with S‑1 (57). The results of the 
present study support the conclusions drawn in these previous 
studies.

Cystatin SN (CST1) is a member of the type 2 cystatin 
superfamily, the primary role of which is to limit the proteolytic 
activity of cysteine proteases (58). The dysregulated expres-
sion of CST1 is hypothesized to be involved in several types of 

Figure 4. mRNA expression of the six key genes in 20 different types of 
cancer. Cell color is determined by the best gene rank percentile for the 
analyses within the cell.
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cancer, including cholangiocarcinoma (59), breast cancer (58), 
GC (60) and colorectal cancer (61). CST1 prevents cell aging 
and promotes cancer development by affecting the activity of 
cathepsin B (62). However, CST1 has not been analyzed using 

bioinformatics for survival prognosis in GC, to the best of our 
knowledge. Using multiple databases, the present study is the 
first to validate CST1 as a novel prognostic biomarker and a 
potential therapeutic target for treatment of GC.

Figure 5. Expression of six key genes in different gastric cancer gene chips in Oncomine. P<0.0001 and a |fold change|>2 were used as the threshold. 
Comparison of mRNA expression in cancerous vs. normal gastric tissue. (A) FN1, (B) COL1A1, (C) INHBA, (D) CST1, (E) ATP4A and (F) ATP4B.

Table Ⅷ. Additional information for the six key genes shown in Figure 5.

		  Normal	 Gastric
		  tissue	 cancer		  Fold
Author, year	 Gene	 samples	 samples	 P‑value	 Change	 Published journal	 (Refs.)

Chen et al, 2003	 FN1	 28	   8	 5.73x10‑14	 7.441	 Molecular Biology of The Cell	 (26)
Cui et al, 2011	 COL1A1	 80	 80	 1.81x10‑15	 3.201	 Nucleic Acids Research	 (28)
Cui et al, 2011	 INHBA	 80	 80	 5.17x10‑13	 3.043	 Nucleic Acids Research	 (28)
Cho et al, 2011	 CST1	 19	 31	 3.17x10‑13	 21.525	 Clinical Cancer Research	 (27)
Cho et al, 2011	 ATP4A	 19	 20	 4.73x10‑17	 ‑100.911	 Clinical Cancer Research	 (27)
D'Errico et al, 2009	 ATP4B	 31	 26	 6.15x10‑19	 ‑246.630	 European Journal of Cancer	 (11)
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ATP4A encodes the α subunit and ATP4B encodes the 
β subunit of the gastric H+, K+‑ATPase, respectively. They 
regulate gastric acid secretion and, as a result, are targets 
for acid reduction (63). Fei et al (64) found that expression 

of ATP4A and ATP4B were significantly downregulated 
in patients with GC, but their expression was not signifi-
cantly correlated with overall survival (64). In the present 
study, downregulation of ATP4A and ATP4B expression 

Figure 6. Meta‑analyses of the six key genes in gastric cancer in Oncomine. (A) FN1, (B) COL1A1, (C) INHBA, (D) CST1, (E) ATP4A and (F) ATP4B.
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was associated with favorable overall survival in patients 
with GC. Downregulation of ATP4A and ATP4B mRNA 
expression in GC tissue is associated with the development 
of GC (65). Correa's Cascade is inversely associated with 
gastric acid secretion rate, the downregulation of ATP4A 
and ATP4B mRNA expression begins in the early stages 
of gastric mucosal lesions, and the expression of both is 
gradually decreased as Correa's cascade progresses (66). In 
addition, Helicobacter pylori (H. pylori) inhibits parietal 

acid secretion by downregulating the expression of ATP4A 
and ATP4B in gastric parietal cells prior to the formation 
of GC, suggesting that H. pylori is closely associated with 
the development of GC  (67). Thus, it was hypothesized 
that ATP4A and ATP4B may inhibit the formation of GC. 
Survival analysis showed that ATP4A and ATP4B in GC are 
adverse prognostic factors for patients with GC, suggesting 
that upregulation is associated with progression of GC. 
However, studies have reported that the expression of ATP4A 

Figure 7. Kaplan‑Meier overall survival analyses of patients with gastric cancer based on expression of the six key genes. (A) FN1, (B) COL1A1, (C) INHBA, 
(D) CST1, (E) ATP4A, (F) ATP4B. HR, hazard ratio.
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and ATP4B is not regulated by H. pylori in GC (68‑70). Other 
studies have shown significant decreases in the abundance 
of Helicobacter and Neisseria, and significant increases in 
Achromobacter, Citrobacter, Phyllobacterium, Clostridium, 
Rhodococcus and Lactobacillus in gastric carcinoma in 
comparison with chronic gastritis (71,72). Additionally, the 
gastric microbiota composition in patients with gastric carci-
noma is significantly different compared with patients with 
chronic gastritis (71). Therefore, it was hypothesized that the 
formation of an altered gastric microbiota composition may 
result in the expression of ATP4A and ATP4B to be passively 
upregulated as GC progresses. Further research is required to 
more accurately determine the biological function of ATP4A 
and ATP4B in GC.

Although several genes were identified as promising diag-
nostic and prognostic biomarkers for GC, the present study 
has the following limitations. First, the present study lacked 
experimental and clinical validation. Second, the possibility 
that different histological types may affect the accuracy of 
results cannot be eliminated. Thus, future bioinformatics 
analysis should be designed such that samples can be stratified 
by histological type. Finally, the sample size was relatively 
small for the RNA‑Seq experiments, which may result in 
inaccuracies or results which are not completely representa-
tive of the wider populace. Therefore, it is necessary to use 
larger samples to perform bioinformatics analysis, and further 
experimental and clinical studies are required.

In conclusion, the present study used bioinformatics to 
analyze biological processes and signaling pathways closely 
associated with GC occurrence and development and identi-
fied FN1, COL1A1, INHBA and CST1 as promising diagnostic 
and prognostic biomarkers for GC patients. Additionally, the 
results of the survival analysis of ATP4A and ATP4B were 
inconsistent with other international studies. Therefore, further 
studies are required to assess the effects of ATP4A and ATP4B 
on GC initiation and development. Furthermore, experimental 
and clinical studies are required to validate the findings of 
the present study and determine the potential clinical value of 
these potential biomarkers.
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