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Abstract

In this study, we used insurance claims for over a third of the entire United States population to 

create a subset of 128,989 families (481,657 unique individuals). We then used these data to: 1) 

estimate the heritability and familial environmental patterns of 149 diseases, and; 2) infer the 

genetic and environmental correlations between disease pairs from a set of 29 complex diseases. 

The majority (52 out of 65) of our study’s heritability estimates matched earlier reports, and 84 of 

our estimates appear to be obtained for the first time. We used correlation matrices to compute 

environmental and genetic disease classifications and corresponding reliability measures. Among 

unexpected observations, we found that migraine, typically classified as a disease of the central 

nervous system, appeared to be most genetically similar to irritable bowel syndrome and most 

environmentally similar to cystitis and urethritis, all of which are inflammatory diseases.

Introduction

Disease classifications (nosologies) are used ubiquitously in academic medicine, human 

genetics, the health industry, and economics. Much like any library’s content catalogue, 

disease taxonomies strive to group together similar entities for ease of access and analysis. 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
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Initially, many of these groupings were largely arbitrary—often guided by topographical, 

anatomical, or even cultural similarities.1,2

Historically, changes in these groupings have reflected a progression towards etiologic, 

common-cause disease classifications.

The evolution of nosologies has closely paralleled the evolution of methods designed for the 

reconstruction of the universal tree of life. Approaches to species classifications were 

initially subjective or heuristic,3–7 and made without any hint of the common-origin 

interpretation, utilizing only a small subset of all the visible morphological features of any 

given organism. These early phylogenetic methods were followed by the use of maximum 

parsimony methods, explicitly minimizing the number of differences between proximal 

taxonomy leaves. Most recent arrivals to phylogenetics are statistical tree-making methods,8 

which infer taxonomies from very large datasets using explicit stochastic models of 

diverging organism traits during speciation.

In this study, we synthesized a synergy of the analytical methods developed for phylogenetic 

analysis with those established in dissecting the heritable and environmental components of 

human disease. The main premise of our analysis was that etiological disease taxonomy can 

and should be constructed using the explicit and objective genetic and environmental 

correlations between diseases.9 Such a classification would maximize genetic and/or 

environmental disease similarities that have clustered together and would generate the 

closest yet approximation to the common-cause nosology.

Our study used a dataset summarizing health information for more than one-third of the US 

population, including more than 40 million families. The most informative subset of these, 

481,657 unique individuals grouped into 128,989 families, was chosen for in-depth genetic 

analysis. In this study, we focused on estimating heritability, and environmental and genetic 

correlations between common diseases that were unambiguously encoded in the insurance 

claims. Doing so, we were unable to analyze quantitative traits, which are not represented in 

insurance claims.

A trait’s narrow-sense heritability is defined as the ratio of its additive genetic variance10,11 

to its total phenotypic variance see 12, p. 170. The environment-related counterpart to 

narrow-sense heritability is, consequently, the ratio of the environment-related variance 

(unique for an individual, shared by siblings, parents, or the entire family) to the total 

disease-specific phenotypic variance. The environment-related variance portion of this ratio 

can be called preventability because it indicates the putative efficacy of interventions via 

changing environmental conditions.

Results

Data

Our dataset was generated by subsampling from a very large collection of families 

represented in a compilation of insurance claims from Truven MarketScan. By definition, 

the dataset included only information about insured families, and therefore it is slightly 
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biased towards more affluent urban populations (see Figure 1A). The largest families, as 

well as the majority of all families, were urban, see Figures 1A and B, with the overall urban 

population share slightly higher than the 80.7% reported by US Census (see URLs). It is 

therefore unlikely that our heritability and genetic correlation estimates were affected by the 

sampling of families from rural areas, where average relatedness of individuals in the same 

county is potentially higher than the country average.

The need to focus on a subset of families out of the total 40 million families was two-

pronged. First, computational tractability demanded that we significantly restrict the sample: 

The bivariate analysis of common diseases can become impractical if the sample is too large. 

Second, in insurance claims, the data of parents and their children are linked for a limited 

time (see Figure 1C). Typically, US children can only be covered by their parent’s health 

insurance until the age of 25. As consequence, the apparent disease prevalence in offspring 

is much lower than in their parents. Therefore, we focused on a set of 128,989 families in 

which both parents and children were “visible” for the longest time interval, but no less than 

six years. No individual in the data was “visible” for more than ten years. The methods we 

used in this study are robust to age-dependent prevalence assuming the same liability with 

age-dependent threshold (see Methods). We concede that assuming that early-onset and late-

onset diseases have the same underlying liability is a limitation of this method; obviously, in 

principle these disease versions could represent fundamentally different conditions.

Model selection

We started our analysis with a systematic comparison of those mathematical models most 

likely to describe the structure of our dataset families’ phenotypic variance (see Methods and 

Figure 1D; DIC stands for Deviance Information Criterion commonly used in Bayesian 

model selection 13). The best model included shared couple (parents) environment, shared 

sibling environment, and additive genetics (see the GCS model in Figure 1D). The second-

best model dropped the shared-sibling environment component, S, (see Figure 1D). We then 

used the GCS and GC models (whichever fit data best) to estimate liability-scale heritability 

and its environmental counterpart (“preventability”) for 149 common diseases (see Figure 

1E and Supplementary Figure 1; disease abbreviations are spelled out in Supplementary 

Table 1.)

Estimates of liability-scale heritability

We estimated the narrow-sense heritability for 149 of the most common diseases present in 

the insurance claim dataset (Figure 1E). To the best of our knowledge, these estimates were 

obtained for the majority of diseases for the first time in our study: 84 out of 149 estimates 

(56 percent) are new. These putative first-time estimates are marked with asterisks in Figure 

1E (see details in Methods and Supplementary Table 2).

Our liability-scale heritability estimates spanned a wide range of values, from 0.924 (autism) 

to 0.038 (lipoma). The apparent correlation between our estimates for heritability and 

disease prevalence turned out to be significantly negative (Figure 1F): The estimated linear 

regression slope was − 1.20 (se = 0.455, p = 0.00915), with Pearson’s r = −0.212 (95% CI 

[−0.36 −0.05]), and p = 0.00915.
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Out of the 65 diseases in our disease set with previously published heritability estimates, 52 

of our estimates agreed with the published estimates within 95 percent CI (see Figure 1G 

and Supplementary Table 3; specifically, the 95% CIs of the two heritability estimates for 

the same condition overlapped. Phenotypes that were discordant with our estimates are 

indicated by bold typeface in Supplementary Table 3). The published and new estimates 

were highly correlated (r = 0.571, CI (0.379, 0.715), p = 6.902 × 10−7, linear slope 0.4975, 

se = 0.0902, p = 6.90 × 10−7). Furthermore, the error bars for the new heritability estimates 

(Figure 1G) are predominantly much narrower than those published. The mean values of our 

heritability estimates are, on average, slightly lower than previously published values, as can 

be seen by comparing the dotted regression line (slope = 0.5) with the blue line (slope = 1) 

in Figure 1G. Various possible sources of this trend have been enumerated in the Discussion.

According to common genetics wisdom, diseases with early onset tend to have higher 

heritability. This assumption was tested by the using heritability and onset estimates of our 

149 chosen diseases (see Methods and Supplementary Figures 2a and b). The correlation 

between the age of onset and disease heritability appears negative for a subset of diseases, 

including those currently categorized as neuropsychiatric, neoplastic, metabolic, 

ophthalmologic, and central nervous system diseases. For diseases with strong immune 

system components, such as autoimmune and infectious diseases, the estimated correlation 

between heritability and disease onset was positive (see Supplementary Figure 2b). When 

combined, the heritability estimates for all diseases, contrary to the common wisdom, 

showed no linear correlation with age of disease onset.

Our analysis also provided estimates of the environmental counterparts of heritability: 

unique-environment, common-couple, and common-sibling preventability (see 

Supplementary Figures 1a, b, and c). The common-couple preventability estimates range 

from 0 (autism) to 0.46 (photo dermatitis); the corresponding common-sibling estimates 

tend to be smaller, but can be as large as 0.29 (sepsis). The estimates for unique-environment 

preventability tended to be the largest: In our dataset, estimates ranged from 0.03 (eye 

infection) to 0.842 (diseases associated with damages to rectum and anus). For example, the 

largest preventability estimate for migraine is for unique environment (0.534), followed by 

common-couple (0.11), and negligible common-sibling preventability. Similarly, for sleep 

disorders, preventability estimates were 0.269, 0.22, and 0.15 for unique, couple, and sibling 

preventability, respectively.

Genetic and environmental correlations

Our analysis of pairwise disease correlations focused on 29 diseases, all pairs of which were 

well represented in both the children and parents of our dataset (see Supplementary Table 1). 

We estimated genetic and environmental correlations across all pairs of these 29 diseases 

(see Figure 2A–D, Supplementary Table 4).14 The majority of correlation values in our 

analysis differed significantly from zero (the null hypothesis r = 0) at a 1% false discovery 

rate (see Methods). 15 On average, genetic correlations between diseases tended to be 

stronger than their corresponding environmental correlations (see Figures 2B and 2C). 

However, for the majority of neuropsychiatric disease pairs, the environmental correlations 

are nearly as strong as the genetic correlations. In some cases, such as for the substance 
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abuse and schizophrenia disease pair, the environmental correlation is stronger than the 

genetic correlation, and nearly equal for other disease pairs, such as schizophrenia and 

bipolar disorder. This observation is consistent with an earlier finding of nearly equal 

amounts of shared genetic and environmental effects between schizophrenia and bipolar 

disorder.16

Figure 2C indicates that the environmental correlation distribution has a longer positive tail 

than the more symmetric genetic correlation distribution. Genetic and environmental 

correlations for the same disease pair were themselves positively correlated, and genetic 

correlations were also positively correlated with phenotypic correlations (see Supplementary 

Figures 3a and b).

In a few cases, the direction of a correlation was reversed between genetic and 

environmental components; this is indicated with color rectangles in Figure 2A. The 

corresponding Bayesian posterior probabilities for the significance of this sign difference are 

shown in the figure legend. These cases were particularly unexpected, as they indicate 

hypothetical scenarios in which genetic and environmental factors act antagonistically in 

determining a phenotypic path bifurcated between two apparently unrelated diseases.

On average, family-based estimates of genetic correlations obtained in our study have much 

narrower error bars (with a few exceptions) than earlier genome-wide association study 

(GWAS) estimates (see Figure 2D and Supplementary Table 5) mostly due to the very large 

sample size of our dataset. It is quite remarkable that genetic correlations obtained by two 

different methods agree so well. GWAS genetic correlations and family study genetic 

correlations estimate different quantities: Family studies estimate the correlation of the total 
genetic variation (both rare and common), while genetic correlations, estimated using single-

nucleotide variants (SNPs), are based on genotyped and imputed common SNPs, which are 

only a subset of the total genetic variation. Essentially, our data suggest that family-based 

estimates of genetic correlations reflect predominantly common variants.

The absolute values of genetic correlations are high for several common conditions across 

all the diseases that we analyzed (for example, asthma, allergic rhinitis, osteoarthritis, and 

dermatitis). This result is surprising as it suggests that the most prevalent complex diseases 

share a considerable amount of predisposing variation, even across apparently dissimilar 

diseases. Human genetic variation associated with common diseases appears highly 

pleotropic or even omnigenic.17

In order to get a baseline of the expectedness (or unexpectedness) of observed patterns in 

genetic and environmental correlations, we used the International Classification of Diseases 

version 9 (ICD-9, see URLs and see Supplementary Figure 4, left). Based on the ICD9 

taxonomy, genetic and environmental correlations for migraine are surprising. As migraine 

is clearly associated with the central nervous system, one would expect that its etiology is 

most similar to those of other neuropsychiatric conditions. For example, “mental disorders” 

(codes 290-319 in ICD9 taxonomy) have a sister group of “diseases of central nervous 

system and sensory organs” (codes 320-389), containing both migraine and eye 

inflammation. However, in our analysis of its genetic and environmental correlations, 
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migraine is not similar to other nervous system diseases. Rather, it is much closer to immune 

system diseases, such as irritable bowel syndrome (IBS) in the genetic correlation space, and 

to cystitis/urethritis in the environmental correlation space, see Supplementary Figure 5. 

These findings suggest that migraine is associated with general, not nervous-system-specific, 

inflammatory processes and can possibly be mitigated with some of the treatments that have 

been developed for inflammatory diseases.

Inferring nosologies from correlations

Relationships among diseases are unlikely to be appropriately described with a tree-like 

structure commonly used in disease classifications. As we show with our data, genetic and 

environmental factors suggest partially incompatible disease classifications. In addition, the 

tree-like structures are implicitly associated with evolving entities with common origin. 

Tree-clustering of diseases should be therefore interpreted with caution because evolutionary 

relationships do not apply to human diseases.

We use automatically generated classifications (Supplementary Figure 5) as a logically 

consistent way to visualize and examine all the similarities between all disease pairs 

simultaneously. To do so, we transform the genetic and environmental correlations shown in 

Figure 2A into distances and then infer objective genetic and environmental disease 

classifications from those distances. We chose to use the simplest (1 – correlation) distance 

transformation. The distance-matrix method we used18 for this purpose is designed to 

identify the classification topology that approximates the distance-matrix the closest, so that 

the length of the shortest path connecting two classification leaves closely approximates 

distance in the input matrix. By repeatedly sampling distances from their posterior 

distribution, one can compute a tree from the resampled distances each time, counting the 

percentage of times each disease grouping occurs in the resampled trees 19–21 (see 

Supplementary Figures 5a and b). The distances between diseases in a classification is 

meaningful. For example, two diseases connected with shorter branches are more tightly 

correlated and more similar genetically or/and environmentally than two diseases connected 

with very long branches. When a disease group is associated with a reliability number of 

100, it means that this particular disease partition was replicated in all trees. In other words, 

the bootstrap-like numbers 19–21 indicate the statistical reliability of the classification (see 

Methods).

In this analysis, the bootstrap-like measures identified a number of remarkably stable disease 

clusters present in both genetic and environmental trees (Supplementary Figure 5, clusters 

1–6). We used the ICD9 disease taxonomy (Supplementary Figure 4, left) as a baseline to 

identify disease groupings that are expected (based on ICD9 classification), and those that 

are unexpected (defiant of ICD9 classification, but statistically significant--see 

Supplementary Figures 5a and b, green and yellow highlights, respectively). Many of the 

stable disease groups (with high bootstrap-like numbers) lie within the traditional view of 

disease similarity. However, many stable clusters defy the currently established nosology. 

For example, type 1 diabetes groups with general hypertension (support 96 and 100 in the 

environmental and genetic classifications, respectively)—these two diseases are not typically 

thought to be closely related (see URLs and Supplementary Figure 4). Previously, and 
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collinearly with our results, Farh et al. 22 reported high genetic correlations between type 1 

diabetes and other autoimmune diseases.

Migraine in both inferred environmental and genetic classifications appears to be genetically 

similar to inflammatory diseases, such as irritable bowel syndrome (IBS).23 However, in the 

ICD9 taxonomy (see URLs), migraine is placed together with eye inflammation, in the 

cluster of diseases of the central nervous system and sensory organs. In our study’s genetic 

tree, eye inflammation is far away from migraine, but is grouped with dermatitis. In the 

environmental classification, migraine is the closest to inflammations associated with the 

infections cystitis and urethritis; eye inflammation is weakly grouped with the cluster of 

migraine-cystitis/urethritis. This suggests that migraine etiology is closely associated with 

immune system function and that the established disease taxonomy needs revision. In a 

recent study, Gormley et al.23 also challenged proximity of migraine to mental disorders; 

their results were consistent with a vascular etiology of migraine, but while discussing 

migraine Gormley et al.23 did not mention irritable bowel syndrome or other inflammatory 

diseases. Here, we analyzed migraine phenotypes combining both migraine with and without 

aura. Our data allow distinguishing between these two versions of the disease; therefore, this 

analysis can be performed with finer disease subdivisions, albeit at the cost of reduced 

sample size.

Neuropsychiatric diseases stayed in the same stable cluster in both taxonomies (see 

Supplementary Figure 4).24 However, within the cluster, disease groupings varied 

considerably. In our genetic classification, depression was significantly grouped with 

anxiety. This is in contrast to ICD9 taxonomy, which places depression together with mood 

and bipolar disorders. In our environmental classification, schizophrenia is significantly 

closer to bipolar and mood disorders than to depression, again contrary to ICD9.

As expected, a classification computed from complete phenotypic correlations represents a 

compromise between genetic-only and environmental-only classifications (see 

Supplementary Figure 4, right).

Discussion

We conducted a very large-scale, family-based, phenotypic-variance analysis of numerous 

complex diseases. Methodologically, our work is indebted to the work of Lichtenstein et 

al. 16 and Xia et al. 25 in considering genetic data for nosology inference16 and careful 

model selection.25 It has been long suspected that complex diseases have numerous 

predisposing factors, both in the genetic and environmental realms. For the first time, we 

were able to compare the contribution of both environmental and genetic determinants to the 

phenotypic variances and covariances of a broad range of diseases, and transform these 

covariances into estimates of disease classifications.

Our study contributes to a series of influential, interlinked probes into complex disease 

heritability and cross-disease genetic correlations.24,26–29 For example, Munoz et al. 2016 30 

studied 12 complex human diseases using 502,682 participants and the family histories of 

disease in 1.5 million individuals. As our dataset provides rich phenotypic information for a 
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very large population, we were able to analyze both the heritability and preventability of a 

collection of diseases (149) an order of magnitude larger than has been previously done, 

using data for a comparable number of individuals. Furthermore, the statistical power 

associated with this broad and complex sample provided a new opportunity to contrast 

genetic correlation estimates from family data with estimates that have been made using 

DNA variants. Confirming previous findings,29,31 we observed a near-linear relationship 

between total phenotypic and family-based genetic correlations with a proportionality 

constant of 1.150 (se = 0.035, p < 2 × 10−16, see Supplementary Figure 3). With a much 

smaller standard error, our ratio estimate is within the confidence intervals of published 

results.29,31 These results suggest that the largest part of genetic correlation between 

complex diseases is associated with common variants captured by SNP genotyping.

As is true for most observational studies, there are several possible sources of bias. Family 

studies based on closely-related individuals may inflate narrow-sense heritability estimates 

due to unaccounted for effects of shared environment, maternal influences, or epistatic 

interactions of genetic variants. 32,33 In agreement with previous findings regarding the 

significance of shared environmental effects, 25,30,34 our study provided first-time or updated 

heritability estimates for 149 diseases. On average, our heritability estimates were lower 

than those reported by twin/family studies by a factor of 0.90. Thus, we conclude that SNP-

based heritability estimates explain, on average, 49% of our family-based heritability 

estimates, a 13% increase from previous estimates (see Supplementary Table 6). Due to the 

differences in model selection procedures, agreement between our estimates and previously 

reported results on environmental effects is harder to ascertain.32 As articulated by Zuk et 
al., 33 one of the major sources of bias in estimates of heritability is associated with the 

choice of mathematical model, as the narrow-sense heritability, by definition, does not 

account for potential deviations from genetic additive model. The insurance data describes, 

at best, 54.7 to 69.7% of the US population, depending on age group (see URLs), so a 

considerable lower-income stratum of US society is not represented in this dataset. Data 

from insurance claims does not include ethnicity and race; therefore, we were unable to 

explicitly adjust for these confounders. Another contribution to the estimate bias can be 

attributed to assortative mating, as the US population is stratified by ethnicity, income, and 

geography, with all of these factors contributing to assortative marriages.

As would be expected due to the age distribution differences in our sample, parental disease 

prevalence tends to exceed same-disease prevalence in their children. This trend would be 

especially pronounced for late-onset conditions, such as Parkinson’s disease and prostate 

cancer (see Supplementary Table 1). We accounted for this by modeling age-related increase 

in disease liability with an age-specific, fixed-effect coefficient in our mixed-effect linear 

model. (See Methods and Supplementary Figure 6 for estimates of dependence of disease 

liability on age of patient for several late-onset conditions). Note that this type of modeling 

only accounts for mean differences in liability between age groups, but not differences in 

heritability between age groups. If the late-onset and early-onset varieties of the same 

disease were, indeed, shown to have distinct etiologies, their heritability values would have 

to be estimated separately. 35
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While ethnicity is not recorded in the US insurance claims, it can be imputed. For example, 

according to the US Centers for Disease Control and Prevention,36 sickle cell disease (SCD) 

affects, on average, one out of every 365 African Americans; the incidence rate of SCD in 

African Americans is about 88 times higher than the rest of the US population. The 

incidence rate of SCD in our database is 2.85523 × 10−4 vs 3.23891 × 10−4 in the nation on 

average. Given that the US African American population is 12.2 percent of the total (see 

URLs)37 African American patients appear to be represented in our data at 10.6% (about 

13% lower than the average across the US). Given the very large sample size, the ethnic 

diversity of our dataset should be a reasonable representation of the multiethnic composition 

of the US insured population.

When computed solely from genetic information, “genetic correlation is immune to 

environmental confounding but is subject to genetic confounding.” 24 In the case of family-

based analyses, environmental confounding is an issue researchers might address with an 

appropriate mathematical model of genetic and environmental factors working in consort. 

Unfortunately, the appropriate model is unknown and, therefore, interpretation of results is 

conditional on the assumptions of a rather simple, additive-genetic and additive-environment 

model—a model that is used, in most studies, for lack of a better (experimentally-grounded) 

alternative. Another conceivable caveat is related to possible biases in the sampling of 

affected individuals. 24 Finally, our results reflect the medical coding of disease in the 

healthcare system rather than research-quality disease diagnoses. Extensive study of the 

correspondence in results of genetic association studies conducted with research diagnoses 

and those conducted using diagnoses from electronic health records have demonstrated good 

concordance for large association studies.38

Lichtenstein et al.’s16 study discussed the difficulties and ambiguities associated with 

changing uncertain diagnoses (“patients with one diagnosis sometimes evolve into the other 

diagnosis”), and, to a large extent, their discussion and hedging apply here. Type 1 and type 

2 diabetes are excellent examples of this challenge. While type 1 diabetes leads to high 

blood glucose levels due to autoimmune destruction of the insulin-secreting beta-cells in the 

pancreas, type 2 diabetes arises from complex metabolic dysregulation of insulin secretion 

and the insensitivity of peripheral tissues to the action of insulin, the two are commonly 

conflated in electronic health records, even for the same patient. This is in part because their 

corresponding ICD9 codes are very close to one another (250.01 and 250.02 for type 1 and 

2, respectively), and in part because physicians often lack the data used in research studies to 

aid in making this distinction: Some type 2 diabetic patients are inevitably classified as type 

1 diabetics and, possibly, vice versa. This disclaimer regarding diagnostic uncertainty also 

applies to phenotypes with overlapping clinical signs, such as schizophrenia, schizoaffective 

and bipolar disorders, and depression, or benign and malignant skin cancers, but does not 

apply to diseases from radically different biological systems, such as schizophrenia and skin 

cancer.
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Online Methods

Data

Our study used data from the 2003–2011 Truven Health MarketScan Commercial Claims 

and Encounters Database, which comprised 115,805,687 individuals and 56,003,690 

policies. We defined a family as a group of individuals on a single insurance policy. In each 

family, we assumed primary and secondary beneficiaries were parents and other dependents 

were children.

To maximize the probability of correct genetic relatedness, we selected families with parents 

and dependents having at least 15 years’ age difference. In addition, we set the minimum 

enrollment time to six years, ran our analysis using 128,989 nuclear families with the fullest 

medical history in our database and which included children aged 16 and above. The 

resulting 481,657 individuals had been enrolled in the database for an average of 6.5 years.

We grouped ICD9 diagnostic codes into 568 categories based on their clinical 

manifestations. We then selected 149 diseases of 20 biological systems for univariate 

analysis where disease prevalence was larger than 0.3% in parents and children studied, with 

the standard error calculated as:

where n represents the total number of individuals, p is the prevalence, and f is the fraction 

of the total US population sampled 39. We calculated the age of onset for each disease as the 

five percent age percentile of all patients with a given disease in the database.

Because all individuals included in this study were between the age of 17 and 65, several 

late onset diseases have lower prevalence. For example, Parkinson’s disease prevalence 

among the parents and their children were 0.28% and 0.024%, respectively (see 

Supplementary Table 1) We excluded these low-young-adult-prevalence diseases from our 

study due to insufficient sample size.

We then calculated the phenotypes for each relational pair (parent-offspring, siblings, 

couples) and selected 29 diseases with at least 30 data points per pairwise disease state and 

relational category, also belonging to the four biological systems of interest 

(neuropsychiatric, immune, oncological, and cardiovascular) for bivariate analysis. Due to 

our focus on the four biological systems listed above and the high computational cost of 

estimation, several diseases included in the univariate analysis were not included in the 

bivariate analysis.

Statistical analysis

We used a multivariate, generalized, linear mixed model with a probit link40, i.e., the 

probability for an individual to have a disease is measured by an underlying Gaussian latent 

variable (liability ℓ) 41,42. This model 43 allows us to infer five kinds of factors influencing 
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disease liability variation: genetic effects associated with pedigree, environmental effects 

shared by couples, environmental effects shared by siblings, environmental effects shared 

within families, and unique environmental effects. In addition, disease prevalence differed 

between males and females, and between parents and their children. We accounted for these 

differences in disease liability by including age- and gender-specific fixed effects in our 

model. We assumed that the same disease manifesting itself both in parents and in their 

children has the same underlying liability, after accounting for the age and gender effects.

The outcome vector y shows a case (y = 1) or control (y = 0) status for each disease on the 

observed scale. Let liability ℓ = ϕ(y)−1, where ϕ is the Cumulative Distribution Function 

(CDF) of the standard normal distribution, and

where β is the vector for fixed effects of age and gender. a is the vector of random, additive, 

genetic effects based on pedigree, c is the vector of environment effects shared by a couple, s 
is the vector of environment effects shared by siblings, f is the vector of environment effects 

shared by a family, and e is the vector of unique effects. 43 We followed the naming 

convention used in Xia et al. 25

The underlying binary traits’ liability (co)variance structure43 is:

A is the additive genetic relationship matrix (genetic effects are assumed to be additive on 

the liability scale), Ic is the couple environment matrix, Is is the sibling environment matrix, 

If is the family environment matrix, In is an identity matrix, G is the additive genetic 

(co)variance, Rc is the couple environment (co)variance, Rs is the sibling environment 

(co)variance, Rf is the family environment (co)variance, and Re is the unique environment 

(co)variance. Furthermore, individual covariance matrices are parameterized as:

The narrow-sense heritability, couple environmental effects, sibling environmental effects, 

family environmental effects, and unique environmental effects for disease x are defined on 

the liability scale in the following way:
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We calculated the genetic correlation coefficient (rg) and the environmental correlation 

coefficient (re) as:

Due to the binary nature of our phenotypic data 44, we estimated variance components using 

Bayesian methods with the MCMCglmm package.14 We used a chi-squared prior with one 

degree of freedom for the univariate analysis45 and Half-Cauchy prior for the bivariate 

analyses.46 For the univariate analyses, we ran a burn-in period of 150,000 to 330,000 

iterations depending on convergence, and sampled 600,000 iterations with 500 thinning 

intervals. For bivariate analyses, we ran a burn-in period of 30,000 to 44,000 iterations, and 

sampled 120,000 iterations.

We checked model convergence using both standard MCMC diagnostic tests47–49 and visual 

comparison after the burn-in period. We reported parameter estimations with posterior 

means, posterior standard deviations, and 95 percent confidence intervals (CI). The posterior 

distributions represent the distributions of true parameters, given the data and the priors. 

Posterior probabilities for sign differences between the same disease genetic and 

environmental correlations were calculated assuming a bivariate normal posterior 

distribution. We corrected for multiple testing using the Benjamini-Hochberg method 15,50 

and deemed a correlation significant if it passed the false discovery rate of one percent. We 

also constructed neighbor-joining trees based on a distance definition of 1-correlation for the 

correlation matrices.18 We performed 10,000 simulations for each tree by sampling from the 

correlation posterior distributions. We calculated a bootstrap-like measure indicating the 

percentage of simulations that replicated the disease partition.

Model selection

We conducted two rounds of model selection to find the most appropriate genetic and 

environmental models for both univariate and bivariate analysis using deviance information 

criteria (DIC). 51 The full model ‘GCSF’, as well as five simpler models, were selected 

based on 29 diseases involved in both univariate and bivariate analyses. We then conducted a 

second run of model selection between the top two models on all 149 diseases. Due to the 

high computational cost of bivariate analysis, we based our bivariate model on univariate 

model selections and chose ‘GCS’ model for the bivariate analysis.

Pedigree error

Quantitative genetic estimations, such as those for heritability and genetic correlations, rely 

on the accuracy of the pedigree information. Intuitively, we expect a downward bias in both 

heritability and genetic covariances due to pedigree errors. Indeed, simulation and 

population studies have shown that heritability estimates were underestimated, albeit 

slightly; pedigrees with 20 percent errors led to five percent underestimation of heritability 

estimates52,53. Genetic correlation estimates were influenced even less by mis-assigned 
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relations: Both Morrissey et al. 54 and Bérénos et al. 52 found no biases caused by pedigree 

errors in genetic correlation estimations using both simulated and real data.

Stepchildren and adopted children

We collected US Census data on children by household types55,56. The 2010 US Census 

surveyed a large population and reported data for children of differing age groups, shown in 

Supplementary Table 7. Supplementary Table 8 is based on US Current Population Survey 

data from 2007 to 20011 for children under age 18. This data showed that the percentages of 

children living with both biological parents were consistent with percentages from US 

Census data.

Pedigree simulation

Following Charmantier and Réale’s53 simulation model, we performed 100 simulations on 

5000 nuclear families, of which 2.4% have adoptive children and 6.2% have stepchildren55 

and estimated parameters with the true pedigrees versus mis-assigned pedigrees. We used a 

stochastic simulation model to generate pedigrees of two generations, with varying 

heritability estimates (0.03–0.97) and genetic correlations (0.13–0.85). The parents are 

assumed to be unrelated and unselected individuals. We simulated two binary traits, 

following the model y = I(ℓ > 0), ℓ = μ+ Za + e where y is the matrix containing individual 

phenotypes at both traits, ℓ is the underlying liability, μ contains the population means for 

liability, a is a matrix of additive genetic effects, and e is a matrix of residual errors. Z 
represents an incidence matrix of the individual effects a has upon liabilities in ℓ. All models 

were solved using the MCMCglmm. Indeed, we also found a mean underestimation of 5.6% 

(SE=0.56) for heritability and no evidence of biases for estimations of either genetic (t-test 

p=0.8784) or environmental correlations (t-test p=0.9948). We then calculated and reported 

heritability estimates adjusted for the underestimation.

Heritability comparison

In comparing our heritability estimates with results from other independent studies, we first 

collected reference family heritability estimates for 65 out of the 149 traits we studied. We 

also collected 31 GWAS heritability estimates from literature. We reasoned that the two 

estimates for the same disease agreed with each other when their 95% confidence intervals 

overlapped. The comparisons are listed in Supplementary Tables 3 and 6.

GWAS and family-based genetic correlations

We compared our genetic correlation estimates with estimates using GWAS data on common 

pairs of traits. First, we collected genetic correlations from literature24,28,29,57. Next, we 

compared those genetic correlation estimates we found in common. To maximize this 

comparison, we broadened the collection of traits to include non-rheumatic heart disease as 

a proxy for cardiovascular diseases29, and type I diabetes as a proxy for fasting glucose, see 

Pippitt et al. 58 for justification of this choice. The resulting 30 genetic correlation pairs 

(shown in Supplementary Table 5) showed a correlation of 0.769, 95% CI (0.571–0.883) 

between our estimates and GWAS results, along with a linear fit with a proportionality 

constant of 1.08 (SE=0.167), indicating consistency between the two methods.
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Data Availability Statement

All data that support the findings of this study are included in this published article (and its 

supplementary information files). The raw data are available from Truven MarketScan®; 

restrictions apply to the availability of these data, which were used under license for the 

current study. A user license could be obtained by following this link https://

marketscan.truvenhealth.com/marketscanportal/

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Information on study population, results of model selection, and analysis of heritability of 

149 diseases. (A) Distribution of study population across population density septile; septile 1 

corresponds to the most-rural counties and septile 7 most-urban. (B) Number of children in a 

family as a function of population density septile; septile notations are the same as in the 

(A). (C) Parent/child age distribution in studied families. (D) Model selection results, using 

univariate models GF, GS, GCF, GCSF, GC, and GCS, where G stands for additive genetics, 

F for common family environment, S for common sibling environment, and C for 

environment common for parental couple; plot shows frequency of corresponding model 
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becoming the “best” (rank 1) as compared by DIC, second best (rank 2), and so on; clearly, 

the GCS model wins in the majority of cases. (E) Disease heritability estimates with one 

standard deviation; diseases, heritability for which appears to be measured for the first time 

are marked with asterisk; heritability values are sorted in decreasing order; color of the bar 

indicates biological system associated with the disease, see key in the upper right corner; 

keys to disease acronyms are given in the Supplementary Table 1 and 2. (F) Estimates of 

disease heritability values against estimates of disease prevalence; the linear correlation is 

significantly negative, Pearson’s r = −0.212 (95% CI [−0.36 −0.05]), and p = 0.00915. (G) 

Comparison of our estimates of heritability with the previously published estimates; see 

Supplement Table 3 for detailed numbers.
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Figure 2. 
Genetic and environmental correlations between diseases. (A) Matrix of pairwise genetic 

correlations (upper half) and corresponding environmental interactions (lower half) colored 

by sign and magnitude (see legend) The disease color labels indicate biological systems 

associated; the size of the squares indicates statistical significance, see key on the right. 

Cells with asterisks indicate pairwise interactions that remained significant at a false 

discovery rate of 1%.15 The color boxes within the matrix indicate opposite-sign correlation 

values for the same pair of diseases. Posterior probabilities of two correlation values (genetic 

and environmental) for the same pair of diseases having the same sign were 1.869 × 10−14 
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(ADHD and benign skin neoplasm), 3.376 × 10−14 (ADHD and non-melanoma skin cancer), 

4.523 × 10−9 (adjustment disorder and general hypertension), 8.715 × 10−4 (migraine and 

type 1 diabetes mellitus), 9.251 × 10−5 (benign skin neoplasm and type 1 diabetes mellitus), 

6.401 × 10−33 (benign skin neoplasm and general hypertension), 3.712 × 10−17 (non-

melanoma skin cancer and general hypertension), 3.933 × 10−4 (allergic rhinitis and type 1 

diabetes mellitus). (B) Distribution of (Genetic correlation − Environmental correlation) 

values for the same pair of diseases. (C) Individual distributions of genetic and 

environmental correlations superimposed on the same plot. (D) Comparison of our family-

based estimates of genetic correlations between diseases compared to previously published 

GWAS-based values, the complete data on values and references is provided in the 

Supplement Table 5. Linear fit with a slope of 1.08 (SE=0.167) is indicated by the dotted 

line.
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Table 1

Disease prevalence and heritability estimates for 30 most prevalent diseases in our study.

Disease Prevalence h2 h2 SD

Cardiac Dysrhythmia 0.045 0.240 0.011

General Hypertension 0.173 0.462 0.009

Esophageal Disease 0.077 0.292 0.008

Functional Digestive Disorder 0.051 0.203 0.009

Type II Diabetes Mellitus 0.066 0.561 0.010

Allergic Rhinitis 0.108 0.445 0.006

Asthma 0.063 0.457 0.008

Atopic Contact Dermatitis 0.095 0.202 0.006

Chronic Sinusitis 0.047 0.523 0.008

Eye Inflammation 0.045 0.292 0.009

Osteoarthritis 0.068 0.256 0.012

Cellulitis 0.061 0.226 0.007

Ear Infection 0.106 0.244 0.007

Eye Infection 0.053 0.200 0.009

Fungal Infection 0.063 0.211 0.007

UTI 0.083 0.227 0.007

Viral Warts HPV 0.038 0.289 0.009

Acne 0.036 0.501 0.010

Keratosis 0.058 0.344 0.015

General Spondylosis Spine Disorder 0.081 0.325 0.008

Muscle Ligament Disorder 0.121 0.268 0.006

Synovium Tendon Bursa Disorder 0.039 0.180 0.009

Benign Colon Neoplasm 0.039 0.173 0.019

Benign Skin Neoplasm 0.067 0.547 0.007

Non-Melanoma Skin Cancer 0.054 0.520 0.008

Anxiety Phobic Disorder 0.063 0.432 0.007

Depression 0.038 0.579 0.006

Substance Abuse 0.045 0.422 0.010

Breast Disorder 0.044 0.166 0.010

Disease of the Female Reproductive Organs 0.105 0.235 0.009
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