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Abstract

In recent years, machine-learning techniques, particularly deep learning, have outperformed 

traditional time-series forecasting approaches in many contexts, including univariate and 

multivariate predictions. This study aims to investigate the capability of (i) gated recurrent 

neural networks, including long short-term memory (LSTM) and gated recurrent unit (GRU) 

networks, (ii) reservoir computing (RC) techniques, such as echo state networks (ESNs) and 

hybrid physics-informed ESNs, and (iii) the nonlinear vector autoregression (NVAR) approach, 

which has recently been introduced as the next generation RC, for the prediction of chaotic time 

series and to compare their performance in terms of accuracy, efficiency, and robustness. We 

apply the methods to predict time series obtained from two widely used chaotic benchmarks, the 

Mackey–Glass and Lorenz-63 models, as well as two other chaotic datasets representing a bursting 

neuron and the dynamics of the El Niño Southern Oscillation, and to one experimental dataset 

representing a time series of cardiac voltage with complex dynamics. We find that even though 

gated RNN techniques have been successful in forecasting time series generally, they can fall short 

in predicting chaotic time series for the methods, datasets, and ranges of hyperparameter values 

considered here. In contrast, for the chaotic datasets studied, we found that reservoir computing 

and NVAR techniques are more computationally efficient and offer more promise in long-term 

prediction of chaotic time series.
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1. Introduction

Time series are important in many real-world applications, such as biology (Bar-Joseph et 

al., 2003), finance (Dingli & Fournier, 2017; Plagianakos & Tzanaki, 2001; Takahashi et al., 

2019; Tsay, 2005; Zhao, 2009), climate science (Ghil & Vautard, 1991), anomaly detection 

in computer networks (Limthong, 2013) and social networks (Gong et al., 2018), and energy 

(Billinton et al., 1996; Bunn, 2000; Deihimi & Showkati, 2012). Accordingly, the analysis 

and prediction of time series data are of great importance and have been the focus of much 

research in the past few decades. In general, a time series represents a record of observations 

of a dynamical system at specific time intervals. Therefore, time series prediction involves 

determining the future evolution of a dynamical system, which can be especially challenging 

for chaotic dynamical systems. The states of such systems can be represented by chaotic 

time series, which are recognized by the orbital instability characteristic, where infinitesimal 

differences in the initial values bring about large differences in the time series behavior. 

Consequently, prediction of a chaotic time series is only feasible for a relatively short time 

before the appearance of orbital instability. For this reason, forecasting chaotic time series 

has remained a difficult task for the last few decades.

Data-driven approaches, and machine-learning (ML) techniques in particular, have recently 

become the main approaches used for time-series forecasting (Ahmed et al., 2010; Ben 

Taieb et al., 2012; Chandra et al., 2021; Chattopadhyay et al., 2020; Cheng et al., 2015; 

De Gooijer & Hyndman, 2006; Dubois et al., 2020; Kutz, 2013; Li et al., 2005; Tealab, 

2018). In particular, recurrent neural networks (RNNs) are the mainstream architecture 

for analyzing sequential data, owing to their ability in interpreting temporal dependencies 

in the input time series (Chandra et al., 2021; Elman, 1990; Elman & Zipser, 1988; 

Schmidhuber, 2015). The recurrent connections in such networks serve as a notion of 

memory, allowing them to embed temporal information. Despite the success of RNNs 

in modeling short-term temporal data and non-chaotic dynamical systems, the high 

computational cost of back-propagation through time and their vulnerability to the vanishing 

or exploding gradient problems have limited their applications. Gated RNN architectures 

were introduced to address some of these problems. More precisely, the memory cell 

architecture and the gating mechanism enable these networks to be more selective over 

the information that needs be remembered or forgotten, thereby enabling them to learn 

long-term dependencies in temporal sequences. Long short-term memory (LSTM) networks 

(Hochreiter & Schmidhuber, 1997) and gated recurrent units (GRUs) (Chung et al., 2014) 

are among the most widely used gated RNNs.

An alternative approach to deal with time-series forecasting and modeling dynamical 

systems is reservoir computing (RC), a learning paradigm mostly implemented as echo 

state networks (ESNs) (Jaeger, 2002; Lukoševičius & Jaeger, 2009; Sun et al., 2020). The 
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RC paradigm is fundamentally derived from RNN concepts offering a streamlined training 

process, which remains limited to obtaining the output layer weights, while the rest of the 

parameter values are set randomly and remain untrained. Notwithstanding such a major 

simplification, ESNs have successfully been employed for multi-step-ahead prediction of 

nonlinear time series and modeling chaotic dynamical systems at low computational cost 

(Bianchi et al., 2017; Han et al., 2021), triggering the development of several network 

topologies in recent years. For instance, clustered ESNs (CESNs) (Deng & Zhang, 2006; 

Junior et al., 2020), where multiple sub-graphs of sparsely connected hidden units form 

the reservoir, and deep ESNs, where the reservoir consists of multiple sub-reservoir layers 

stacked hierarchically (Gallicchio & Micheli, 2017; Gallicchio et al., 2017), are two widely 

used architectures. Hybrid ESNs (HESNs) are another category of RC techniques introduced 

in a physics-informed ML framework (Oh, 2020; Willard et al., 2020), where additional 

inputs from physics-based mathematical models integrate corresponding domain knowledge 

into data-driven models (Doan et al., 2019; Pathak, Hunt, et al., 2018).

The successful application of ESNs, despite their random construction, in forecasting 

complex dynamical systems using time-series data triggered a series of recent research 

providing an interpretation of how RC techniques function. Recently, Bollt demonstrated 

how the RC with linear activation functions and linear readout layer shares similarities 

with the well-studied vector autoregressive (VAR) concept, while using a quadratic readout 

can be interpreted as nonlinear VAR (NVAR) (Bollt, 2021). Later, Gauthier et al. further 

studied this similarity and introduced the next generation RC, where instead of explicitly 

generating a reservoir of randomly connected neurons, an NVAR machine is formed in 

which the feature vector consists of time-delayed observations of the dynamical system 

and is augmented by nonlinear functions of these observations. Accordingly, with this 

approach there are fewer hyperparameters to tune and the intrinsic random nature of 

ESNs is effectively avoided. This approach was employed for one-step-ahead forecasting of 

benchmark chaotic time series for both reconstruction and cross-prediction tasks (Gauthier 

et al., 2021).

In this work, we assess the capability of the mainstream gated RNN techniques; ESN 

architectures, including the clustered architecture and the physics-informed hybrid approach; 

and the NVAR approach for multi-step-ahead prediction of nonlinear time series describing 

chaotic dynamical systems. In particular, we compare the performance of these models for 

forecasting two frequently used benchmark chaotic time series, derived from the Mackey–

Glass and Lorenz dynamical systems, two additional chaotic times series derived from a 

bursting Morris–Lecar neuron model and the Vallis El Niño Southern Oscillation (ENSO) 

system, and one real-world dataset consisting of a time series of irregular cardiac voltage 

traces obtained in ex-vivo experiments in terms of the prediction error and computational 

efficiency. Moreover, this experimental dataset is further used to evaluate the performance of 

NVAR against traditional RC approaches in more detail.

This paper is structured as follows. Section 2 presents a summary of the modeling 

approaches used for forecasting chaotic time series in this research and provides details 

about the implementation of each model and the evaluation metrics employed in this study. 
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These methods are applied to datasets whose characteristics are described in Section 3. The 

results are presented and discussed in Section 4, and Section 5 presents concluding remarks.

2. Time-series prediction methods

This section presents an overview of the computational methods used for chaotic time series 

prediction in this work.

2.1. Gated recurrent neural networks

RNNs are one of the most common approaches for handling temporal data; the recurrent 

connections in the network provide a native way to learn the internal dependencies 

within the time-dependent data. However, their vulnerability to vanishing and exploding 

gradients limits their application to only learning short-term relations in the observations. 

Gated RNNs, such as LSTMs, were introduced as a remedy for such a limitation. The 

gating mechanism provided by the memory cell architecture enables them to select which 

information should be kept and which forgotten, making them more robust to irrelevant 

perturbations. Therefore, gated RNNs can model the temporal dependencies for longer time 

horizons. Fig. 1a schematically depicts the flow of information in an LSTM cell in which a 

hidden state ht is calculated using the following equations:

it = σ W ixt + Uiℎt − 1 + bi ,
ft = σ W fxt + Ufℎt − 1 + bf ,
ot = σ W oxt + Uoℎt − 1 + bo ,
ct = tanh W cxt + Ucℎt − 1 + bc ,
ct = ft ⊙ ct − 1 + it ⊙ ct,
ℎt = tanh ct ⊙ ot,

(1)

where it, ot, and ft denote the input, output, and forget gates at time t; xt is the input vector; 

W* and U* are the weight matrices that along with the biases b* are the trainable parameters 

and are adjusted during the learning process; ct denotes the internal memory of the LSTM 

unit known as the cell state; and ct is the cell input activation vector. In these equations, each 

σ designates a sigmoidal function and ⨀ denotes Hadamard element-wise multiplication.

A similar desire to avoid vanishing and exploding gradient problems led to the development 

of GRUs, which share many similarities in architecture and thus performance with LSTMs. 

As illustrated in Fig. 1b, a GRU memory cell can be considered as a simplified version of an 

LSTM unit, where the tasks of input and forget gates are handled by a single gate known as 

the update gate. This simplification improves the overall efficiency as fewer parameters are 

required to be trained, while the prediction accuracy is minimally affected in most cases and 

in some applications improvements are even reported (Bianchi et al., 2017). The evolution of 

hidden states in GRUs is given by the following equations:

zt = σ W zxt + Uzℎt − 1 + bz ,
rt = σ W rxt + Urℎt − 1 + br ,
ℎt = tanh W hxt + Uh rt ⊙ ℎt − 1 + bℎ ,
ℎt = 1 − zt ⊙ ℎt − 1 + zt ⊙ ℎt,

(2)
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where zt and rt represent update and reset gates and determine which information should 

be kept through time and which is irrelevant and can be forgotten. The candidate state is 

denoted by ℎt. The weight matrices W* and U* and the bias vectors b* are adjusted in the 

training process, thereby enabling the update and reset gates to select which information 

should be passed along to the future, and which information is irrelevant and thus should be 

forgotten.

2.2. Echo state networks

ESNs are the most common realizations of the RC approach and utilize a low-cost training 

process in which only the weights of the output layer, known as the readout layer, are 

adjusted, and the rest of parameters are initialized randomly and remain untrained. Despite 

this considerable simplification, which turn the training problem into a linear regression 

task, ESNs provide an effective approach to model and predict complex dynamics, including 

chaotic time series. Fig. 2a illustrates the main components of a typical ESN, which include 

an input layer, a hidden layer of randomly connected neurons known as the reservoir, and a 

readout layer. The number of input and output variables specifies the size of the input and 

output layers, respectively. In this work, we employ an extension of the standard ESN in 

which leaky integrator neurons (Jaeger et al., 2007) are employed as the hidden units. The 

evolution of the reservoir state ht is described by

ℎt = (1 − α)ℎt − 1 + αtanh W inxt + W ℎt − 1 , (3)

where Win and W denote the input weight and reservoir weight matrices, respectively. The 

input signal is denoted by xt and α ∈ [0, 1] is a constant parameter known as the leaking 

rate. The output of the network is obtained by the following equation:

yt = fout W out xt; ℎt , (4)

where Wout denotes the readout weights and is obtained by least-square regression with 

Tikhonov regularization to prevent overfitting. The activation function of the output layer is 

given by fout and is chosen here as a unity function.

Once the readout weights are calculated, the future values of the time series can then be 

obtained using a recursive strategy in which the results of predictions at each time step will 

be fed to the network as the input for the next time step (see Fig. 2).

The initial success of RC techniques and ESNs motivated further research on the structure 

of ESNs (Carroll & Pecora, 2019) and new reservoir topologies, such as clustered reservoirs, 

where the reservoir consists of a set of sub-reservoirs sparsely connected to each other. Fig. 

2b demonstrates a CESN, where the reservoir is constructed as three sub-reservoirs. The 

update equation and training process remain the same as for the baseline ESN.

The physics-informed version of an ESN, known as a hybrid ESN (HESN), has been 

successfully employed in a number of application domains (Doan et al., 2020; Oh, 2020; 

Pathak, Wikner, et al., 2018; Shahi et al., 2021) where domain knowledge is integrated into 

an ESN by feeding the network an additional input from a knowledge-based mathematical 
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model that approximates the behavior of the dynamical system. Fig. 2c illustrates the 

schematic architecture of a HESN. In this work, in the case of generated time series, an 

“imperfect” version of the mathematical equations is used to generate the knowledge-based 

approximation, where the imperfect mathematical equations are obtained by multiplying one 

of the original model parameters by (1+ϵ), where ϵ represents a dimensionless unknown 

error (Pathak, Wikner, et al., 2018). In the case of experimental time series, a mathematical 

model that provides an approximation of the dynamical system is employed.

2.3. Nonlinear vector autoregressive model

It is demonstrated that a reservoir computer with linear activation functions whose feature 

vector also includes weighted sums of nonlinear functions of the reservoir output values 

is mathematically comparable to an NVAR model, which consequently offers a powerful 

universal approximator of dynamical systems (Bollt, 2021; Gauthier et al., 2021). In such 

an NVAR model, the state matrix is constructed by concatenating a linear part, including k 
time-delay embeddings of the d-dimensional input time series, and a nonlinear part, which 

is generated by applying a nonlinear functional (in practice, a polynomial) to the linear part. 

Therefore, the state vector at step t has the following form:

ℎt = ℎlin, t; ℎnonlin, t , (5)

where the linear part hlin,t includes the input signal at time step t and the k − 1 previous time 

steps spaced by a parameter s and is given by

ℎlin,t = xt, xt − s, xt − 2s, …, xt − (k − 1)s
T . (6)

Therefore, s−1 steps are skipped between each two consecutive entries of this vector. The 

nonlinear part of the hidden vector hnonlin,t is obtained by applying a polynomial functional 

to the linear part hlin,t. For instance, in the case of choosing a quadratic polynomial, the 

entries of hnonlin,t include the kd(kd + 1)/2 unique monomials obtained by the cross product 

of hlin,t with itself and are given by

ℎnonlin, t = xt2, xtxt − s, xtxt − 2s, …, xt − (k − 1)s
2 T . (7)

Then, the rest of the calculation, including finding the readout weights Wout and prediction, 

is identical to what is used for ESNs. Accordingly, sometimes a bias can also be added to the 

state vector in Eq. (5), i.e. ht = [1; hlin,t; hnonlin,t]. The output of the NVAR method at time 

step t then is obtained by the following equation:

yt = W out 1; ℎlin, t; ℎnonlin, t (8)

Thus, this method circumvents the requirement of constructing an explicit reservoir of 

randomly connected neurons, which increases the randomness and sensitivity of ESNs to 

the hyperparameter values and initial parameters. In fact, in comparison to ESN, NVAR has 

fewer hyperparameters to tune whose optimal values can be determined by a grid search or 

some other optimization technique with less computational effort.
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3. Datasets

To evaluate the performance of these approaches in multi-step forecasting of chaotic time 

series, the methods are applied to predict four chaotic benchmarks and one experimental 

dataset representing cardiac voltage time series with highly nonlinear dynamics. Below we 

describe these five datasets.

3.1. Mackey-Glass

As the first example, we use a time series obtained by solving the Mackey–Glass (MG) 

equation (Mackey & Glass, 1977), which is one of the most commonly studied benchmarks 

to evaluate chaotic time-series forecasting approaches. The following equation describes the 

MG time-delay differential system:

dx
dt = ax(t − τ)

1 + xc(t − τ)
− bx(t), (9)

where a = 0.2, b = 0.1, and c = 10 are constant parameters. The nonlinearity of the 

system increases as the time delay parameter τ increases. The system demonstrates chaotic 

behavior when τ ≥ 17. To generate the time series used here, τ is set to 17 and the 

numerical integration step size is set to Δt = 0.1 using a fourth-order Runge–Kutta method 

implemented in MATLAB to solve delay differential equations at discrete equally spaced 

times. Then, the data is sampled by 10Δt to form a time series with 15,000 data points 

split into the training set (80%), where the first 1000 steps are considered the pre-training 

warm-up period required in RC approaches (Lukoševičius, 2012), and testing set (20%). Fig. 

3a illustrates the generated MG dataset; panel (c) shows a blowup of the shaded regions in 

panel (a) within the training data.

The knowledge-based time series, which is required to evaluate the HESN approach, is 

generated by an imperfect mathematical model obtained by changing the constant b to (1 

+ ϵ)b in Eq. (9), where the error parameter ϵ is set to 0.1 to demonstrate a noticeable 

difference in the time series values (see Fig. 3c).

3.2. Lorenz

The second chaotic time series benchmark is derived from the 1963 Lorenz system (Lorenz, 

1963), which is given by the following differential equations:

dx
dt = a(y − x),

dy
dt = x(b − z) − y,

dz
dt = xy − cz,

(10)

where a = 10, b = 28, and c = 8/3 are the constant parameters. The time series is obtained 

by integrating the equation numerically using ode45, the fourth-order Runge–Kutta solver in 

MATLAB, where the solution is evaluated at times spaced Δt = 0.01 apart to obtain a set of 

10,000 data points. Then, the time series is scaled to lie in the interval [−1, 1] and divided 
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into training and testing datasets using an 80–20 split. Similar to the MG dataset, the training 

set includes a 500-step pre-training period required in RC approaches. Fig. 4a illustrates the 

generated time series.

Similar to the MG dataset, the knowledge-based time series is obtained by replacing the 

constant b with (1+ϵ)b. The error parameter is set to ϵ = 0.05, which generates an observable 

difference in the time series values. Fig. 4c shows the difference between the true time series 

(solid) and the imperfect knowledge-based model time series (dashed).

3.3. Bursting Morris–Lecar

To obtain a third chaotic dataset, we use a busting Morris–Lecar (BML) model of a neuron 

as described by Izhikevich (Izhikevich, 2012):

dV
dt = − gl V − El − gkw V − Ek − gCam∞(V ) V − ECa − u,

dw
dt = λ(V ) w∞(V ) − w ,

du
dt = μ V 0 + V ,

(11)

where

minf(V ) = 1 + tanh V − V 1 /V 2 /2,
winf(V ) = 1 + tanh V − V 3 /V 4 /2,

λ(V ) = cosh V − V 3 / 2V 4 /3.

Parameter values were selected to achieve chaotic bursting dynamics as follows: gl = 0.5, El 

= −0.5, gk = 2, Ek = −410, gCa = 1.2, ECa = 1, μ = 0.1, V0 = 0.2, V1 = −0.01, V2 = 0.15, V3 = 

0.1, V4 = 0.05.

The BML time series is generated by solving the differential equations numerically using the 

forward Euler method implemented in MATLAB, where the time step is set to Δt = 0.01. 

The data is then sampled by 10Δt to form a time series with 15,000 data points divided into 

training and testing datasets using an 80–20 split, where the first 1000 steps are considered 

as the pre-training period required in RC techniques. Fig. 5 illustrates the generated dataset. 

The BML time series is then linearly scaled to lie in the interval [−1, 1].

The knowledge-based time series corresponding to the BML model is obtained by 

perturbing the constant gk by a factor of (1+ϵ) in Eq. (11), where the error parameter ϵ 
is set to 0.05 to demonstrate a noticeable difference in the time series values (see Fig. 5c).

3.4. El Niño-Southern Oscillation

Another example of a chaotic model is the simple three-variable El Niño-Southern 

Oscillation (ENSO) model by Vallis (Vallis, 1986). The model represents the ocean as a 

box with east and west temperatures Te and Tw, respectively, along with a third variable 

representing the surface wind (or current) u between the two sides. The ENSO model 

equations are as follows:
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du
dt = B

2Δx Te − Tw − C u − u* ,

dTw
dt = u

2Δx T − Te − A Tw − T* ,

dTe
dt = u

2Δx Tw − T − A Te − T* ,

(12)

where B describes the rate of flow of current due to the difference in temperatures, Δx is half 

the width of the ocean, C denotes the frictional flow resistance, u* is an average current, T
represents the deep ocean temperature, A scales the rate of heat loss, and T* functions as an 

average temperature the ocean aims to maintain. We set the parameter values as B = 940, Δx 
= 7.5, C = 3, u* = −14.2, T = 16, A = 1, and T* = 28. The model has the same structure as 

the Lorenz model and thus it is capable of producing chaotic dynamics for certain parameter 

regimes, including the parameter values we chose. In addition, the structural similarity of the 

ENSO model will allow for an interesting comparison of results with those from the Lorenz 

model.

The ENSO time series is constructed by applying a forward Euler method implemented in 

MATLAB to solve the corresponding differential equations (Eq. (12)), where the step size Δt 
is set to 5 × 10−4 for overall t = 150. The final time series, including 30000 data points, is 

obtained after sampling the data by 10Δt. The first 80% of the time series is assigned to the 

training dataset, where the first 2000 steps marked as the pre-training warm-up period. The 

last 20% of the time series forms the testing set (see Fig. 6). Note the values of the ENSO 

time series are then linearly scaled to be within [−1, 1].

To generate the time series representing the imperfect knowledge-based model, the constant 

parameter C is perturbed by a factor of (1+ϵ) in Eq. (12), where the error parameter ϵ is set 

to 0.05. Fig. 6c demonstrates the knowledge-based ENSO time series (dashed) as opposed to 

the true ENSO time series (solid).

3.5. Experimental cardiac voltage recordings

Many real-world dynamical systems can show chaotic behavior, including the time evolution 

of the electrical potential of a cardiac cell (also known as an action potential). To evaluate 

the capability of these approaches in forecasting real-world chaotic time series, the final 

dataset we considered represents action potentials recorded from a zebrafish heart as 

described in Shahi et al. (2021).

For the knowledge-based model, a mathematical model approximating the voltage dynamics 

of a cardiac cell can be employed. For instance, the two-variable Mitchell–Schaeffer 

(Mitchell & Schaeffer, 2003) and the three-variable Fenton–Karma (Fenton & Karma, 1998) 

models are two knowledge-based model candidates. Here we use the Corrado–Niederer 

modification of the Mitchell–Schaeffer model (Corrado & Niederer, 2016) with τin = 0.3 ms, 

τout = 6 ms, τopen = 40 ms, τclose = 20 ms, and νgate = 0.13.

Cardiac cells like those considered here are not natural pacemakers and thus require 

exogenous stimulation, typically through the direct application of current for a brief time 
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(typically 1–2 ms), to elicit each activation. Thus, information about the pacing stimulus 

timing must be introduced as an additional input to the network along with the cardiac 

voltage time series (Shahi et al., 2021). Furthermore, the knowledge-based model also 

must be stimulated at the same times as the experimental time series. Because the timing 

of applied stimuli can be variable and is not directly available for the experimental data, 

a pre-processing step is applied to detect the timestamp at the beginning of each action 

potential. Then, the pacing stimulus time series is generated by assigning a stimulus voltage 

with magnitude 0.2 and duration 2 ms at the onset of each beat in time. Fig. 7c exhibits 

the experimental time series and the corresponding knowledge-based model. Note that the 

voltage is rescaled to be between zero and one.

4. Implementation

All methods were implemented in MATLAB (R2021a) and were run on the same computer 

equipped with an Apple M1 processor and 8 GB of RAM, operating with macOS Big Sur 

(Version 11.5.2).

4.1. Hyperparameter selection

Hyperparameter values used to construct each model play a pivotal role in the performance 

of each model. Thus, to have a fair comparison between the prediction ability of these 

techniques, finding a good set of hyperparameters is an inevitable initial step. Here the 

optimum hyperparameter values were determined by an extensive grid search, with the 

admissible ranges and the size of the hyperparameter grids informed by initial experiments 

on a validation set.

In general, gated RNNs, i.e. LSTMs and GRUs, need a large set of tunable hyperparameters, 

including the number of hidden layers and hidden units, the optimization technique to train 

the network and the hyperparameters corresponding to the chosen optimization solver, e.g., 

learning rate, the learning rate drop factor, maximum number of epochs, and regularization 

factor. Therefore, running an exhaustive search on a wide grid of hyperparameter values is 

practically infeasible in most cases. In this work, after an initial round of experiments, some 

of these hyperparameters are set while the values of hyperparameters with more influence 

on the performance of the networks are optimized by a grid search. In this regard, we 

use the Adam optimizer (Kingma & Ba, 2014) for training the networks with its default 

configurations in MATLAB, while the grid search determines the optimum values of number 

of layers, the dropout probabilities, initial learning rate, maximum number of epochs, and 

regularization factor (see Table 1).

In comparison to the gated RNNs, ESN approaches are more sensitive to hyperparameter 

values (Lara-Benítez et al., 2021), while they demand significantly less computational effort 

for training. Therefore, wider intervals and finer grids were chosen for running the grid 

search for the ESN techniques. Table 1 presents a summary of the hyperparameters and the 

parameter grid values used to obtain the best performance for each technique. Note that 

the number of hyperparameters required to be tuned in the NVAR approach is considerably 

smaller than for the other techniques.
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4.2. Gated RNN implementations

The LSTM and GRU networks were implemented utilizing the Deep Learning toolbox in 

MATLAB, where the network architectures are defined as a layerGraph object that consists 

of an array of network layers forming a directed acyclic graph structure. First, a sequential 

input layer was required to feed the input time series into the network. Then, depending on 

the architecture, one or multiple LSTM or GRU layers were required to learn the long-term 

dependencies in the temporal data. Afterward, a fully connected layer connected the last 

gated RNN layer to a regression output layer. To avoid overfitting issues, dropout layers 

with various dropout probability were added to the architecture. The number of gated layers, 

dropout layers, and the corresponding dropout probabilities were hyperparameters and their 

optimum values were determined in the grid search (see Table 1).

Once the network was trained, the recursive approach was employed to perform a multi-

step-ahead prediction, where the predicted response at each time step was provided as input 

for prediction of the response in the next time step, and the network state was updated 

correspondingly.

4.3. Echo state network implementations

The implementation of the baseline ESN was based on Jaeger’s tutorial introducing 

ESNs (Jaeger, 2002) and employing the practical remarks suggested by Lukoševičius 

(Lukoševičius, 2012). To generate the initial reservoir graph in the baseline ESN, the Erdős–

Rényi algorithm (Bollobás & Béla, 2001) was used. Then, the reservoir weight matrix was 

adjusted to satisfy the echo state property of the network (Yildiz et al., 2012) to guarantee 

that the network was state-forgetting, i.e., the effect of initial conditions should vanish over 

time to ensure that the reservoir state asymptotically depends solely on the input signal.

The structure of the CESN was very similar to the baseline ESN except for generating 

the reservoir graph, where the sub-reservoir clusters were generated first and then were 

connected to each other randomly with an inter-cluster connection probability chosen to be 

smaller than the intra-cluster connection probability.

Constructing the reservoir in the HESN was identical to the baseline ESN and followed 

the same Erdős–Rényi approach; the difference was in the input layer, where the sequential 

input data was augmented with an additional time series from a knowledge-based model 

synchronized with the original time series (see Fig. 2c).

Note that during the training for the ESNs, the initial states of the network were discarded to 

ensure that the network dynamics were fully developed and the training was not affected by 

the initial transient dynamics. This transient phase is exhibited in gray, as the pre-train data, 

in Figs. 3–7.

Furthermore, by construction, ESNs may suffer from excessive sensitivity to the 

hyperparameters and the initial values of the parameters, which remain untrained; this 

property is an outcome of the randomized construction of the networks in RC approaches. 

To minimize the effect of the random nature of ESNs on the results of our study, the results 
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of each method for each network size were averaged over 10 experiments with different seed 

values for the random number generator in MATLAB program.

On account of such sensitivity, finding a set of optimum values for hyperparameters is of 

great importance for network performance. The number of hidden units in the reservoir; the 

connection probability used in the Erdős–Rényi graph generation process, which determines 

the sparsity of the reservoir connections; and the spectral radius of the reservoir graph 

showed the most influence on the performance of the network. Other hyperparameters 

including the leaking rate, the input weight scale, and the ridge regression regularization 

factor were also crucial to obtain good prediction results. Moreover, the number of clusters 

in CESNs along with parameters of the knowledge-based model in the HESNs were 

additional hyperparameters to be determined. Therefore, in comparison to the gated RNNs, 

the number of hyperparameters for ESN approaches was considerably higher (see Table 1), 

leading to a more involved search because the size of the grid search grows exponentially as 

the parameter ranges grows. Nonetheless, due to the substantially lower computational costs 

of ESNs, we obtained the grid search results in almost the same wall-clock times as for the 

RNNs.

4.4. Nonlinear vector autoregressive implementation

The implementation of the NVAR approach is straightforward and shares many similarities 

with ESNs. There are only a few main considerations in implementing NVAR technique.

First, the degree of the polynomial functional to construct the nonlinear part of the state 

vectors must be determined; it was shown that employing a low-order polynomial can lead 

to high prediction accuracy (Gauthier et al., 2021). Accordingly, in this work, we used 

the simplest case, which is a second-degree polynomial. Therefore, at each time step, the 

state vector has 1+kd+kd(kd+1)/2 entries including the bias, linear, and nonlinear parts, 

respectively.

The second consideration is the pre-training period required in NVAR, which only needs 

to be ks time steps to have all k-delayed input values to form the linear part of the state 

vector. Therefore, in practice, the pre-training period in an NVAR can be less than that of an 

equivalent ESN. Nonetheless, to make these two technique more comparable, in this work, 

the pre-training periods were chosen to be identical in both techniques.

In contrast to the gated RNNs and ESNs, there are no explicit hidden units in NVAR 

approach. This makes the comparison of NVAR to the other approaches more challenging. 

The reason that we include NVAR in this comparative study is that it can perform equally 

well as optimized ESNs in some applications (Gauthier et al., 2021). For a more fair 

comparison, the hyperparameters of NVAR were chosen such that the size of the state 

matrix was almost identical for NVAR and the corresponding ESNs. The number of columns 

of this matrix is equal to the training length. Therefore, we chose the same length of 

pre-training periods to ensure the number of columns of the state matrix was the same in 

both approaches. The number of rows in the state matrix is equal to the number of entries 

in the state vector at each time step (i.e., 1 + |hlin,t| + |hnonlin,t|), which is a function of the 

delay (k) and dimension (d); the latter is fixed in each problem. Thus, for each network size 
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in gated RNNs and ESNs, the number of delays in NVAR was chosen such that the size of 

the state matrix was almost equal to that of the ESN approaches.

Fixing the delay value k in each NVAR model left only two tunable hyperparameters: the 

skipping step s and the ridge regression regulation value (see Table 1). Compared to the 

gated RNN and ESN approaches, the considerably smaller number of hyperparameters 

together with the reduced computational effort required in each run of training and 

prediction using NVAR facilitated finding the optimum values of the hyperparameters in 

a grid search.

Finally, to conduct a multi-step prediction into the future, the same recursive approach was 

also employed in the case of NVAR method, which means that at each time step, to construct 

the linear part of the state vector, the prediction of the previous step was introduced as 

the new input recursively, and the delayed values were fetched from the predictions in the 

previous steps. Then, the nonlinear terms were computed accordingly.

4.5. Univariate versus multivariate time series

The forecasting approaches for the MG and Lorenz datasets share many similarities; for 

instance, in the case of applying ESNs to both problems, the constructed networks mirror 

the schematic architectures shown in Fig. 2. The only main difference is in the number of 

input and output variables in each time series. The MG dataset is a univariate time series 

where only one variable needs to be predicted over time. In contrast, the Lorenz dataset is 

an example of a multivariate time series in which the input layer must accept three input 

signals for x, y, and z, respectively, i.e. xt = [x(t); y(t); z(t)]. The same consideration is 

necessary for the BML and ENSO datasets, where the input time series consist of three 

input signals. Note that in the HESN approach, the number of inputs for both univariate and 

multivariate datasets is multiplied by a factor of two due to the additional inputs from the 

knowledge-based models in each case.

Additional considerations are required to predict cardiac action potential time series, where 

the dynamics relies on an external stimulus. In particular, the pacing stimulus must also 

be introduced to the network along with the cardiac voltage signals. In this case, although 

forecasting the action potentials entails predicting one variable over time, the input signal is 

a multivariate time series consisting of the action potentials (voltage signal) and the pacing 

stimulus time series. Accordingly, the network architectures are adjusted to accommodate 

the additional input from the pacing stimulus time series. This adjustment for the ESNs is 

portrayed in Fig. 8, where the baseline ESN (Fig. 8a) and CESN (Fig. 8b) are driven with 

two signals and the HESN (Fig. 8c) is driven with three signals, including one additional 

input for the knowledge-based time series.

4.6. Evaluation metrics

The prediction accuracy is evaluated using the root mean square error (RMSE) metric, given 

by
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RMSE = 1
n ∑

j = 1

d
∑
i = 1

n
(Y ji − Y ji)

2, (13)

where Yji and Y ji are the target and predicted outputs, respectively, while d and n denote 

the number of input dimensions and the length of the dataset, respectively. Therefore, for the 

MG and the experimental cardiac action potential datasets, d is equal to 1, and for the other 

datasets, d is set to 3.

In the case of the cardiac dataset, action potential duration (APD) provides another 

meaningful evaluation measure that is used widely in the field. By definition, an APD is 

the time interval over which the voltage during an action potential is continuously larger 

than a specified threshold value, which here is chosen as 0.35.

5. Results

5.1. Mackey-Glass dataset

Fig. 9 presents the prediction results of the MG time series by the six described methods 

(LSTM, GRU, ESN, CESN, HESN, and NVAR) for a fixed network size of 100 hidden 

units in the first five methods and an equivalent delayed state matrix in NVAR. The results 

show that despite the general success of gated RNNs in time-series forecasting tasks, they 

are not capable of capturing the dynamics of this chaotic time series. Both the LSTM and 

GRU networks show poor results in the prediction phases. The absolute error diagram at the 

bottom of Fig. 9 further demonstrates the poor performance of the gated RNNs. The best 

prediction accuracy is obtained by the NVAR approach, where the prediction values exhibit 

a perfect match for the entire 2000-step testing span. This result is significant considering 

the fact that NVAR requires considerably less computational effort for constructing and 

tuning the model. The ESN approaches are in the middle of the prediction performance 

spectrum, and all three ESN variants can capture the dynamics of the chaotic system and 

predict the future dynamics for a considerably longer time than the gated RNN approaches. 

In particular, the baseline ESN can predict the time series accurately, with the least overall 

absolute error for 1400 steps into the future. The prediction results obtained by the CESN 

and HESN are accurate for around 200 steps and the discrepancies started after 3 periods, 

as can be seen in the absolute error diagram, where the relative error exceeds 10%. As a 

result, the prediction error using the baseline ESN is nearly half that obtained using the other 

two ESNs for almost all network sizes tested. However, compared to the HESN, the CESN 

generally provides a better overall match with less overall absolute error in the predicted 

values.

Varying the network size demonstrates that increasing the model complexity by increasing 

the number of hidden units in the first five methods and the number of embedded delays 

in the NVAR approach has a limited effect on the overall accuracy measured by RMSE. 

Fig. 10a shows that the prediction error remains roughly constant in the LSTM, GRU, and 

CESN approaches for a range of network sizes; the ESN and HESN show a noticeable 

improvement with more hidden units. In the NVAR case, by increasing the delay, which 
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for purposes of comparison we are considering as roughly equivalent computationally to 

increasing the network size in the other approaches, the accuracy remains almost constant 

with very minor improvements. However, the largest ESN (500 hidden units) shows better 

accuracy (nearly 8% less prediction error) compared to the corresponding NVAR model.

According to Fig. 10b, which illustrates the elapsed time for the combination of training 

and prediction tasks, the NVAR approach is the most efficient technique among all methods 

tested owing to avoiding the explicit construction of the networks. In particular, NVAR 

is faster than the ESN and gated RNN techniques by more than one and two orders of 

magnitude, respectively. This plot also reveals that the elapsed time increases with respect to 

network sizes in all methods including the NVAR approach, where the model complexity is 

increased by adding more embedded delays. This trend is expected because in each method, 

by increasing the model complexity, more computational effort is required for training and 

prediction.

5.2. Lorenz dataset

The results of applying the six described methods to the Lorenz dataset using the same fixed 

network size are presented in Fig. 11. The LSTM and GRU models can accurately predict 

for only a short period of time (around 50 time steps) and the prediction results quickly 

deviate from the true values, whereas the ESNs can capture the dynamics of the system 

and provide accurate forecasting for more than 400 time steps. Although the prediction 

accuracy is roughly the same across all three ESNs for the entire test set, the prediction 

errors illustrate that the CESN achieved slightly better performance. Nonetheless, similar to 

the MG dataset, the best overall performance measured by the RMSE metric is obtained 

by the NVAR approach, which demonstrates that this technique can successfully forecast 

multivariate time series for multiple steps into the future. The last panel in Fig. 11 shows 

the mean absolute error of the predicted values obtained by each method. This plot reveals 

that even though the overall prediction error obtained by NVAR is the minimum across all 

applied techniques, the prediction obtained by ESN approaches are more accurate at the 

beginning of the prediction before discrepancies start to appear later.

Increasing the network size for the ESNs can slightly improve their performance in 

predicting the Lorenz time series, as shown in Fig. 12. In contrast, the LSTM and GRU 

models do not display this trend; for some intermediate network sizes, the models performed 

poorly even for the first few time steps. As opposed to the gated RNNs and ESNs, increasing 

the embedded delays in the NVAR approach significantly improved the prediction accuracy 

of the model. Accordingly, the discrepancies that currently can be seen in the NVAR 

prediction results in Fig. 12 do not persist with higher delay values. We study this more 

using the experimental dataset, as discussed in the next section.

The lower plot in Fig. 12 shows that the NVAR approach is the most efficient with the 

smallest overall computational times. All three ESN techniques show similar computational 

times for various reservoir sizes. Although the ESN computational times are larger than 

for the NVAR approach, they still remain within a factor of 2–5 times more than the 

corresponding NVAR models. However, the LSTM and GRU models are more than 3 orders 

of magnitude slower than the NVAR and ESN models in most cases. Another expected 
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trend was the increase in computational times when increasing the model size, which is 

demonstrated in Fig. 12.

5.3. Bursting Morris–Lecar dataset

Fig. 13 shows the results of using the BML dataset of bursting neural activity with the six 

different prediction methods. The LSTM and GRU approaches have little if any predictive 

power and quickly predict constant values. In contrast, NVAR is a particularly good choice 

with very low error throughout the entire prediction time. The performance of the various 

ESN approaches fails to match the accuracy of NVAR but provides good predictions for 

more than half of the prediction time, especially for the ESN and CESN methods. The 

bottom panel indicates absolute error over time, with the highest values associated with the 

LSTM and GRU approaches; over time, the error grows appreciably for the ESN methods as 

well.

For the BML dataset, prediction accuracy as measured by RMSE is relatively insensitive to 

the network size (or number of embedded delays, for NVAR), as shown in the top panel of 

Fig. 14 Because of the decrease in prediction quality for the second half of the time series, 

the ESN approaches have RMSE values almost as high as those of the LSTM and GRU 

methods. For NVAR, increasing the embedded delays may lead to a decrease in accuracy. 

For all methods, the computational time needed increases with the network size. The LSTM 

and GRU methods require the most time, nearly two orders of magnitude more than the ESN 

methods, which require similar times. NVAR is the most efficient, but the ESN methods 

remain competitive in terms of computational requirements.

5.4. El Niño-Southern Oscillation Dataset

In Fig. 15, the results of predicting the ENSO dataset can be seen for the different methods. 

The LSTM method performs particularly poorly, with only a single oscillation before 

remaining at a constant value. GRU does better but essentially misses all the large-amplitude 

oscillations in the middle of the testing data and also does not predict the amplitudes and 

phases of the smaller oscillations consistently. The baseline ESN predicts accurately for 

more than half of the test data but fails to predict the later large-amplitude oscillations 

and predicts the last portion of the dataset with proper amplitude but incorrect phase. The 

HESN method performs similarly, except that the last portion of the dataset has less severe 

discrepancies in phase and slightly higher amplitude discrepancies. Very good performance 

is obtained by the CESN method, with almost no difference from the testing data, narrowly 

beating out NVAR, which includes some slight discrepancies. In the bottom panel of Fig. 

15, the absolute error measurements over time confirm the poor predictions using LSTM and 

GRU throughout the time series and the consistently small errors achieved only for CESN 

and NVAR.

Fig. 16 compares the performance for the ENSO dataset across different network sizes. 

RMSE values for the LSTM and GRU methods do not vary meaningfully with network 

size; however, the ESN methods show a general downward trend in RMSE as the network 

size is increased, although the effect is not monotonic. For NVAR, RMSE decreases with 

the number of embedded delays. Note that despite the similarities between the ENSO and 
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Lorenz models, there are some differences in performance for the corresponding datasets, 

particularly with improvements for ENSO by the CESN, baseline ESN, and even GRU 

approaches. Both datasets experience similarly poor performance by the LSTM and good 

performance by NVAR.

As for computational efficiency, all methods show a trend toward increasing time required 

for increasing network sizes with the ENSO dataset, as shown in the lower panel of Fig. 

16. The LSTM and GRU methods require similar times, which are 2–3 orders of magnitude 

longer than required for the ESN and NVAR approaches. The NVAR method requires the 

least time, but the ESN methods remain competitive.

5.5. Experimental cardiac voltage dataset

For the experimental dataset, the gated RNNs and the ESN models can reconstruct the 

main features of the voltage time series, with the exception of the GRU, as shown in Fig. 

17. However, in contrast to the other two datasets, the NVAR model shows the maximum 

prediction error and very poor prediction results. According to the absolute error values, the 

results obtained by the HESN appear closest in reconstructing the full voltage trace. Similar 

behavior can be seen in the APD plots, where the best predictions are obtained by the CESN 

and HESN models; see Fig. 18. The gated RNNs and the baseline ESN not only have high 

error but show little of the observed variation in APD. This shortcoming gets worse in the 

case of NVAR, where the predicted APD values show the poorest agreement with the target 

values.

As with the other two datasets, the same experiment was repeated with various model 

complexities to study the influence of network size (or the embedded delays for the 

NVAR approach) on the prediction abilities of the applied methods and the corresponding 

computational times (Fig. 19). The variation in the computational times is almost identical 

to the previous cases, where by increasing the model complexities, the computational time 

increases. In contrast to the other two datasets, where the NVAR technique was significantly 

faster than ESNs, for this dataset, the ESNs and NVAR approach exhibit the same range 

of efficiency except the baseline ESN, where the elapsed time is almost half of the NVAR 

model in most cases. Nevertheless, the ESNs and the NVAR model are considerably faster 

than the LSTM and GRU by more than two orders of magnitude.

Fig. 19a indicates that the prediction accuracy of each ESN model remains almost constant 

for all network sizes, whereas the RMSE values obtained by the ESN and CESN are almost 

equal and roughly two times more than the HESN, but are still 50% less than for the 

gated RNN methods. The most interesting trend can be observed for the NVAR approach, 

where increasing the delay values significantly reduces the prediction errors as measured 

by RMSE. This finding suggests that it might be possible to improve meaningfully upon 

the results demonstrated in Fig. 17 by increasing the number of embedded delays and 

steps skipped between each two consecutive delays. More specifically, the NVAR results 

presented in Fig. 17 are obtained using only 7 delays (k = 7) to have the same number of 

rows in the corresponding state matrix as for the ESN with 100 hidden units, to improve the 

fairness of the comparative study. However, the error obtained by 16 embedded delays (same 

matrix size as the ESN with 500 neurons) is less than 30% of the case with 7 delays.
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These observations suggest that although the NVAR model relies on fewer hyperparameters 

and needs less tuning effort, more embedded delays and consequently more computational 

effort may be required to obtain a proper prediction accuracy. To examine this hypothesis, 

the NVAR technique was applied to the same experimental dataset with more delay values. 

Fig. 20 illustrates the prediction results obtained by NVAR with k = {20, 30} and s = {5, 10} 

and shows that increasing the number of embedded delays yields better prediction results. In 

particular, by choosing k = 30 and s = 10, the predicted values are nearly identical to those 

in the test dataset. The same result can be observed in the APD diagrams exhibited in Fig. 

21, where agreement is improved and even those cases with discernible error display similar 

changes in APD. As a comparison of the matrix sizes and the required computational effort, 

to accommodate the bias, linear and nonlinear parts of the state vectors, the corresponding 

state matrix includes 1891 rows, which is roughly equal to a state matrix of an ESN with 944 

hidden units for the same dataset. However, the NVAR approach is still faster and provides a 

more accurate prediction as measured by RMSE.

6. Conclusion

In this paper, six different ML time-series forecasting approaches, including two gated 

RNN techniques, three variants of ESNs, and the NVAR approach, were tested to predict 

five chaotic time series, including the Mackey–Glass, Lorenz-63, bursting Morris–Lecar, 

Vallis ENSO, and experimental cardiac action potential time series. Although we considered 

relatively large but still limited numbers of datasets and methods, we found that the LSTM 

and GRU approaches, despite their high computational costs and in contrast to the ESN 

and NVAR methods, were incapable of forecasting the Mackey–Glass, Lorenz, and bursting 

Morris–Lecar time series more than a few steps into the future, and that increasing the 

network size did not significantly improve their performance. For the ENSO model, the 

GRU method could predict somewhat longer, but it did not compare favorably with the ESN 

and NVAR approaches.

Three variants of ESNs were employed including the baseline ESN, the clustered ESN 

(CESN), and the hybrid physics-informed ESN (HESN). For the five datasets we used 

in this work, only one (ENSO) showed improvement by using a more complicated ESN 

architecture such as the clustered reservoir. In all the other cases, the baseline ESN 

demonstrated similar or better performance compared to CESN. In contrast, whereas the 

HESN provided the same level of prediction accuracy for the four synthetic time series, 

within the tested network sizes, it was the most successful approach for forecasting the 

experimental dataset, where it delivered more accurate predictions as measured by RMSE. 

Thus, incorporating the domain knowledge of a dynamical system if available may improve 

the prediction ability of the ESN technique and may help with obtaining good predictions 

using smaller network sizes.

For the tested network sizes and datasets, the best prediction performance in the case 

of the Mackey–Glass, Lorenz, and bursting Morris–Lecar datasets was obtained by the 

NVAR method, which was recently introduced as the next generation of RC techniques 

and has been demonstrated to be as successful as optimized ESNs. For the ENSO dataset, 

NVAR’s prediction accuracy was only slightly lower than that of the most accurate method, 
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CESN. A noticeable advantage of the NVAR technique over conventional ESNs is avoiding 

the explicit construction of randomly connected neurons and circumventing the intrinsic 

randomness that increases the sensitivity of the network to the hyperparameter values and 

initial parameters that remain untrained. Moreover, the number of hyperparameters is much 

smaller than for ESNs, which makes NVAR easier to tune. Such advantages may initially 

suggest that the amount of data required to train the NVAR model could be less than that 

needed for the conventional ESNs. However, our experiments showed in the case of the 

experimental cardiac voltage dataset, better performance was only obtained by embedding 

more delays and at the cost of more computational time and effort. Nevertheless, in general, 

this approach shows promise for efficient prediction of chaotic time series. To the best of 

our knowledge, this work is one of the first applications of this newly introduced technique 

to real-world experimental time series. Further studies in this area may reveal more of 

the potential of this approach. For instance, in this work, we used a quadratic polynomial 

functional to construct the nonlinear portion of the state vectors at each time step; however, 

other nonlinear functions such as higher-order polynomials could also be employed and 

studied.

It should also be noted that our conclusions are based on a limited number of datasets and 

employed methods. Moreover, in each case, the optimum hyperparameters were obtained in 

a finite grid search process. Accordingly, it is possible that the same approaches could 

provide different results when applied to other datasets or when hyperparameters are 

determined using more extensive grids or different optimization techniques.
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Fig. 1. 
Architectures of memory cells in gated recurrent neural networks. (a) Long short-term 

memory. (b) Gated recurrent unit.

Shahi et al. Page 23

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Components of reservoir computing approaches, including (a) the baseline ESN, (b) CESN, 

and (c) HESN. In these architectures, the input and output signals can be either univariate or 

multivariate time series.
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Fig. 3. 
The Mackey–Glass time series. (a) Generated time series including unused pre-training data 

(gray), training data (blue), and testing (prediction) data (black). (b) Zoomed-in section 

corresponding to the shaded region in panel (a). (c) Mackey–Glass time series (solid) and 

the imperfect knowledge-based model (dashed). (d) Zoomed-in section corresponding to the 

shaded region in panel (c) demonstrating the difference between the generated time series 

and the imperfect knowledge-based model.
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Fig. 4. 
The Lorenz system time series. (a) The unused pre-training data is shown in gray, and 

the training data are in purple, green, and blue colors indicating the x, y, and z variables, 

respectively. The testing data is in black. (b) Zoomed-in section corresponding to the shaded 

region in panel (a). (c) Lorenz system time series (solid) and the imperfect knowledge-

based model (dashed). (d) Zoomed-in section corresponding to the shaded region in panel 

(c) demonstrating the difference between the generated time series and the imperfect 

knowledge-based model.
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Fig. 5. 
The bursting Morris–Lecar time series. (a) The unused pre-training data is shown in gray, 

and the training data are in purple, green, and blue colors indicating the V, w, and u 
variables, respectively. The testing data is in black. (b) Zoomed-in section corresponding 

to the shaded region in panel (a). (c) The bursting Morris–Lecar time series (solid) and 

the imperfect knowledge-based model (dashed). (d) Zoomed-in section corresponding to the 

shaded region in panel (c) demonstrating the difference between the generated time series 

and the imperfect knowledge-based model.
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Fig. 6. 
The ENSO time series. (a) The unused pre-training data is shown in gray, and the 

training data are in purple, green, and blue colors indicating the u, Tw, and Te variables, 

respectively. The testing data is in black. (b) Zoomed-in section corresponding to the 

shaded region in panel (a). (c) The ENSO time series (solid) and the imperfect knowledge-

based model (dashed). (d) Zoomed-in section corresponding to the shaded region in panel 

(c) demonstrating the difference between the generated time series and the imperfect 

knowledge-based model.

Shahi et al. Page 28

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Experimental cardiac voltage time series featuring irregular action potentials. (a) Voltage 

time series including unused pre-training data (gray), training data (blue), and testing 

data (black). (b) Zoomed-in section corresponding to the shaded region in panel (a). (c) 

Experimental cardiac action potential time series (solid) and the imperfect knowledge-based 

model (dashed)line. (d) Zoomed-in section corresponding to the shaded region in panel (c), 

where the difference between the generated time series and the imperfect knowledge-based 

model can be observed.
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Fig. 8. 
Components of reservoir computing approaches for modeling cardiac action potential time 

series, including (a) the baseline ESN, (b) CESN, and (c) HESN.
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Fig. 9. 
Mackey–Glass dataset forecasting results obtained by the six methods using a fixed network 

size of 100 neurons for the gated RNNs and ESN models and a computationally equivalent 

delay size for NVAR approach. The reference test data are shown in black and the 

predictions in color. Absolute errors of the predictions are presented in the bottom subplot, 

with color corresponding to each prediction method.
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Fig. 10. 
Comparison of RMSE (top) and computational time (bottom) for each method and network 

size tested for the Mackey–Glass dataset.
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Fig. 11. 
Lorenz system dataset forecasting results obtained by the six methods using a fixed network 

size of 100 neurons for the gated RNNs and ESN models and an equivalent delay size 

for the NVAR approach. The reference test data are shown in black and the predictions 

in color. Absolute errors of the predictions are presented in the bottom subplot, with color 

corresponding to each prediction method. Note that the reported error is the mean absolute 

error over the three input time series.

Shahi et al. Page 33

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 12. 
Comparison of RMSE (top) and computational time (bottom) for each method and network 

size tested for the Lorenz system dataset.

Shahi et al. Page 34

Mach Learn Appl. Author manuscript; available in PMC 2022 June 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 13. 
Morris–Lecar dataset forecasting results obtained by the six methods using a fixed network 

size of 100 neurons for the gated RNNs and ESN models and an equivalent delay size 

for the NVAR approach. The reference test data are shown in black and the predictions 

in color. Absolute errors of the predictions are presented in the bottom subplot, with color 

corresponding to each prediction method. Note that the reported error is the mean absolute 

error over the three input time series.
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Fig. 14. 
Comparison of RMSE (top) and computational time (bottom) for each method and network 

size tested for the Morris–Lecar dataset.
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Fig. 15. 
ENSO dataset forecasting results obtained by the six methods using a fixed network size 

of 100 neurons for the gated RNNs and ESN models and an equivalent delay size for 

the NVAR approach. The reference test data are shown in black and the predictions in 

color. Absolute errors of the predictions are presented in the bottom subplot, with color 

corresponding to each prediction method. Note that the reported error is the mean absolute 

error over the three input time series.
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Fig. 16. 
Comparison of RMSE (top) and computational time (bottom) for each method and network 

size tested for the ENSO dataset.
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Fig. 17. 
Experimental dataset forecasting results obtained by the six methods using a fixed network 

size of 100 neurons for the gated RNNs and ESN models and an equivalent delay size 

for NVAR approach. The reference test data are shown in black and the predictions in 

color. Absolute errors of the predictions are presented in the bottom subplot, with color 

corresponding to each prediction method.
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Fig. 18. 
Experimental dataset APD forecasting results obtained by the six methods using a fixed 

network size of 100 neurons for the gated RNNs and ESN models and an equivalent delay 

size for NVAR approach. The reference APD values are shown in black and the predicted 

values in color.
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Fig. 19. 
Comparison of RMSE (top) and computational time (bottom) for each method and network 

size tested for the experimental dataset.
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Fig. 20. 
Experimental dataset action potential forecasting results obtained by the NVAR method 

using larger values for delays and skipped steps showing the reference test data (black) and 

the prediction results (red).
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Fig. 21. 
Experimental dataset APD forecasting results obtained by the NVAR method using larger 

values for delays and skipped steps. The reference APD values are shown in black and the 

predicted values in red.
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