1duosnuey Joyiny

Author manuscript
Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

-, HHS Public Access
«

Published in final edited form as:
Mach Learn Appl. 2022 June 15; 8: . d0i:10.1016/j.mlwa.2022.100300.

Prediction of chaotic time series using recurrent neural
networks and reservoir computing techniques: A comparative
study

Shahrokh Shahi&”",
Flavio H. FentonP,
Elizabeth M. Cherry?

aSchool of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA
30332, United States of America

bSchool of Physics, Georgia Institute of Technology, Atlanta, GA 30332, United States of America

Abstract

1duosnuey Joyiny 1duosnuen Joyiny

1duosnuey Joyiny

In recent years, machine-learning techniques, particularly deep learning, have outperformed
traditional time-series forecasting approaches in many contexts, including univariate and
multivariate predictions. This study aims to investigate the capability of (i) gated recurrent

neural networks, including long short-term memory (LSTM) and gated recurrent unit (GRU)
networks, (ii) reservoir computing (RC) techniques, such as echo state networks (ESNs) and
hybrid physics-informed ESNSs, and (iii) the nonlinear vector autoregression (NVAR) approach,
which has recently been introduced as the next generation RC, for the prediction of chaotic time
series and to compare their performance in terms of accuracy, efficiency, and robustness. We

apply the methods to predict time series obtained from two widely used chaotic benchmarks, the
Mackey—Glass and Lorenz-63 models, as well as two other chaotic datasets representing a bursting
neuron and the dynamics of the El Nifio Southern Oscillation, and to one experimental dataset
representing a time series of cardiac voltage with complex dynamics. We find that even though
gated RNN techniques have been successful in forecasting time series generally, they can fall short
in predicting chaotic time series for the methods, datasets, and ranges of hyperparameter values
considered here. In contrast, for the chaotic datasets studied, we found that reservoir computing
and NVAR techniques are more computationally efficient and offer more promise in long-term
prediction of chaotic time series.

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
“Corresponding author: shahi@gatech.edu (S. Shahi).
CRediT authorship contribution statement

Shahrokh Shahi: Conceptualization, Methodology, Software, Visualization, Writing — original draft. Flavio H. Fenton: Resources,

Data curation, Supervision, Investigation, Funding acquisition. Elizabeth M. Cherry: Conceptualization, Methodology, Writing —
review & editing, Supervision, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

https://creativecommons.org/licenses/by-nc-nd/4.0/

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al. Page 2

Keywords

Recurrent neural networks; Reservoir computing; Echo state networks; Deep learning; Chaotic
time series; Nonlinear vector autoregression

1. Introduction

Time series are important in many real-world applications, such as biology (Bar-Joseph et
al., 2003), finance (Dingli & Fournier, 2017; Plagianakos & Tzanaki, 2001; Takahashi et al.,
2019; Tsay, 2005; Zhao, 2009), climate science (Ghil & Vautard, 1991), anomaly detection
in computer networks (Limthong, 2013) and social networks (Gong et al., 2018), and energy
(Billinton et al., 1996; Bunn, 2000; Deihimi & Showkati, 2012). Accordingly, the analysis
and prediction of time series data are of great importance and have been the focus of much
research in the past few decades. In general, a time series represents a record of observations
of a dynamical system at specific time intervals. Therefore, time series prediction involves
determining the future evolution of a dynamical system, which can be especially challenging
for chaotic dynamical systems. The states of such systems can be represented by chaotic
time series, which are recognized by the orbital instability characteristic, where infinitesimal
differences in the initial values bring about large differences in the time series behavior.
Consequently, prediction of a chaotic time series is only feasible for a relatively short time
before the appearance of orbital instability. For this reason, forecasting chaotic time series
has remained a difficult task for the last few decades.

Data-driven approaches, and machine-learning (ML) techniques in particular, have recently
become the main approaches used for time-series forecasting (Ahmed et al., 2010; Ben
Taieb et al., 2012; Chandra et al., 2021; Chattopadhyay et al., 2020; Cheng et al., 2015;

De Gooijer & Hyndman, 2006; Dubois et al., 2020; Kutz, 2013; Li et al., 2005; Tealab,
2018). In particular, recurrent neural networks (RNNSs) are the mainstream architecture

for analyzing sequential data, owing to their ability in interpreting temporal dependencies

in the input time series (Chandra et al., 2021; Elman, 1990; EIman & Zipser, 1988;
Schmidhuber, 2015). The recurrent connections in such networks serve as a notion of
memory, allowing them to embed temporal information. Despite the success of RNNs

in modeling short-term temporal data and non-chaotic dynamical systems, the high
computational cost of back-propagation through time and their vulnerability to the vanishing
or exploding gradient problems have limited their applications. Gated RNN architectures
were introduced to address some of these problems. More precisely, the memory cell
architecture and the gating mechanism enable these networks to be more selective over

the information that needs be remembered or forgotten, thereby enabling them to learn
long-term dependencies in temporal sequences. Long short-term memory (LSTM) networks
(Hochreiter & Schmidhuber, 1997) and gated recurrent units (GRUs) (Chung et al., 2014)
are among the most widely used gated RNNSs.

An alternative approach to deal with time-series forecasting and modeling dynamical
systems is reservoir computing (RC), a learning paradigm mostly implemented as echo
state networks (ESNs) (Jaeger, 2002; LukoSevicius & Jaeger, 2009; Sun et al., 2020). The

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 3

RC paradigm is fundamentally derived from RNN concepts offering a streamlined training
process, which remains limited to obtaining the output layer weights, while the rest of the
parameter values are set randomly and remain untrained. Notwithstanding such a major
simplification, ESNs have successfully been employed for multi-step-ahead prediction of
nonlinear time series and modeling chaotic dynamical systems at low computational cost
(Bianchi et al., 2017; Han et al., 2021), triggering the development of several network
topologies in recent years. For instance, clustered ESNs (CESNs) (Deng & Zhang, 2006;
Junior et al., 2020), where multiple sub-graphs of sparsely connected hidden units form

the reservoir, and deep ESNs, where the reservoir consists of multiple sub-reservoir layers
stacked hierarchically (Gallicchio & Micheli, 2017; Gallicchio et al., 2017), are two widely
used architectures. Hybrid ESNs (HESNSs) are another category of RC techniques introduced
in a physics-informed ML framework (Oh, 2020; Willard et al., 2020), where additional
inputs from physics-based mathematical models integrate corresponding domain knowledge
into data-driven models (Doan et al., 2019; Pathak, Hunt, et al., 2018).

The successful application of ESNs, despite their random construction, in forecasting
complex dynamical systems using time-series data triggered a series of recent research
providing an interpretation of how RC techniques function. Recently, Bollt demonstrated
how the RC with linear activation functions and linear readout layer shares similarities
with the well-studied vector autoregressive (VAR) concept, while using a quadratic readout
can be interpreted as nonlinear VAR (NVAR) (Bollt, 2021). Later, Gauthier et al. further
studied this similarity and introduced the next generation RC, where instead of explicitly
generating a reservoir of randomly connected neurons, an NVAR machine is formed in
which the feature vector consists of time-delayed observations of the dynamical system
and is augmented by nonlinear functions of these observations. Accordingly, with this
approach there are fewer hyperparameters to tune and the intrinsic random nature of

ESNs is effectively avoided. This approach was employed for one-step-ahead forecasting of
benchmark chaotic time series for both reconstruction and cross-prediction tasks (Gauthier
etal., 2021).

In this work, we assess the capability of the mainstream gated RNN techniques; ESN
architectures, including the clustered architecture and the physics-informed hybrid approach;
and the NVAR approach for multi-step-ahead prediction of nonlinear time series describing
chaotic dynamical systems. In particular, we compare the performance of these models for
forecasting two frequently used benchmark chaotic time series, derived from the Mackey—
Glass and Lorenz dynamical systems, two additional chaotic times series derived from a
bursting Morris—Lecar neuron model and the Vallis El Nifio Southern Oscillation (ENSO)
system, and one real-world dataset consisting of a time series of irregular cardiac voltage
traces obtained in ex-vivo experiments in terms of the prediction error and computational
efficiency. Moreover, this experimental dataset is further used to evaluate the performance of
NVAR against traditional RC approaches in more detail.

This paper is structured as follows. Section 2 presents a summary of the modeling
approaches used for forecasting chaotic time series in this research and provides details
about the implementation of each model and the evaluation metrics employed in this study.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Page 4

These methods are applied to datasets whose characteristics are described in Section 3. The
results are presented and discussed in Section 4, and Section 5 presents concluding remarks.

2. Time-series prediction methods

This section presents an overview of the computational methods used for chaotic time series
prediction in this work.

2.1. Gated recurrent neural networks

RNNSs are one of the most common approaches for handling temporal data; the recurrent
connections in the network provide a native way to learn the internal dependencies

within the time-dependent data. However, their vulnerability to vanishing and exploding
gradients limits their application to only learning short-term relations in the observations.
Gated RNNs, such as LSTMs, were introduced as a remedy for such a limitation. The
gating mechanism provided by the memory cell architecture enables them to select which
information should be kept and which forgotten, making them more robust to irrelevant
perturbations. Therefore, gated RNNs can model the temporal dependencies for longer time
horizons. Fig. 1a schematically depicts the flow of information in an LSTM cell in which a
hidden state /is calculated using the following equations:

iy = G(W,-x, + Uiht 1+ bi)’
fi= O'(fo, + Uf/’l,_ 1+ bf),
oy =0(Wox; + Ughy _ 1+ b,),
¢ =tanh(Wex, + Uchy _ 1 + b,),
a=[10¢q_1+i;Oc,

h; = tanh(¢;) © oy,

0]

where 75 05 and 7;denote the input, output, and forget gates at time £ x;is the input vector;
Wi and U=« are the weight matrices that along with the biases &+ are the trainable parameters
and are adjusted during the learning process; c;denotes the internal memory of the LSTM
unit known as the cell state; and ¢, is the cell input activation vector. In these equations, each

o designates a sigmoidal function and © denotes Hadamard element-wise multiplication.

A similar desire to avoid vanishing and exploding gradient problems led to the development
of GRUSs, which share many similarities in architecture and thus performance with LSTMs.
As illustrated in Fig. 1b, a GRU memory cell can be considered as a simplified version of an
LSTM unit, where the tasks of input and forget gates are handled by a single gate known as
the update gate. This simplification improves the overall efficiency as fewer parameters are
required to be trained, while the prediction accuracy is minimally affected in most cases and
in some applications improvements are even reported (Bianchi et al., 2017). The evolution of
hidden states in GRUs is given by the following equations:

zp=06(Wyx; + Uzh,_ 1+ by),
rr=0c(W,x;+U.h; _1+b),

h; = tanh(Wpx; + Up(r; © hy _ 1) + by),
ht=(l—zt)®ht_1+z,®ﬁ,,

@

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

2.2.

Page 5

where zyand 7y represent update and reset gates and determine which information should

be kept through time and which is irrelevant and can be forgotten. The candidate state is
denoted by &,. The weight matrices W« and U and the bias vectors &« are adjusted in the
training process, thereby enabling the update and reset gates to select which information
should be passed along to the future, and which information is irrelevant and thus should be
forgotten.

Echo state networks

ESNs are the most common realizations of the RC approach and utilize a low-cost training
process in which only the weights of the output layer, known as the readout layer, are
adjusted, and the rest of parameters are initialized randomly and remain untrained. Despite
this considerable simplification, which turn the training problem into a linear regression
task, ESNs provide an effective approach to model and predict complex dynamics, including
chaotic time series. Fig. 2a illustrates the main components of a typical ESN, which include
an input layer, a hidden layer of randomly connected neurons known as the reservoir, and a
readout layer. The number of input and output variables specifies the size of the input and
output layers, respectively. In this work, we employ an extension of the standard ESN in
which leaky integrator neurons (Jaeger et al., 2007) are employed as the hidden units. The
evolution of the reservoir state /;is described by

hy = (1 = @)hy _ 1 + atanh(W™x, + Wh;, _), @)

where WM and W denote the input weight and reservoir weight matrices, respectively. The
input signal is denoted by x;and a € [0, 1] is a constant parameter known as the leaking
rate. The output of the network is obtained by the following equation:

= fom(Wout[xtQ ht])’ @)

where WoUt denotes the readout weights and is obtained by least-square regression with
Tikhonov regularization to prevent overfitting. The activation function of the output layer is
given by “'and is chosen here as a unity function.

Once the readout weights are calculated, the future values of the time series can then be
obtained using a recursive strategy in which the results of predictions at each time step will
be fed to the network as the input for the next time step (see Fig. 2).

The initial success of RC techniques and ESNs motivated further research on the structure
of ESNs (Carroll & Pecora, 2019) and new reservoir topologies, such as clustered reservoirs,
where the reservoir consists of a set of sub-reservoirs sparsely connected to each other. Fig.
2b demonstrates a CESN, where the reservoir is constructed as three sub-reservoirs. The
update equation and training process remain the same as for the baseline ESN.

The physics-informed version of an ESN, known as a hybrid ESN (HESN), has been
successfully employed in a number of application domains (Doan et al., 2020; Oh, 2020;
Pathak, Wikner, et al., 2018; Shahi et al., 2021) where domain knowledge is integrated into
an ESN by feeding the network an additional input from a knowledge-based mathematical

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

2.3.

Page 6

model that approximates the behavior of the dynamical system. Fig. 2c illustrates the
schematic architecture of a HESN. In this work, in the case of generated time series, an
“imperfect” version of the mathematical equations is used to generate the knowledge-based
approximation, where the imperfect mathematical equations are obtained by multiplying one
of the original model parameters by (1+¢€), where € represents a dimensionless unknown
error (Pathak, Wikner, et al., 2018). In the case of experimental time series, a mathematical
model that provides an approximation of the dynamical system is employed.

Nonlinear vector autoregressive model

It is demonstrated that a reservoir computer with linear activation functions whose feature
vector also includes weighted sums of nonlinear functions of the reservoir output values

is mathematically comparable to an NVAR model, which consequently offers a powerful
universal approximator of dynamical systems (Bollt, 2021; Gauthier et al., 2021). In such
an NVAR model, the state matrix is constructed by concatenating a linear part, including &
time-delay embeddings of the g-dimensional input time series, and a nonlinear part, which
is generated by applying a nonlinear functional (in practice, a polynomial) to the linear part.
Therefore, the state vector at step #has the following form:

ht = [hlin,t; hnonlin, t]’ (5)

where the linear part /1, ;includes the input signal at time step fand the k- 1 previous time
steps spaced by a parameter sand is given by

T
Riing = [Xt Xt — 52 Xt = 20 s Xe — (k= 1)s] " - ©)

Therefore, s-1 steps are skipped between each two consecutive entries of this vector. The
nonlinear part of the hidden vector /1,5,in ¢ is obtained by applying a polynomial functional
to the linear part /i, » For instance, in the case of choosing a quadratic polynomial, the
entries of /1;0/i,rinclude the ka(4d + 1)/2 unique monomials obtained by the cross product
of fin rwith itself and are given by

—[+2 2 T
Pnontin,t = [xt > Xt Xt — 59 XpXt — 255 v v o0 Xp — (k — l)s] . ™

Then, the rest of the calculation, including finding the readout weights WUt and prediction,
is identical to what is used for ESNs. Accordingly, sometimes a bias can also be added to the
state vector in Eq. (5), i.e. /1= [1; Ayin &, Prontind- The output of the NVAR method at time
step tthen is obtained by the following equation:

V= Wout[l; hlin, #> Pnonlin, t] ®

Thus, this method circumvents the requirement of constructing an explicit reservoir of
randomly connected neurons, which increases the randomness and sensitivity of ESNs to
the hyperparameter values and initial parameters. In fact, in comparison to ESN, NVAR has
fewer hyperparameters to tune whose optimal values can be determined by a grid search or
some other optimization technique with less computational effort.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al. Page 7

3. Datasets

To evaluate the performance of these approaches in multi-step forecasting of chaotic time
series, the methods are applied to predict four chaotic benchmarks and one experimental
dataset representing cardiac voltage time series with highly nonlinear dynamics. Below we
describe these five datasets.

3.1. Mackey-Glass

As the first example, we use a time series obtained by solving the Mackey-Glass (MG)
equation (Mackey & Glass, 1977), which is one of the most commonly studied benchmarks
to evaluate chaotic time-series forecasting approaches. The following equation describes the
MG time-delay differential system:

dx ax(t—t
R : _)T) — bx(@), ©
where 2= 0.2, b= 0.1, and ¢ = 10 are constant parameters. The nonlinearity of the

system increases as the time delay parameter z increases. The system demonstrates chaotic
behavior when = 17. To generate the time series used here, zis set to 17 and the

numerical integration step size is set to A= 0.1 using a fourth-order Runge—Kutta method
implemented in MATLAB to solve delay differential equations at discrete equally spaced
times. Then, the data is sampled by 10A¢to form a time series with 15,000 data points

split into the training set (80%), where the first 1000 steps are considered the pre-training
warm-up period required in RC approaches (LukoSevicius, 2012), and testing set (20%). Fig.
3a illustrates the generated MG dataset; panel (c) shows a blowup of the shaded regions in
panel (a) within the training data.

The knowledge-based time series, which is required to evaluate the HESN approach, is
generated by an imperfect mathematical model obtained by changing the constant 6to (1
+ €)bin Eq. (9), where the error parameter e is set to 0.1 to demonstrate a noticeable
difference in the time series values (see Fig. 3c).

3.2. Lorenz

The second chaotic time series benchmark is derived from the 1963 Lorenz system (Lorenz,
1963), which is given by the following differential equations:

dx

E—a(y—x),

dy _

E—x(b—z)—y, (10)
vz

dt_ y)

where 4= 10, b= 28, and ¢ = 8/3 are the constant parameters. The time series is obtained

by integrating the equation numerically using ode45, the fourth-order Runge—Kutta solver in
MATLAB, where the solution is evaluated at times spaced Af= 0.01 apart to obtain a set of
10,000 data points. Then, the time series is scaled to lie in the interval [-1, 1] and divided

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al. Page 8

into training and testing datasets using an 80-20 split. Similar to the MG dataset, the training
set includes a 500-step pre-training period required in RC approaches. Fig. 4a illustrates the
generated time series.

Similar to the MG dataset, the knowledge-based time series is obtained by replacing the
constant b with (1+¢€)b. The error parameter is set to e = 0.05, which generates an observable
difference in the time series values. Fig. 4c shows the difference between the true time series
(solid) and the imperfect knowledge-based model time series (dashed).

3.3. Bursting Morris—Lecar

To obtain a third chaotic dataset, we use a busting Morris—Lecar (BML) model of a neuron
as described by Izhikevich (Izhikevich, 2012):

dVv

7 = —aV - E) = gwV - E) = gcameo(V)V = Eca) = u,

d

d—bt” = M) (we(V) — w), a1)
du

where

mip f(V) = (1 + tanh((V - V1)/V2))/2,
wip fV) = (1 + tanh((V = V3)/V4))/2,
AV) = cosh((V — V3)/(2V4))/3.

Parameter values were selected to achieve chaotic bursting dynamics as follows: g;= 0.5, £
=-0.5, gk =2, Ex=-410,gc, =12, Ec,=1,4=0.1, =02, V; =-0.01, V5 =0.15, V3=

0.1, V4 = 0.05.

The BML time series is generated by solving the differential equations numerically using the
forward Euler method implemented in MATLAB, where the time step is set to 4¢= 0.01.
The data is then sampled by 10A¢to form a time series with 15,000 data points divided into
training and testing datasets using an 80-20 split, where the first 1000 steps are considered
as the pre-training period required in RC techniques. Fig. 5 illustrates the generated dataset.
The BML time series is then linearly scaled to lie in the interval [-1, 1].

The knowledge-based time series corresponding to the BML model is obtained by
perturbing the constant g, by a factor of (1+¢€) in Eq. (11), where the error parameter
is set to 0.05 to demonstrate a noticeable difference in the time series values (see Fig. 5¢).

3.4. El Niflo-Southern Oscillation

Another example of a chaotic model is the simple three-variable El Nifio-Southern
Oscillation (ENSO) model by Vallis (Vallis, 1986). The model represents the ocean as a
box with east and west temperatures 7,and 7,, respectively, along with a third variable
representing the surface wind (or current) v between the two sides. The ENSO model
equations are as follows:

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

3.5.

Page 9

du B

T = i Le=Tw) = Clu—u¥),

dr u = .

e T~ AT T e
dT’ u —

d_te = m(Tw -T)- AT, - T%),

where B describes the rate of flow of current due to the difference in temperatures, Axis half
the width of the ocean, C denotes the frictional flow resistance, v/ is an average current, T
represents the deep ocean temperature, A scales the rate of heat loss, and 7* functions as an
average temperature the ocean aims to maintain. We set the parameter values as B = 940, Ax
=75, C=3,t*=-142,T =16, A=1,and T = 28. The model has the same structure as
the Lorenz model and thus it is capable of producing chaotic dynamics for certain parameter
regimes, including the parameter values we chose. In addition, the structural similarity of the
ENSO model will allow for an interesting comparison of results with those from the Lorenz
model.

The ENSO time series is constructed by applying a forward Euler method implemented in
MATLAB to solve the corresponding differential equations (Eq. (12)), where the step size At
is set to 5 x 1074 for overall = 150. The final time series, including 30000 data points, is
obtained after sampling the data by 104t The first 80% of the time series is assigned to the
training dataset, where the first 2000 steps marked as the pre-training warm-up period. The
last 20% of the time series forms the testing set (see Fig. 6). Note the values of the ENSO
time series are then linearly scaled to be within [-1, 1].

To generate the time series representing the imperfect knowledge-based model, the constant
parameter Cis perturbed by a factor of (1+¢€) in Eq. (12), where the error parameter e is set
to 0.05. Fig. 6¢ demonstrates the knowledge-based ENSO time series (dashed) as opposed to
the true ENSO time series (solid).

Experimental cardiac voltage recordings

Many real-world dynamical systems can show chaotic behavior, including the time evolution
of the electrical potential of a cardiac cell (also known as an action potential). To evaluate
the capability of these approaches in forecasting real-world chaotic time series, the final
dataset we considered represents action potentials recorded from a zebrafish heart as
described in Shahi et al. (2021).

For the knowledge-based model, a mathematical model approximating the voltage dynamics
of a cardiac cell can be employed. For instance, the two-variable Mitchell-Schaeffer
(Mitchell & Schaeffer, 2003) and the three-variable Fenton—Karma (Fenton & Karma, 1998)
models are two knowledge-based model candidates. Here we use the Corrado—Niederer
modification of the Mitchell-Schaeffer model (Corrado & Niederer, 2016) with z;;,=0.3 ms,
Tout= 6 MS, Topen =40 MS, Tpjp5e =20 MS, and vigare = 0.13.

Cardiac cells like those considered here are not natural pacemakers and thus require
exogenous stimulation, typically through the direct application of current for a brief time

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

4.

4.1.

Page 10

(typically 1-2 ms), to elicit each activation. Thus, information about the pacing stimulus
timing must be introduced as an additional input to the network along with the cardiac
voltage time series (Shahi et al., 2021). Furthermore, the knowledge-based model also

must be stimulated at the same times as the experimental time series. Because the timing

of applied stimuli can be variable and is not directly available for the experimental data,

a pre-processing step is applied to detect the timestamp at the beginning of each action
potential. Then, the pacing stimulus time series is generated by assigning a stimulus voltage
with magnitude 0.2 and duration 2 ms at the onset of each beat in time. Fig. 7c exhibits

the experimental time series and the corresponding knowledge-based model. Note that the
voltage is rescaled to be between zero and one.

Implementation

All methods were implemented in MATLAB (R2021a) and were run on the same computer
equipped with an Apple M1 processor and 8 GB of RAM, operating with macOS Big Sur
(Version 11.5.2).

Hyperparameter selection

Hyperparameter values used to construct each model play a pivotal role in the performance
of each model. Thus, to have a fair comparison between the prediction ability of these
techniques, finding a good set of hyperparameters is an inevitable initial step. Here the
optimum hyperparameter values were determined by an extensive grid search, with the
admissible ranges and the size of the hyperparameter grids informed by initial experiments
on a validation set.

In general, gated RNNSs, i.e. LSTMs and GRUSs, need a large set of tunable hyperparameters,
including the number of hidden layers and hidden units, the optimization technique to train
the network and the hyperparameters corresponding to the chosen optimization solver, e.g.,
learning rate, the learning rate drop factor, maximum number of epochs, and regularization
factor. Therefore, running an exhaustive search on a wide grid of hyperparameter values is
practically infeasible in most cases. In this work, after an initial round of experiments, some
of these hyperparameters are set while the values of hyperparameters with more influence
on the performance of the networks are optimized by a grid search. In this regard, we

use the Adam optimizer (Kingma & Ba, 2014) for training the networks with its default
configurations in MATLAB, while the grid search determines the optimum values of number
of layers, the dropout probabilities, initial learning rate, maximum number of epochs, and
regularization factor (see Table 1).

In comparison to the gated RNNs, ESN approaches are more sensitive to hyperparameter
values (Lara-Benitez et al., 2021), while they demand significantly less computational effort
for training. Therefore, wider intervals and finer grids were chosen for running the grid
search for the ESN techniques. Table 1 presents a summary of the hyperparameters and the
parameter grid values used to obtain the best performance for each technique. Note that

the number of hyperparameters required to be tuned in the NVAR approach is considerably
smaller than for the other techniques.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 11

4.2. Gated RNN implementations

4.3.

The LSTM and GRU networks were implemented utilizing the Deep Learning toolbox in
MATLAB, where the network architectures are defined as a layerGraph object that consists
of an array of network layers forming a directed acyclic graph structure. First, a sequential
input layer was required to feed the input time series into the network. Then, depending on
the architecture, one or multiple LSTM or GRU layers were required to learn the long-term
dependencies in the temporal data. Afterward, a fully connected layer connected the last
gated RNN layer to a regression output layer. To avoid overfitting issues, dropout layers
with various dropout probability were added to the architecture. The number of gated layers,
dropout layers, and the corresponding dropout probabilities were hyperparameters and their
optimum values were determined in the grid search (see Table 1).

Once the network was trained, the recursive approach was employed to perform a multi-
step-ahead prediction, where the predicted response at each time step was provided as input
for prediction of the response in the next time step, and the network state was updated
correspondingly.

Echo state network implementations

The implementation of the baseline ESN was based on Jaeger’s tutorial introducing

ESNs (Jaeger, 2002) and employing the practical remarks suggested by LukoSevicius
(Luko3evicius, 2012). To generate the initial reservoir graph in the baseline ESN, the Erd6s—
Rényi algorithm (Bollobas & Béla, 2001) was used. Then, the reservoir weight matrix was
adjusted to satisfy the echo state property of the network (Yildiz et al., 2012) to guarantee
that the network was state-forgetting, i.e., the effect of initial conditions should vanish over
time to ensure that the reservoir state asymptotically depends solely on the input signal.

The structure of the CESN was very similar to the baseline ESN except for generating

the reservoir graph, where the sub-reservoir clusters were generated first and then were
connected to each other randomly with an inter-cluster connection probability chosen to be
smaller than the intra-cluster connection probability.

Constructing the reservoir in the HESN was identical to the baseline ESN and followed
the same Erd6s—Rényi approach; the difference was in the input layer, where the sequential
input data was augmented with an additional time series from a knowledge-based model
synchronized with the original time series (see Fig. 2c).

Note that during the training for the ESNs, the initial states of the network were discarded to
ensure that the network dynamics were fully developed and the training was not affected by

the initial transient dynamics. This transient phase is exhibited in gray, as the pre-train data,

in Figs. 3-7.

Furthermore, by construction, ESNs may suffer from excessive sensitivity to the
hyperparameters and the initial values of the parameters, which remain untrained; this
property is an outcome of the randomized construction of the networks in RC approaches.
To minimize the effect of the random nature of ESNs on the results of our study, the results

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 12

of each method for each network size were averaged over 10 experiments with different seed
values for the random number generator in MATLAB program.

On account of such sensitivity, finding a set of optimum values for hyperparameters is of
great importance for network performance. The number of hidden units in the reservoir; the
connection probability used in the Erdés—Reényi graph generation process, which determines
the sparsity of the reservoir connections; and the spectral radius of the reservoir graph
showed the most influence on the performance of the network. Other hyperparameters
including the leaking rate, the input weight scale, and the ridge regression regularization
factor were also crucial to obtain good prediction results. Moreover, the number of clusters
in CESNs along with parameters of the knowledge-based model in the HESNs were
additional hyperparameters to be determined. Therefore, in comparison to the gated RNNs,
the number of hyperparameters for ESN approaches was considerably higher (see Table 1),
leading to a more involved search because the size of the grid search grows exponentially as
the parameter ranges grows. Nonetheless, due to the substantially lower computational costs
of ESNs, we obtained the grid search results in almost the same wall-clock times as for the
RNNs.

4.4. Nonlinear vector autoregressive implementation

The implementation of the NVAR approach is straightforward and shares many similarities
with ESNs. There are only a few main considerations in implementing NVAR technique.

First, the degree of the polynomial functional to construct the nonlinear part of the state
vectors must be determined; it was shown that employing a low-order polynomial can lead
to high prediction accuracy (Gauthier et al., 2021). Accordingly, in this work, we used

the simplest case, which is a second-degree polynomial. Therefore, at each time step, the
state vector has 1+kd+ka(ka+1)/2 entries including the bias, linear, and nonlinear parts,
respectively.

The second consideration is the pre-training period required in NVAR, which only needs

to be kstime steps to have all A~delayed input values to form the linear part of the state
vector. Therefore, in practice, the pre-training period in an NVAR can be less than that of an
equivalent ESN. Nonetheless, to make these two technique more comparable, in this work,
the pre-training periods were chosen to be identical in both techniques.

In contrast to the gated RNNs and ESNs, there are no explicit hidden units in NVAR
approach. This makes the comparison of NVAR to the other approaches more challenging.
The reason that we include NVAR in this comparative study is that it can perform equally
well as optimized ESNs in some applications (Gauthier et al., 2021). For a more fair
comparison, the hyperparameters of NVAR were chosen such that the size of the state
matrix was almost identical for NVAR and the corresponding ESNs. The number of columns
of this matrix is equal to the training length. Therefore, we chose the same length of
pre-training periods to ensure the number of columns of the state matrix was the same in
both approaches. The number of rows in the state matrix is equal to the number of entries
in the state vector at each time step (i.e., 1 + /54 + |Anontin 4), which is a function of the
delay (4) and dimension (d); the latter is fixed in each problem. Thus, for each network size

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 13

in gated RNNs and ESNs, the number of delays in NVAR was chosen such that the size of
the state matrix was almost equal to that of the ESN approaches.

Fixing the delay value kin each NVAR model left only two tunable hyperparameters: the
skipping step sand the ridge regression regulation value (see Table 1). Compared to the
gated RNN and ESN approaches, the considerably smaller number of hyperparameters
together with the reduced computational effort required in each run of training and
prediction using NVAR facilitated finding the optimum values of the hyperparameters in
a grid search.

Finally, to conduct a multi-step prediction into the future, the same recursive approach was
also employed in the case of NVAR method, which means that at each time step, to construct
the linear part of the state vector, the prediction of the previous step was introduced as

the new input recursively, and the delayed values were fetched from the predictions in the
previous steps. Then, the nonlinear terms were computed accordingly.

4.5. Univariate versus multivariate time series

The forecasting approaches for the MG and Lorenz datasets share many similarities; for
instance, in the case of applying ESNSs to both problems, the constructed networks mirror
the schematic architectures shown in Fig. 2. The only main difference is in the number of
input and output variables in each time series. The MG dataset is a univariate time series
where only one variable needs to be predicted over time. In contrast, the Lorenz dataset is
an example of a multivariate time series in which the input layer must accept three input
signals for x; y, and Z respectively, i.e. x; = [x(9); X(9; ZAH]. The same consideration is
necessary for the BML and ENSO datasets, where the input time series consist of three
input signals. Note that in the HESN approach, the number of inputs for both univariate and
multivariate datasets is multiplied by a factor of two due to the additional inputs from the
knowledge-based models in each case.

Additional considerations are required to predict cardiac action potential time series, where
the dynamics relies on an external stimulus. In particular, the pacing stimulus must also

be introduced to the network along with the cardiac voltage signals. In this case, although
forecasting the action potentials entails predicting one variable over time, the input signal is
a multivariate time series consisting of the action potentials (voltage signal) and the pacing
stimulus time series. Accordingly, the network architectures are adjusted to accommodate
the additional input from the pacing stimulus time series. This adjustment for the ESNs is
portrayed in Fig. 8, where the baseline ESN (Fig. 8a) and CESN (Fig. 8b) are driven with
two signals and the HESN (Fig. 8c) is driven with three signals, including one additional
input for the knowledge-based time series.

4.6. Evaluation metrics

The prediction accuracy is evaluated using the root mean square error (RMSE) metric, given
by

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 14

d n
1 - 2
RMSE = \/Z DTN (13)

j=1i=1

where Yj;and Y ji are the target and predicted outputs, respectively, while ¢and /7 denote

the number of input dimensions and the length of the dataset, respectively. Therefore, for the
MG and the experimental cardiac action potential datasets, d'is equal to 1, and for the other
datasets, d'is set to 3.

In the case of the cardiac dataset, action potential duration (APD) provides another
meaningful evaluation measure that is used widely in the field. By definition, an APD is
the time interval over which the voltage during an action potential is continuously larger
than a specified threshold value, which here is chosen as 0.35.

5. Results

5.1.

Mackey-Glass dataset

Fig. 9 presents the prediction results of the MG time series by the six described methods
(LSTM, GRU, ESN, CESN, HESN, and NVAR) for a fixed network size of 100 hidden
units in the first five methods and an equivalent delayed state matrix in NVAR. The results
show that despite the general success of gated RNNs in time-series forecasting tasks, they
are not capable of capturing the dynamics of this chaotic time series. Both the LSTM and
GRU networks show poor results in the prediction phases. The absolute error diagram at the
bottom of Fig. 9 further demonstrates the poor performance of the gated RNNSs. The best
prediction accuracy is obtained by the NVAR approach, where the prediction values exhibit
a perfect match for the entire 2000-step testing span. This result is significant considering
the fact that NVAR requires considerably less computational effort for constructing and
tuning the model. The ESN approaches are in the middle of the prediction performance
spectrum, and all three ESN variants can capture the dynamics of the chaotic system and
predict the future dynamics for a considerably longer time than the gated RNN approaches.
In particular, the baseline ESN can predict the time series accurately, with the least overall
absolute error for 1400 steps into the future. The prediction results obtained by the CESN
and HESN are accurate for around 200 steps and the discrepancies started after 3 periods,
as can be seen in the absolute error diagram, where the relative error exceeds 10%. As a
result, the prediction error using the baseline ESN is nearly half that obtained using the other
two ESNs for almost all network sizes tested. However, compared to the HESN, the CESN
generally provides a better overall match with less overall absolute error in the predicted
values.

Varying the network size demonstrates that increasing the model complexity by increasing
the number of hidden units in the first five methods and the number of embedded delays
in the NVAR approach has a limited effect on the overall accuracy measured by RMSE.
Fig. 10a shows that the prediction error remains roughly constant in the LSTM, GRU, and
CESN approaches for a range of network sizes; the ESN and HESN show a noticeable
improvement with more hidden units. In the NVAR case, by increasing the delay, which

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 15

for purposes of comparison we are considering as roughly equivalent computationally to
increasing the network size in the other approaches, the accuracy remains almost constant
with very minor improvements. However, the largest ESN (500 hidden units) shows better
accuracy (nearly 8% less prediction error) compared to the corresponding NVAR model.

According to Fig. 10b, which illustrates the elapsed time for the combination of training

and prediction tasks, the NVAR approach is the most efficient technique among all methods
tested owing to avoiding the explicit construction of the networks. In particular, NVAR

is faster than the ESN and gated RNN techniques by more than one and two orders of
magnitude, respectively. This plot also reveals that the elapsed time increases with respect to
network sizes in all methods including the NVAR approach, where the model complexity is
increased by adding more embedded delays. This trend is expected because in each method,
by increasing the model complexity, more computational effort is required for training and
prediction.

5.2. Lorenz dataset

The results of applying the six described methods to the Lorenz dataset using the same fixed
network size are presented in Fig. 11. The LSTM and GRU models can accurately predict
for only a short period of time (around 50 time steps) and the prediction results quickly
deviate from the true values, whereas the ESNs can capture the dynamics of the system

and provide accurate forecasting for more than 400 time steps. Although the prediction
accuracy is roughly the same across all three ESNs for the entire test set, the prediction
errors illustrate that the CESN achieved slightly better performance. Nonetheless, similar to
the MG dataset, the best overall performance measured by the RMSE metric is obtained

by the NVAR approach, which demonstrates that this technique can successfully forecast
multivariate time series for multiple steps into the future. The last panel in Fig. 11 shows
the mean absolute error of the predicted values obtained by each method. This plot reveals
that even though the overall prediction error obtained by NVAR is the minimum across all
applied techniques, the prediction obtained by ESN approaches are more accurate at the
beginning of the prediction before discrepancies start to appear later.

Increasing the network size for the ESNs can slightly improve their performance in
predicting the Lorenz time series, as shown in Fig. 12. In contrast, the LSTM and GRU
models do not display this trend; for some intermediate network sizes, the models performed
poorly even for the first few time steps. As opposed to the gated RNNs and ESNs, increasing
the embedded delays in the NVAR approach significantly improved the prediction accuracy
of the model. Accordingly, the discrepancies that currently can be seen in the NVAR
prediction results in Fig. 12 do not persist with higher delay values. We study this more
using the experimental dataset, as discussed in the next section.

The lower plot in Fig. 12 shows that the NVAR approach is the most efficient with the
smallest overall computational times. All three ESN techniques show similar computational
times for various reservoir sizes. Although the ESN computational times are larger than

for the NVAR approach, they still remain within a factor of 2-5 times more than the
corresponding NVAR models. However, the LSTM and GRU models are more than 3 orders
of magnitude slower than the NVAR and ESN models in most cases. Another expected

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al. Page 16

trend was the increase in computational times when increasing the model size, which is
demonstrated in Fig. 12.

5.3. Bursting Morris—Lecar dataset

Fig. 13 shows the results of using the BML dataset of bursting neural activity with the six
different prediction methods. The LSTM and GRU approaches have little if any predictive
power and quickly predict constant values. In contrast, NVAR is a particularly good choice
with very low error throughout the entire prediction time. The performance of the various
ESN approaches fails to match the accuracy of NVAR but provides good predictions for
more than half of the prediction time, especially for the ESN and CESN methods. The
bottom panel indicates absolute error over time, with the highest values associated with the
LSTM and GRU approaches; over time, the error grows appreciably for the ESN methods as
well.

For the BML dataset, prediction accuracy as measured by RMSE is relatively insensitive to
the network size (or number of embedded delays, for NVAR), as shown in the top panel of
Fig. 14 Because of the decrease in prediction quality for the second half of the time series,
the ESN approaches have RMSE values almost as high as those of the LSTM and GRU
methods. For NVAR, increasing the embedded delays may lead to a decrease in accuracy.
For all methods, the computational time needed increases with the network size. The LSTM
and GRU methods require the most time, nearly two orders of magnitude more than the ESN
methods, which require similar times. NVAR is the most efficient, but the ESN methods
remain competitive in terms of computational requirements.

5.4. El Niflo-Southern Oscillation Dataset

In Fig. 15, the results of predicting the ENSO dataset can be seen for the different methods.
The LSTM method performs particularly poorly, with only a single oscillation before
remaining at a constant value. GRU does better but essentially misses all the large-amplitude
oscillations in the middle of the testing data and also does not predict the amplitudes and
phases of the smaller oscillations consistently. The baseline ESN predicts accurately for
more than half of the test data but fails to predict the later large-amplitude oscillations

and predicts the last portion of the dataset with proper amplitude but incorrect phase. The
HESN method performs similarly, except that the last portion of the dataset has less severe
discrepancies in phase and slightly higher amplitude discrepancies. Very good performance
is obtained by the CESN method, with almost no difference from the testing data, narrowly
beating out NVAR, which includes some slight discrepancies. In the bottom panel of Fig.
15, the absolute error measurements over time confirm the poor predictions using LSTM and
GRU throughout the time series and the consistently small errors achieved only for CESN
and NVAR.

Fig. 16 compares the performance for the ENSO dataset across different network sizes.
RMSE values for the LSTM and GRU methods do not vary meaningfully with network
size; however, the ESN methods show a general downward trend in RMSE as the network
size is increased, although the effect is not monotonic. For NVAR, RMSE decreases with
the number of embedded delays. Note that despite the similarities between the ENSO and

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 17

Lorenz models, there are some differences in performance for the corresponding datasets,
particularly with improvements for ENSO by the CESN, baseline ESN, and even GRU
approaches. Both datasets experience similarly poor performance by the LSTM and good
performance by NVAR.

As for computational efficiency, all methods show a trend toward increasing time required
for increasing network sizes with the ENSO dataset, as shown in the lower panel of Fig.

16. The LSTM and GRU methods require similar times, which are 2—-3 orders of magnitude
longer than required for the ESN and NVAR approaches. The NVAR method requires the
least time, but the ESN methods remain competitive.

5.5. Experimental cardiac voltage dataset

For the experimental dataset, the gated RNNs and the ESN models can reconstruct the

main features of the voltage time series, with the exception of the GRU, as shown in Fig.

17. However, in contrast to the other two datasets, the NVAR model shows the maximum
prediction error and very poor prediction results. According to the absolute error values, the
results obtained by the HESN appear closest in reconstructing the full voltage trace. Similar
behavior can be seen in the APD plots, where the best predictions are obtained by the CESN
and HESN models; see Fig. 18. The gated RNNs and the baseline ESN not only have high
error but show little of the observed variation in APD. This shortcoming gets worse in the
case of NVAR, where the predicted APD values show the poorest agreement with the target
values.

As with the other two datasets, the same experiment was repeated with various model
complexities to study the influence of network size (or the embedded delays for the

NVAR approach) on the prediction abilities of the applied methods and the corresponding
computational times (Fig. 19). The variation in the computational times is almost identical
to the previous cases, where by increasing the model complexities, the computational time
increases. In contrast to the other two datasets, where the NVAR technique was significantly
faster than ESNs, for this dataset, the ESNs and NVVAR approach exhibit the same range

of efficiency except the baseline ESN, where the elapsed time is almost half of the NVAR
model in most cases. Nevertheless, the ESNs and the NVAR model are considerably faster
than the LSTM and GRU by more than two orders of magnitude.

Fig. 19a indicates that the prediction accuracy of each ESN model remains almost constant
for all network sizes, whereas the RMSE values obtained by the ESN and CESN are almost
equal and roughly two times more than the HESN, but are still 50% less than for the

gated RNN methods. The most interesting trend can be observed for the NVAR approach,
where increasing the delay values significantly reduces the prediction errors as measured
by RMSE. This finding suggests that it might be possible to improve meaningfully upon
the results demonstrated in Fig. 17 by increasing the number of embedded delays and

steps skipped between each two consecutive delays. More specifically, the NVAR results
presented in Fig. 17 are obtained using only 7 delays (k= 7) to have the same number of
rows in the corresponding state matrix as for the ESN with 100 hidden units, to improve the
fairness of the comparative study. However, the error obtained by 16 embedded delays (same
matrix size as the ESN with 500 neurons) is less than 30% of the case with 7 delays.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 18

These observations suggest that although the NVAR model relies on fewer hyperparameters
and needs less tuning effort, more embedded delays and consequently more computational
effort may be required to obtain a proper prediction accuracy. To examine this hypothesis,
the NVAR technique was applied to the same experimental dataset with more delay values.
Fig. 20 illustrates the prediction results obtained by NVAR with k= {20, 30} and s= {5, 10}
and shows that increasing the number of embedded delays yields better prediction results. In
particular, by choosing &= 30 and s= 10, the predicted values are nearly identical to those

in the test dataset. The same result can be observed in the APD diagrams exhibited in Fig.
21, where agreement is improved and even those cases with discernible error display similar
changes in APD. As a comparison of the matrix sizes and the required computational effort,
to accommodate the bias, linear and nonlinear parts of the state vectors, the corresponding
state matrix includes 1891 rows, which is roughly equal to a state matrix of an ESN with 944
hidden units for the same dataset. However, the NVAR approach is still faster and provides a
more accurate prediction as measured by RMSE.

6. Conclusion

In this paper, six different ML time-series forecasting approaches, including two gated

RNN techniques, three variants of ESNs, and the NVVAR approach, were tested to predict
five chaotic time series, including the Mackey-Glass, Lorenz-63, bursting Morris—Lecar,
Vallis ENSO, and experimental cardiac action potential time series. Although we considered
relatively large but still limited numbers of datasets and methods, we found that the LSTM
and GRU approaches, despite their high computational costs and in contrast to the ESN

and NVAR methods, were incapable of forecasting the Mackey—Glass, Lorenz, and bursting
Morris—Lecar time series more than a few steps into the future, and that increasing the
network size did not significantly improve their performance. For the ENSO model, the
GRU method could predict somewhat longer, but it did not compare favorably with the ESN
and NVAR approaches.

Three variants of ESNs were employed including the baseline ESN, the clustered ESN
(CESN), and the hybrid physics-informed ESN (HESN). For the five datasets we used

in this work, only one (ENSO) showed improvement by using a more complicated ESN
architecture such as the clustered reservoir. In all the other cases, the baseline ESN
demonstrated similar or better performance compared to CESN. In contrast, whereas the
HESN provided the same level of prediction accuracy for the four synthetic time series,
within the tested network sizes, it was the most successful approach for forecasting the
experimental dataset, where it delivered more accurate predictions as measured by RMSE.
Thus, incorporating the domain knowledge of a dynamical system if available may improve
the prediction ability of the ESN technique and may help with obtaining good predictions
using smaller network sizes.

For the tested network sizes and datasets, the best prediction performance in the case

of the Mackey—Glass, Lorenz, and bursting Morris—Lecar datasets was obtained by the
NVAR method, which was recently introduced as the next generation of RC techniques

and has been demonstrated to be as successful as optimized ESNs. For the ENSO dataset,
NVAR’s prediction accuracy was only slightly lower than that of the most accurate method,

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 19

CESN. A noticeable advantage of the NVAR technique over conventional ESNs is avoiding
the explicit construction of randomly connected neurons and circumventing the intrinsic
randomness that increases the sensitivity of the network to the hyperparameter values and
initial parameters that remain untrained. Moreover, the number of hyperparameters is much
smaller than for ESNs, which makes NVAR easier to tune. Such advantages may initially
suggest that the amount of data required to train the NVAR model could be less than that
needed for the conventional ESNs. However, our experiments showed in the case of the
experimental cardiac voltage dataset, better performance was only obtained by embedding
more delays and at the cost of more computational time and effort. Nevertheless, in general,
this approach shows promise for efficient prediction of chaotic time series. To the best of
our knowledge, this work is one of the first applications of this newly introduced technique
to real-world experimental time series. Further studies in this area may reveal more of

the potential of this approach. For instance, in this work, we used a quadratic polynomial
functional to construct the nonlinear portion of the state vectors at each time step; however,
other nonlinear functions such as higher-order polynomials could also be employed and
studied.

It should also be noted that our conclusions are based on a limited number of datasets and
employed methods. Moreover, in each case, the optimum hyperparameters were obtained in
a finite grid search process. Accordingly, it is possible that the same approaches could
provide different results when applied to other datasets or when hyperparameters are
determined using more extensive grids or different optimization techniques.

Acknowledgments

This study was supported by NSF, United States of America grants CMMI-2011280 and CMMI-1762553. We thank
Conner J. Herndon for assistance in providing the experimental dataset.

References

Ahmed N, Atiya A, El Gayar N, & EI-Shishiny H (2010). An empirical comparison of
machine learning models for time series forecasting. Econometric Reviews, 29(5), 594-621.
10.1080/07474938.2010.481556.

Bar-Joseph Z, Gerber GK, Gifford DK, Jaakkola TS, & Simon | (2003). Continuous representations of
time-series gene expression data. Journal of Computational Biology, 10(3—-4), 341-356. [PubMed:
12935332]

Ben Taieb S, Bontempi G, Atiya A, & Sorjamaa A (2012). A review and comparison of strategies for
multi-step ahead time series forecasting based on the NN5 forecasting competition. Expert Systems
with Applications, 39(8), 7067-7083. 10.1016/j.eswa.2012.01.039.

Bianchi FM, Maiorino E, Kampffmeyer MC, Rizzi A, & Jenssen R (2017). Other recurrent neural
networks models. In Recurrent neural networks for short-term load forecasting (pp. 31-39).
Springer.

Billinton R, Chen H, & Ghajar R (1996). Time-series models for reliability evaluation of power
systems including wind energy. Microelectronics Reliability, 36(9), 1253-1261.

Bollobas B, & Béla B (2001). Random graphs, no. 73. Cambridge University Press.

Bollt E (2021). On explaining the surprising success of reservoir computing forecaster of chaos?

The universal machine learning dynamical system with contrast to VAR and DMD. Chaos. An
Interdisciplinary Journal of Nonlinear Science, 31(1), Article 013108.

Bunn DW (2000). Forecasting loads and prices in competitive power markets. Proceedings of the

IEEE, 88(2), 163-169.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 20

Carroll TL, & Pecora LM (2019). Network structure effects in reservoir computers. Chaos. An
Interdisciplinary Journal of Nonlinear Science, 29(8), Article 083130. 10.1063/1.5097686.

Chandra R, Goyal S, & Gupta R (2021). Evaluation of deep learning models for multi-step ahead time
series prediction. IEEE Access, 9, 83105-83123. 10.1109/ACCESS.2021.3085085.

Chattopadhyay A, Hassanzadeh P, & Subramanian D (2020). Data-driven predictions of a multiscale
lorenz 96 chaotic system using machine-learning methods: reservoir computing, artificial neural
network, and long short-term memory network. Nonlinear Processes in Geophysics, 27(3), 373—
389.

Cheng C, Sa-Ngasoongsong A, Beyca O, Le T, Yang H, Kong Z, & Bukkapatnam S
(2015). Time series forecasting for nonlinear and non-stationary processes: A review and
comparative study. IIE Transactions (Institute of Industrial Engineers), 47(10), 1053-1071.
10.1080/0740817X.2014.999180.

Chung J, Gulcehre C, Cho K, & Bengio Y (2014). Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555.

Corrado C, & Niederer SA (2016). A two-variable model robust to pacemaker behaviour for
the dynamics of the cardiac action potential. Mathematical Biosciences, 281, 46-54. 10.1016/
j.mbs.2016.08.010. [PubMed: 27590776]

De Gooijer J, & Hyndman R (2006). 25 Years of time series forecasting. International Journal of
Forecasting, 22(3), 443-473. 10.1016/j.ijforecast.2006.01.001.

Deihimi A, & Showkati H (2012). Application of echo state networks in short-term electric load
forecasting. Energy, 39(1), 327-340.

Deng Z, & Zhang Y (2006). Complex systems modeling using scale-free highly-clustered echo state
network. In The 2006 IEEE international joint conference on neural network proceedings (pp.
3128-3135). IEEE.

Dingli A, & Fournier KS (2017). Financial time series forecasting—a deep learning approach.
International Journal of Machine Learning and Computing, 7(5), 118-122.

Doan NAK, Polifke W, & Magri L (2019). Physics-informed echo state networks for chaotic systems
forecasting. In International conference on computational science (pp. 192-198). Springer.

Doan NAK, Polifke W, & Magri L (2020). Physics-informed echo state networks. Journal of Computer
Science, 47, Article 101237.

Dubois P, Gomez T, Planckaert L, & Perret L (2020). Data-driven predictions of the lorenz system.
Physica D: Nonlinear Phenomena, 408, Article 132495.

Elman J (1990). Finding structure in time. Cognitive Science, 14(2), 179-211.
10.1016/0364-0213(90)90002-E.

Elman J, & Zipser D (1988). Learning the hidden structure of speech. Journal of the Acoustical
Society of America, 83(4), 1615-1626. 10.1121/1.395916. [PubMed: 3372872]

Fenton F, & Karma A (1998). Vortex dynamics in three-dimensional continuous myocardium
with fiber rotation: Filament instability and fibrillation. Chaos. An Interdisciplinary Journal of
Nonlinear Science, 8(1), 20-47.

Gallicchio C, & Micheli A (2017). Deep echo state network (deepesn): A brief survey. arXiv preprint
arXiv:1712.04323.

Gallicchio C, Micheli A, & Pedrelli L (2017). Deep reservoir computing: A critical experimental
analysis. Neurocomputing, 268, 87-99.

Gauthier DJ, Bollt E, Griffith A, & Barbosa WAS (2021). Next generation reservoir computing. Nature
Communications, 12(1), 5564. 10.1038/s41467-021-25801-2.

Ghil M, & Vautard R (1991). Interdecadal oscillations and the warming trend in global temperature
time series. Nature, 350(6316), 324-327.

Gong Q, Chen Y, He X, Zhuang Z, Wang T, Huang H, Wang X, & Fu X (2018). DeepScan:
Exploiting deep learning for malicious account detection in location-based social networks. IEEE
Communications Magazine, 56(11), 21-27.

Han Z, Zhao J, Leung H, Ma KF, & Wang W (2021). A review of deep learning models for time series
prediction. IEEE Sensors Journal, 21(6), 7833-7848. 10.1109/JSEN.2019.2923982.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Shahi et al.

Page 21

Hochreiter S, & Schmidhuber J (1997). Long short-term memory. Neural Computation, 9(8), 1735-
1780. [PubMed: 9377276]

Izhikevich EM (2012). Neural excitability, spiking and burstin. International Journal of Bifurcation and
Chaos, 10(6), 1171-1266. 10.1142/S0218127400000840,

Jaeger H (2002). Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the”
Echo State Network” approach, vol. 5. GMD-Forschungszentrum Informationstechnik Bonn.

Jaeger H, LukoSeviCius M, Popovici D, & Siewert U (2007). Optimization and applications of
echo state networks with leaky- integrator neurons. Neural Networks, 20(3), 335-352. 10.1016/
j.neunet.200A7.04.016. [PubMed: 17517495]

Junior LO, Stelzer F, & Zhao L (2020). Clustered echo state networks for signal observation and
frequency filtering. In Anais do VIII symposium on knowledge discovery, mining and learning
(pp. 25-32). SBC.

Kingma DP, & Ba J (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kutz JN (2013). Data-driven modeling & scientific computation: Methods for complex systems & big
data. Oxford University Press.

Lara-Benitez P, Carranza-Garcia M, & Riquelme JC (2021). An experimental review on deep learning
architectures for time series forecasting. arXiv preprint arXiv:2103.12057.

Li G, Song H, & Witt S (2005). Recent developments in econometric modeling and forecasting.
Journal of Travel Research, 44(1), 82-99. 10.1177/0047287505276594.

Limthong K (2013). Real-time computer network anomaly detection using machine learning
techniques. Journal of Advances in Computer Networks, 1(1), 126-133.

Lorenz EN (1963). Deterministic nonperiodic flow. Journal of Atmospheric Sciences, 20(2), 130-141.

LukoSevicius M (2012). A practical guide to applying echo state networks. In Neural networks: Tricks
of the trade (pp. 659-686). Springer.

LukoSevicius M, & Jaeger H (2009). Reservoir computing approaches to recurrent neural network
training. Computer Science Review, 3(3), 127-149.

Mackey MC, & Glass L (1977). Oscillation and chaos in physiological control systems. Science,
197(4300), 287-289. [PubMed: 267326]

Mitchell CC, & Schaeffer DG (2003). A two-current model for the dynamics of cardiac membrane.
Bulletin of Mathematical Biology, 65(5), 767-793. 10.1016/S0092-8240(03)00041-7. [PubMed:
12909250]

Oh DK (2020). Toward the fully physics-informed echo state network—an ode approximator based on
recurrent artificial neurons. arXiv preprint arXiv:2011.06769.

Pathak J, Hunt B, Girvan M, Lu Z, & Ott E (2018). Model-free prediction of large spatiotemporally
chaotic systems from data: A reservoir computing approach. Physical Review Letters, 120(2),
Article 024102. [PubMed: 29376715]

Pathak J, Wikner A, Fussell R, Chandra S, Hunt BR, Girvan M, & Ott E (2018). Hybrid forecasting of
chaotic processes: Using machine learning in conjunction with a knowledge-based model. Chaos,
28(4), Article 041101. 10.1063/1.5028373. [PubMed: 31906641]

Plagianakos V, & Tzanaki E (2001). Chaotic analysis of seismic time series and short term
forecasting using neural networks. In IJCNN’01. International joint conference on neural
networks. Proceedings (Cat. No. 01CH37222), vol. 3 (pp. 1598-1602). IEEE.

Schmidhuber J (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117.
10.1016/j.neunet.2014.09.003. [PubMed: 25462637]

Shahi S, Marcotte CD, Herndon CJ, Fenton FH, Shiferaw Y, & Cherry EM (2021). Long-time
prediction of arrhythmic cardiac action potentials using recurrent neural networks and reservoir
computing. Frontiers in Physiology, 12, 10.3389/fphys.2021.734178.

Sun C, Song M, Hong S, & Li H (2020). A review of designs and applications of echo state networks.
arXiv preprint arXiv:2012.02974.

Takahashi S, Chen Y, & Tanaka-Ishii K (2019). Modeling financial time-series with generative
adversarial networks. Physica A: Statistical Mechanics and its Applications, 527, Article 121261.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Shahi et al.

Page 22

Tealab A (2018). Time series forecasting using artificial neural networks methodologies: A systematic
review. Future Computing and Informatics Journal, 3(2), 334-340.

Tsay RS (2005). Analysis of financial time series, vol. 543. John wiley & sons.

Vallis GK (1986). El Nifio: A chaotic dynamical system? Science, 232(4747), 243-245, URL https://
www.jstor.org/stable/1696890. [PubMed: 17780809]

Willard J, Jia X, Xu S, Steinbach M, & Kumar V (2020). Integrating physics-based modeling with
machine learning: A survey. arXiv preprint arXiv:2003.04919.

Yildiz 1B, Jaeger H, & Kiebel SJ (2012). Re-visiting the echo state property. Neural Networks, 35, 1-9.
[PubMed: 22885243]

Zhao H (2009). A chaotic time series prediction based on neural network: Evidence from the shanghai
composite index in china. In 2009 International conference on test and measurement, vol. 2 (pp.
382-385). IEEE.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

https://www.jstor.org/stable/1696890
https://www.jstor.org/stable/1696890

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al. Page 23

@ {©

@]

o [0} tanh

N
O

(b)

Fig. 1.
Architectures of memory cells in gated recurrent neural networks. (a) Long short-term

memory. (b) Gated recurrent unit.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Shahi et al.

Fig. 2.

Input Layer

Time series

Reservoir

Output Layer

Yt
=
.2
S
el
g
a
(@) 2 (@)
(@) ©)
’ y R Yt
Time series o) 1 o >
A y
@) ﬁ/] c
h¢ ©
L . JL : Il T
Win A%Y Wout
(b)
Knowledge-based Model o Q
nowledge-base 0(:) > of— o
X1
ot w I
Time series x(t) | . f s
Trainingk;: (o) o
8
5 . 1L : 11l T]
'-QE) win W wout
&
(©)

Page 24

Components of reservoir computing approaches, including (a) the baseline ESN, (b) CESN,

multivariate time series.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

and (c) HESN. In these architectures, the input and output signals can be either univariate or

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

=)
Pre-train Train

Test
1B
| |
I i I (il
05 -
(a)
| 1 1 1
0 5000 10000 15000
Time (s)
14 T T T T T A
12 q
1E
0.8 B
0.6 q
04 (b) ! L L L L i
3000 3500 4000 4500 5000 5500 6000
Time (s)
1.5 H T T H
(AR RHARRARARANAN i L h AL A [
i AL A ks L LR
i i : T i Lyt 5 gy B TR
1;;l.;ll;i;.‘u;;‘;q‘;l;‘l‘ ik ;u,,:‘;1;‘h;‘j‘l‘“;\‘:,‘;‘:v,;i‘l‘;‘;l‘;ln“”.l.‘,.‘;‘;‘;w]“u‘u (ot
| o HEY WIH 1
Uiftia i
05 H IR RR SR =
(©)
oK 1 1 H
0 5000 10000 15000
Time (s)
14 F T T T T T T T T T H
12 F . . . f . n : [y ! .
/ A] p I
N W A S O e A A A B N S R A
1R [i NaAw'HE AW AL HY 1 i HERRAS
i ! IFRY Y o Ny | bl R o Yt
08 hlf 1 i A S A A A Y A AU Y TR R
| o 1y K vy [¥ X " ' B "
b i i ' \ v " u " ! W
06 [l i " " v Y u u 4 " y
Y Yy B Y !
04 5@ 1 L 1 L | L 1 1 | il
1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
Time (s)

Fig. 3.

Page 25

The Mackey—-Glass time series. (a) Generated time series including unused pre-training data
(gray), training data (blue), and testing (prediction) data (black). (b) Zoomed-in section
corresponding to the shaded region in panel (a). (c) Mackey—Glass time series (solid) and
the imperfect knowledge-based model (dashed). (d) Zoomed-in section corresponding to the
shaded region in panel (c) demonstrating the difference between the generated time series

and the imperfect knowledge-based model.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

Fig. 4.

60

40

20

-20

-40

60

40

20

220

-40

Page 26

=)

Pre-train

At i

T

T T T T T T T T H
Train Test

1 1 1 1 1 1 1 1 H

10 20 30 40 50 60 70 80 90 100

Time (s)

(c)

A v'“

T

W WW w._\ w-w

?

NI

Time (s)

The Lorenz system time series. (a) The unused pre-training data is shown in gray, and

the training data are in purple, green, and blue colors indicating the x, y, and z variables,
respectively. The testing data is in black. (b) Zoomed-in section corresponding to the shaded
region in panel (a). (c) Lorenz system time series (solid) and the imperfect knowledge-
based model (dashed). (d) Zoomed-in section corresponding to the shaded region in panel
(c) demonstrating the difference between the generated time series and the imperfect
knowledge-based model.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Page 27

T
Pre-train Train Test

02 kH

04 | -

0 500 1000 1500
Time (s)
T T T T T T T T
0

-0.1 4

0.2 1

0.3 ®) L 1 1 L | L 1 1 H

110 120 130 140 150 160 170 180 190 200
Time (s)

02 R

04 | -

1 1
150 160 170 180 190 200 210 220 230 240 250
Time (s)

Fig. 5.

Tr?e bursting Morris—Lecar time series. (a) The unused pre-training data is shown in gray,
and the training data are in purple, green, and blue colors indicating the V;, w;, and v
variables, respectively. The testing data is in black. (b) Zoomed-in section corresponding

to the shaded region in panel (a). (c) The bursting Morris—Lecar time series (solid) and

the imperfect knowledge-based model (dashed). (d) Zoomed-in section corresponding to the
shaded region in panel (c) demonstrating the difference between the generated time series
and the imperfect knowledge-based model.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Shahi et al.

200 M Pre-train T Train T Test H
I T 1Y
ok A
-100 | \J W_
-200 =
(@)
300 K 1 1 H
0 50 100 150
Time (year)

20 22 24 26 28 30 32 34 36 38 40
Time (year)
200 [T T H
100 |- ‘ ' .‘. : i i . ! RINE ‘
o i l '\,. " " . ;‘. i 5: wo 1 H
NI . 1 u)
oyt A g . I' \ '.' 1 I, b
100 B HH b I el ‘. n i ;-; 1 it . 7,} H H qm! . 7 \
"3 i l
200 |
(©)
=300 H 1 1 H
0 50 100 150

Time (year)

Time (year)

Fig. 6.

The ENSO time series. (a) The unused pre-training data is shown in gray, and the
training data are in purple, green, and blue colors indicating the ¢, 7,, and 7, variables,
respectively. The testing data is in black. (b) Zoomed-in section corresponding to the
shaded region in panel (a). (c) The ENSO time series (solid) and the imperfect knowledge-
based model (dashed). (d) Zoomed-in section corresponding to the shaded region in panel

(c) demonstrating the difference between the generated time series and the imperfect

knowledge-based model.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

Page 28

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.
T T T T T T T T T T T
Pre-train Train Test
0.5 H
|
ok o
(@)
1 1 1 1 1 1 1 1 | 1 1
0 2 4 6 8 10 12 14 16 18 20
Time (s)
IR T T T T T T T T
0.8 -
0.6
04 M
0.2 ul
0b (b I h 1 L I . I d
3 35 4 4.5 5! 55 6 6.5 7
Time (s)
T T T T T T T T T T T
I1F uh h mn ' Lot | Logtanintin! 1 1 N !
|
IR TR ‘ IR ' ‘ |
| T A A AL I 'll HAH | [1IF ‘:
05 TP EEET | i {1 (1) i1 | ! I tInLe] !
AR EGAARGRRAA TR AR AR \::-1::1:1‘?:1 AT
‘l:l"l;‘ i .3“:“ w;l il | il CHAAY :‘:‘v::‘; il AN l it \ il i .w, it it \"', ‘.,‘ i i il ‘-mnp.w,”.,m I ‘;.“
| \ i i |
o iR BRI '_.'I.'_n'lk'ulk‘lnl'\' oA '|' L L‘,l.m\ AR 'n' ".\um | '“!' i 'nl\'..'ml“'n""l il |
©
1 1 1 1 1 1 I 1 1 I
0 2 4 6 8 10 12 14 16 18 20
Time (s)

Tlme (s)

Fig. 7.

Page 29

Experimental cardiac voltage time series featuring irregular action potentials. (a) Voltage
time series including unused pre-training data (gray), training data (blue), and testing
data (black). (b) Zoomed-in section corresponding to the shaded region in panel (a). (c)
Experimental cardiac action potential time series (solid) and the imperfect knowledge-based
model (dashed)line. (d) Zoomed-in section corresponding to the shaded region in panel (c),
where the difference between the generated time series and the imperfect knowledge-based

model can be observed.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

Shahi et al. Page 30

Input Layer Reservoir Output Layer

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Pacing Stimulus _I_I_I_L

xq(t)
Action Potential

Time series ‘ axz(t)
Training \;

0on

Yt

A\ 4

Predict

Pacing Stimulus _I Ll l_

x1(t)
Action Potential
Time series

Yt

v

Pacing Stimulus J_I_I_L

x1(t)

Knowledge-based Model

x2(t)

Action Potential

Training \;

n

Predictio:

Fig. 8.

Components of reservoir computing approaches for modeling cardiac action potential time

(©)

series, including (a) the baseline ESN, (b) CESN, and (c) HESN.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuely Joyiny 1duosnuey Joyiny
Magnitude
gESN

1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al.

! 1
8 8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8

2 AP AP ACAA A AR APAMAAPAAY
A ARAAA R RA A RA A AARA R RAAA RAAARAAARA AR
L L

L L L L L L L
8 8.2 8.4 8.6 8.8 9. 9.2 9.4 9.6 9.8

I I I !
8.2 8.4 8.6 8.8 9 9.2 9.4 9.6 9.8

T T 1 T T T T T T
——LSTM ——GRU ——ESN ——CESN ——HESN ——NVAR

Error
e
O

Absolute

Time (s)

Fig. 9.

Mgckey—GIass dataset forecasting results obtained by the six methods using a fixed network
size of 100 neurons for the gated RNNs and ESN models and a computationally equivalent
delay size for NVAR approach. The reference test data are shown in black and the
predictions in color. Absolute errors of the predictions are presented in the bottom subplot,
with color corresponding to each prediction method.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al.

RMSE
s g
- >,
| _

& 200
4]
=

GRU ESN Clustered ESN
(@)

&

ot il
LSTM GRU ESN Clustered ESN

Elapsed Time (s)
> >
= S
| 200

Fig. 10.

Comparison of RMSE (top) and computational time (bottom) for each method and network

size tested for the Mackey—Glass dataset.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

LSTM
=1

_| Y | 4
0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098
T

GRU

A-rn N N AN A A N N'n A A~ n A N n'p
Va Ao e "a At A
| | |) | |)

-1
0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098

ESN

S
g Z
= 2
5 O
< -
=
7
n
m
=
::4
<
>
z
Q
RS
28
< 0 S o o » AN “a Ot =
0.08 0.082 0.084 0.086 0.088 0.09 0.092 0.094 0.096 0.098
Time (s)
Fig. 11.

Lorenz system dataset forecasting results obtained by the six methods using a fixed network

size of 100 neurons for the gated RNNs and ESN models and an equivalent delay size

for the NVAR approach. The reference test data are shown in black and the predictions
in color. Absolute errors of the predictions are presented in the bottom subplot, with color
corresponding to each prediction method. Note that the reported error is the mean absolute

error over the three input time series.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al. Page 34

LSTM GRU ESN Clustered ESN Hybrid ESN NVAR
(a)

Elapsed Time (s)

LSTM GRU ESN Clustered ESN Hybrid ESN NVAR
(b)

Fig. 12.
Comparison of RMSE (top) and computational time (bottom) for each method and network

size tested for the Lorenz system dataset.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

LSTM

=)
[
S
4
n
m
[}
R
g 8
g =
2z A
géj AN \)Ml/} ‘ él‘. IR
LA AN A TNAAA A AL AR AL A \
12 125 13 135 1.4 145 15
o 1 T T T T T sl
< / W), Y, ~ - W,
A
2 125 L3 L35 L4 L4s L5
o ——LSTM ——GRU ——ESN —— CESN ——HESN ——NVAR
25 ! 1
24 os g d ihA |
< k A= Bachh ok £
1.2 1.25 1.3 1.35 1.4 1.45 1.5
Time (s)
Fig. 13.

Morris—Lecar dataset forecasting results obtained by the six methods using a fixed network
size of 100 neurons for the gated RNNs and ESN models and an equivalent delay size

for the NVAR approach. The reference test data are shown in black and the predictions

in color. Absolute errors of the predictions are presented in the bottom subplot, with color
corresponding to each prediction method. Note that the reported error is the mean absolute
error over the three input time series.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al.

Page 36

53]
g
-2 3 = 1
10 = e g |8
td L | |
LSTM GRU ESN Clustered ESN Hybrid ESN NVAR
()
10* T T T T
g
o 2
g
Z
L) g
3
& 0
5 .
Sl] -] Sl Edl
LSTM GRU ESN Clustered ESN Hybrid ESN NVAR
(b)
Fig. 14.

Comparison of RMSE (top) and computational time (bottom) for each method and network
size tested for the Morris—Lecar dataset.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

LSTM

GRU

AN
RRRRIRY

ESN
o

3
E &
= @
53 O
) =
=
iz
2]
m
T
~
<
>
z
2.
¥
g 53}
Time (year)
Fig. 15.

ENSO dataset forecasting results obtained by the six methods using a fixed network size
of 100 neurons for the gated RNNs and ESN models and an equivalent delay size for

the NVAR approach. The reference test data are shown in black and the predictions in
color. Absolute errors of the predictions are presented in the bottom subplot, with color
corresponding to each prediction method. Note that the reported error is the mean absolute
error over the three input time series.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al. Page 38

g =l |® =3 7 ¥
LSTM GRU ESN Clustered ESN Hybrid ESN NVAR
()

Elapsed Time (s)

LST™M GRU ESN Clustered ESN Hybrid ESN NVAR
(b)

Fig. 16.
Comparison of RMSE (top) and computational time (bottom) for each method and network

size tested for the ENSO dataset.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

Page 39

8 T T T T T
Z
2 7]
p= Ros -
& @)
& 0 I I L 1 I h
= 16.5 17 17.5 18 18.5 19 19.5 20 20.5
1 T T T T T T T
a
m 0.5
jus)
0 I I I | I h
16.5 17 17.5 18 18.5 19 19.5 20 20.5
1 T T T T T T T
£
> 0.5 -
= 0 | I L 1 I h
16,5 1‘7 17.5 1§ 18‘5 l? 19.5 29 20‘5
& ——LSTM —— GRU ——ESN —— CESN —— HESN '—N\"AR
2y !
gk
<
Time (s)
Fig. 17.

Experimental dataset forecasting results obtained by the six methods using a fixed network
size of 100 neurons for the gated RNNs and ESN models and an equivalent delay size

for NVAR approach. The reference test data are shown in black and the predictions in
color. Absolute errors of the predictions are presented in the bottom subplot, with color

corresponding to each prediction method.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

APD (ms)

Beat index

Fig. 18.
Experimental dataset APD forecasting results obtained by the six methods using a fixed

network size of 100 neurons for the gated RNNs and ESN models and an equivalent delay
size for NVAR approach. The reference APD values are shown in black and the predicted
values in color.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al.

RMSE
=Y

5 |20
3
=
Q
=
e
m
3
Z
a
e

g

@

a
&
m
«
4

()

Elapsed Time (s)

GRU ESN Clustered ESN
(b)

Fig. 19.
Comparison of RMSE (top) and computational time (bottom) for each method and network

size tested for the experimental dataset.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

Page 41

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuepy Joyiny

1duosnuely Joyiny

Shahi et al. Page 42

N A AL NLANLERAT RN) \ b \ AL
\ delay =20
0.5 \ steps =5
VAVRVA AR AR AR AR AR AR AVAVAAVR AR VAR AR VAR AV
0 1 1 | I !
17 17:5: 18 18.5 19, 19.5 20 20.5
1 T T T
delay =20
0.5 steps = 10
2 o | | |
é 17 17:5 18 18.5 19 19.5 20 20.5
)
§ ! A \ A A A A N A ‘ \ ’\ ! A
delay =30
05 - steps =5
N \ Y
0- 1 1 ! | 1 |
17 17.5 18 18.5 19 19.5 20 20.5
1e T T T s
delay = 30
05 - steps = 10
0 1 ! ! I I
17 17.5 18 18.5 19 19.5 20 20.5
Time (s)
Fig. 20.

Experimental dataset action potential forecasting results obtained by the NVAR method
using larger values for delays and skipped steps showing the reference test data (black) and
the prediction results (red).

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnuely Joyiny

Shahi et al.

100

50

Fig. 21.

Experimental dataset APD forecasting results obtained by the NVAR method using larger
values for delays and skipped steps. The reference APD values are shown in black and the

T T T T T T
steps =5

1 1 1 1 1 1

delay =20 |

5 10 15 20 25 30

! ! ! ' ! T delay=20]
steps = 10

1 1

5 10 15 20 25 30

T T T T T " delay=30 |

steps =5

I 1 I I ! |

5 10 15 20 25 30 35

} ! ! ! ! T delay=30 |
steps = 10

I I ! I L |

5 10 15 20 25 30 35

Beat index

predicted values in red.

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

Page 44

{;-0T 2-0T ‘¢-0T ‘,-0T 's-0T ‘¢-0T ‘,-0T}

(v) uonezire|nbay

{007 ‘06'0 '08°0 ‘0£°0 '09°0 ‘05°0 ‘O¥'0 ‘0€°0 ‘'02°0} () atel Bunyea NS3
{551 '52°T'ST'T'S0'T ‘66°0 '06°0 ‘G8°0 ‘08°0} () snipes [endads
{080 ‘050 '02°0 ‘0T°0 '50°0 '20°0} (0 575 1 *0) ajeos 1yBrem 1ndu|
{0¢-0T 40T '5-0T ‘5-0T} uonezie|nbal 27
{00T ‘05 ‘o€ ‘02 ‘ST ‘0T ‘S} syooda Jo Jequinu Xep

{050 ‘02'0 '0T°0 '50°0 '00°0} Anpgegoud inodoiq NYo
{0070 ‘050°0 ‘0T0°0 'S00°0 '200°0 ‘T00°0} ajel Buiues| [emu|
{rz't} s1ahe| JO JAqUINN
{0¢-0T ‘4-0T '5-0T '9-0T} uonezue|nbai 27
{oor ‘05 ‘o€ ‘02 ‘ST ‘0T 'S} syo0ds 40 Jaquinu xe

{050 02°0 ‘010 ‘50°0 ‘00°0} Anpigegoud inodoiq LS
{00T°0 ‘050°0 ‘0T0°0 ‘S00°0 ‘200°0 ‘T00"0} arel Bulutes) feniu|
{rcT} s1ake| J0 JaquInN

sonfeA slepuwerd SPOYRN

'$10109A Bulppaquwia Ae|ap JO SalJlUa OM] Yyoea usamyaq paddiys

Shahi et al.

sda1s Jo Jaquunu a1 sjoajuod (s) dis Ja1awrerediadAy ayy ‘yoroidde YwAN au1 Ul "siyblam 1nopeal ayp urelgo 01 pasn J019e) uoljezLenbal uolssaibial abpl
3Y1 Saulwialep v Jarawresed uoneziienbal syl 'Si10AI8SaI-qns JO Jied yoeas usamiag sUOIdauUU0d 3yl Jo Alisteds ayy Buiresipul Aljigeqoad Ja1sn|o-1a1ul
3yl s1 yarym “ud 1e1awresediadAy [euonippe ue salinbal yoroidde NSTD ay1 ‘alowiayring "110AJI8Sal 8yl Ul S1IUN Uspply 0M] AUB Usam1a(g UoI1dauuod Jo
Aujigeqoud ayp se pauiep d Ajigqeqold uonasuuod ayl Ag pajjouod si ydeah 11oA19sal syl Jo Alisteds syl " ayel Bunjes| syl Ag paipioads sI suoinau

JoyesBaul Afes] ay) Aq PapJeISIP UOIENOXS JO JUNOWE YL "SNST Ul X1Iew 1yB1am J10AI8sal aU) 8[eds 0} pasn s1 o sniped [endads pajosfes ayL 1o Aq
pajouap ‘(s)indui |apow paseq-abpajmouy| sy 0y sajeas 1yBIam JO 18s [euoiippe ue saiinbai yorosdde NSIH auy ‘AjiejiwIS "paun) g 0] Pasu Jey) sanjea
1e[eas aaiy) Jo S1SISU0d “.o “1aserep zusioT ay) “6°a ‘salias sl a1RLIBAINW 10) 3]IYM ‘Jejeds auo AJuo si ajeas 1yB1am ndul ay) pue T o1 [enbs s1p ‘1aserep

OIN 8y} B8 ‘Sa14as awinl sjelieAlun 4o} ‘a10jaiay] “Jeubis Indui ayl Jo spnuubew ayy isnlpe 01 (0 S/ T) sauas awin indut Yy syr Agq parjdnnw anfea Jejess
ay1 sjuasaidal Q\.@v a1eas ybiram Indur ayr ‘NSIH pue ‘NSID ‘NS3 o1 ‘sanbruyssl Oy uj “Bumiiano Bunuansid anbiuydal uonezie|nbal e se pasn siake)
nodoup Jo ares Buiddoup ayr sjonuod Aljigqeqoad Inodop ayL "SHUN USPPIY JO JaquInuU USAID © J0J YJoMIaU Yaes 0 aIn1daliydle syl Saulliialap SiaAke)

J0 Jaquuinu ayl ajiym Jaziwndo wepy syl Aq syJomiau ayy Buluiel Joy sislswelediadAy an1joaya ayl ale Jojoe) uoneziieinbal pue ‘sysods Jo Jaquinu
wnwixew ‘ayes Bulures) feniul ayl ‘SNNY pareb Jo ased ayy U] “poyraw uonaipaid yoes Joj uoneziwndo yosess pub ayl 10 pasn sanjen JalewelediadAH

T alqeL

Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

Page 45

Shahi et al.

{1-0T 2-0T ¢-0T ;0T '-0T ‘9-0T ‘,-0T}

(v) uonezie|nboy

{oe‘sz'oz'sT'0oT'8'2'9'5'v'e '} () diis UVAN
{0z'0'sT°0 ‘0T°0 '50°0 ‘20°0 ‘T0°0} (d) Angeqoid uonosuuod
{1-0T 2-0T ¢-0T ;0T '¢-0T ‘9-0T ‘,-0T} (v) uonezuenbay
{00°T ‘06°0 ‘08°0 '02°0 ‘09°0 ‘050 ‘0%°0 ‘0€°0 ‘02°0} () aes BuryesT]
{SS°T'S2'T 'ST'T'S0°T '66°0 ‘06°0 'S80 ‘08°0} (@) snipel [enads NS3H
{080 ‘050 ‘02°0 ‘0T°0 '50°0 ‘20°0} O0s/sT ,ﬁ\g a[e0s 1B1oM 1ndul paseq aBpapmouy
{080 °05°0 ‘02°0 ‘0T°0 ‘50°0 ‘20°0} © /s 1 “L0) opeas wbiam 1nduy
{02°0°'5T°0 ‘0T°0 '50°0 ‘20°0 ‘T0°0} Csd) Anpigeqoad uonosuuod JeIsnjo-ialu|
{86°0'56°0 ‘06°0 ‘580 ‘08°0 ‘20 ‘09°0} (d) Angegoad uondaUL0d JaISN|I-eaU|
{;-0T '2-0T '¢-0T ,-0T ‘5-0T ‘9 OT ,-0T} (v) uonezue|nfey
{00'T '06°0 ‘08°0 ‘020 ‘09°0 ‘0S°0 ‘0¥°0 ‘0€°0 ‘02°0} (p) ayes Buryes] NS30
{SS'T'S2'T'ST'T'S0°T '66°0 '06°0 'S80 ‘08°0} (d) snipeu [enoads
{08°0 ‘05°0 ‘02°0 ‘0T°0 ‘50°0 ‘20°0} © 5/ 1 “10) ajeos yBrom 1nduj
{s'v'ect (%) s181SN9 J0 JaquinN
{0z°0'sT°0 ‘0T°0 '50°0 ‘20°0 ‘T0°0} (d) Ajigegoad uonosuuo)d
senfeA Slepwered Spoyein

Author Manuscript

Author Manuscript

Author Manuscript

Author Manuscript

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

	Abstract
	Introduction
	Time-series prediction methods
	Gated recurrent neural networks
	Echo state networks
	Nonlinear vector autoregressive model

	Datasets
	Mackey-Glass
	Lorenz
	Bursting Morris–Lecar
	El Niño-Southern Oscillation
	Experimental cardiac voltage recordings

	Implementation
	Hyperparameter selection
	Gated RNN implementations
	Echo state network implementations
	Nonlinear vector autoregressive implementation
	Univariate versus multivariate time series
	Evaluation metrics

	Results
	Mackey-Glass dataset
	Lorenz dataset
	Bursting Morris–Lecar dataset
	El Niño-Southern Oscillation Dataset
	Experimental cardiac voltage dataset

	Conclusion
	References
	Fig. 1.
	Fig. 2.
	Fig. 3.
	Fig. 4.
	Fig. 5.
	Fig. 6.
	Fig. 7.
	Fig. 8.
	Fig. 9.
	Fig. 10.
	Fig. 11.
	Fig. 12.
	Fig. 13.
	Fig. 14.
	Fig. 15.
	Fig. 16.
	Fig. 17.
	Fig. 18.
	Fig. 19.
	Fig. 20.
	Fig. 21.
	Table 1

