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A B S T R A C T   

Anthelmintic resistance is a significant threat to livestock production systems worldwide and is emerging as an 
important issue in companion animal parasite management. It is also an emerging concern for the control of 
human soil-transmitted helminths and filaria. An important aspect of managing anthelmintic resistance is the 
ability to utilise diagnostic tests to detect its emergence at an early stage. In host-parasite systems where 
resistance is already widespread, diagnostics have a potentially important role in determining those drugs that 
remain the most effective. The development of molecular diagnostics for anthelmintic resistance is one focus of 
the Consortium for Anthelmintic Resistance and Susceptibility (CARS) group. The present paper reflects dis-
cussions of this issue that occurred at the most recent meeting of the group in Wisconsin, USA, in July 2019. We 
compare molecular resistance diagnostics with in vivo and in vitro phenotypic methods, and highlight the ad-
vantages and disadvantages of each. We assess whether our knowledge on the identity of molecular markers for 
resistance towards the different drug classes is sufficient to provide some expectation that molecular tests for 
field use may be available in the short-to-medium term. We describe some practical aspects of such tests and how 
our current capabilities compare to the requirements of an ‘ideal’ test. Finally, we describe examples of drug 
class/parasite species interactions that provide the best opportunity for commercial use of molecular tests in the 
near future. We argue that while such prototype tests may not satisfy the requirements of an ‘ideal’ test, their 
potential to provide significant advances over currently-used phenotypic methods warrants their development as 
field diagnostics.   

1. Introduction - the need for resistance diagnostics 

Parasitic helminths have major impacts on the health of livestock, 
companion animals and humans worldwide. These health impacts 
include significant production losses and death in livestock, as well as 
weight loss, anaemia and death in companion animals, and morbidity in 
humans. Parasite control in all of these host species relies largely on the 
use of anthelmintic drugs. Chemicals from the same major drug classes 
are utilised across all three areas; benzimidazole drugs (e.g. albenda-
zole) are widely used for the control of gastrointestinal nematode (GIN) 
parasites of livestock, hookworms in companion animals, and human 
soil-transmitted helminths (STH). Macrocyclic lactones (avermectins, e. 
g. ivermectin, and milbemycins, e.g. moxidectin) are used for GIN and 
ectoparasite control in livestock, as well as heartworm prevention in 

companion animals, and onchocerciasis, lymphatic filariasis, strong-
yloides and scabies in humans. Pyrimidines (e.g. pyrantel) are 
commonly used for the control of GIN in companion animals and oc-
casionally in humans for control of STH. Levamisole (an imidazothia-
zole) is used for GIN control in livestock. 

As with other areas in which chemicals have been used for the 
control of microbes or arthropods, the use of anthelmintic drugs over 
many years has led to the development of drug resistance in multiple 
helminth species (Kaplan, 2004; Wolstenholme et al., 2004; Fairweather 
et al., 2020). The impact of this has been particularly severe in the 
livestock industries, with significant levels of resistance worldwide in 
GIN parasites of sheep, goats and cattle. Resistance to anthelmintics is 
also widespread in gastrointestinal parasites of horses (Matthews, 2014) 
and is increasingly reported for canines (Kopp et al., 2007; Bourguinat 
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et al., 2015; Chelladurai et al., 2018; Kitchen et al., 2019). There have 
also been some suggestions of reduced efficacy of anthelmintics against 
human helminths (Osei-Atweneboana et al., 2011; Vercruysse et al., 
2011; Crellen et al., 2016; Krucken et al., 2017). While there is emerging 
evidence to suggest that genetic change may be occurring at the popu-
lation level in response to drug treatment in some human parasites 
(Doyle et al., 2017; Faust et al., 2019), conclusive evidence of definitive 
genetic changes, indicative of the emergence of resistance, is lacking. 

Minimising the impact of drug resistance requires an ability to detect 
its presence. This allows for drug-use decisions to be made based on the 
knowledge of what drugs remain effective against the target helminth 
population. Once resistance has been detected to a particular drug or 
drug class, the use of alternative drugs ensures that parasitic infections 
can be effectively controlled and that further selection pressure is not 
applied by the drug for which resistance is emerging. However, despite 
this need for diagnostic tools to detect and monitor drug resistance, and 
many years of research into the molecular basis of anthelmintic resis-
tance, no molecular-based tests are commercially-available for the 
diagnosis of resistance in field settings. 

The development of molecular diagnostics for anthelmintic resis-
tance has been one of the main themes behind the scientific meetings of 
the Consortium for Anthelmintic Resistance and Susceptibility (CARS). 
This group was established following discussions held at the World As-
sociation for the Advancement of Veterinary Parasitology (WAAVP) 
meeting in New Zealand in 2005. The group aims to promote research on 
the molecular mechanisms of drug resistance and drug action, with a 
view towards the development of molecular markers for resistance 
diagnosis, and to assist in the development of new anthelmintic drugs. 
The first meeting was held in Glasgow in 2006, with the group meeting 
on seven occasions since then. The most-recent meeting, in Madison, 
Wisconsin, in July 2019, discussed the challenges of adopting molecular 
diagnostics for anthelmintic resistance. The present paper reflects those 
discussions. The paper complements the recently-published review by 
Nixon et al. (2020) on the challenges of developing new anthelmintics 
that was also a major theme of the CARS 2019 meeting. 

2. Current diagnostic tools for anthelmintic resistance, and their 
relative merits 

Tests for anthelmintic resistance fall into three general categories:  

1) In vivo tests measure the impact of drug treatment on the parasite 
population within the animal or human host. These tests generally 
rely on indirect measures of parasite burden before and after drug 
treatment in order to quantify the impact of the drug, and hence, 
determine if its effectiveness is reduced by drug resistance in the 
worm population. The most common measurement is the counting of 
eggs in faecal samples taken before and after drug treatment for the 
faecal egg count reduction test (FECRT) (Coles et al., 1992). This test 
is widely used across GIN parasites of livestock and is currently used 
for assessment of drug efficacy in terms of egg reduction rate (ERR) 
for human STH (WHO, 2013). Other indirect measurements of 
parasite burden before and after treatment include coproantigen 
levels for detecting drug resistance in Fasciola hepatica (Brockwell 
et al., 2013), circulating microfilaremia after administration of 
macrocyclic lactone drugs to canines for control of Dirofilaria immitis 
(Geary et al., 2011), and microfilarial counts in human skin snips for 
detection of resistance to this same drug class in Onchocerca volvulus 
(Osei-Atweneboana et al., 2011). These indirect in vivo tests have 
become the industry standards. 

2) In vitro tests measure the sensitivity of helminth eggs, larvae or oc-
casionally adult worms, to drug exposure in laboratory-based assays. 
Such assays detect the phenotypic effects of drugs on various aspects 
of worm development, activity or viability (for example, egg hatch, 
larval development, or worm movement). For detection of drug 
resistance, they rely on resistance at a free-living larval stage being 

directly correlated with resistance shown by the parasitic stage in the 
host (generally the adult worm). 

3) Molecular diagnostic tests are defined, for the purposes of this re-
view, as being able to detect and/or analyse nucleic acid molecules 
(DNA or RNA), and hence, are able to directly measure genetic dif-
ferences between susceptible and resistant populations. A molecular 
diagnostic test may aim to detect “causal” genetic differences within 
genes coding for: (i) drug receptors (i.e., variation that restricts the 
drug from physically interacting with the drug target), or (ii) various 
processes within the nematode that act to regulate the amount of 
drug that reaches the receptor (for example, genes involved in drug 
detoxification, drug efflux, or amphidial drug uptake) (Kotze et al., 
2014). Alternatively, a molecular diagnostic test may aim to char-
acterise sequence polymorphisms that are genetically “linked” to the 
causal variants within functionally relevant genes, and so act as ge-
netic markers for resistance. Molecular tests aim to utilise DNA 
prepared from readily-accessible helminth life stages to define ge-
netic changes that are directly related to drug resistance in the life 
stages present in the host. Molecular tests can also be used as a means 
to quantify parasite species community composition (discussed 
further in section 5.1.). A range of different molecular testing plat-
forms and assays are available, from whole genomes to single 
nucleotide variants, the choice of which is largely dependent on the 
scale and resolution required (see Box 1 and Table I of Doyle and 
Cotton (2019) for a comparison of approaches to assaying 
genome-wide diversity). 

The various tests differ with respect to a number of important 
practical considerations:  

1) Speed: FECRTs take >3 weeks, consisting of post-treatment sampling 
at 2 weeks after drug treatment, followed by an additional 1 week for 
larval culture in order to define species-specific resistance levels in 
mixed-species infections. In vitro assays require up to 1 week for the 
completion of larval development. Molecular tests can generally be 
performed within 2 days, and can be automated, allowing for ex-
amination of many samples in a short period of time. Molecular as-
says can provide information on the species composition of larval 
populations much more quickly than is possible with labour- 
intensive larval speciation by traditional microscopy techniques. 
When resistance-causing SNPs are known, such as in benzimidazole 
resistance, SNP analysis can also allow relatively high throughput, 
for example, by using pyrosequencing. Pyrosequencing is typically 
done in a 48-well plate format, and it is feasible to analyse up to 96 
pooled samples per day. Furthermore, because the SNPs at codons 
200 and 198 are very close in the genome, both SNPs can be analyzed 
in a single benzimidazole resistance assay for most species (Barrere 
et al., 2013; Diawara et al., 2013a; Prichard unpubl. data).  

2) Sensitivity: the FECRT is very insensitive, and hence, is not suitable 
for detecting low levels of resistance (<25%) (Martin et al., 1989). 
Molecular tests, when the genetic changes are well characterized, 
can provide accurate measurements of resistance alleles even at low 
frequencies (for example, DNA sequencing can reliable detect vari-
ants at a frequency as low as 0.1%, dependent on the sequencing 
depth and error rate of the platform used), which is necessary to 
characterise the initial stages of resistance emergence in a population 
and at a time when alternative management options can be best 
applied (Avramenko et al., 2020; Melville et al., 2020). 

3) Sampling: the FECRT requires sampling of faeces from multiple an-
imals before and after drug treatment, as well as administration of 
different drug treatments to separate groups of animals if multiple 
drugs are to be assessed. This can greatly increase the time and cost 
of anthelmintic resistance testing. In contrast, both in vitro pheno-
typic and molecular tests can be performed on single samples taken 
independently from drug treatments. One particular challenge of in 
vitro phenotyping tests is the need for very fresh live material that 
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often has to be transported and stored under very specific conditions 
(for example, to prevent the hatching of nematode eggs prior to the 
test). This can lead to significant logistical challenges. On the other 
hand, molecular tests can generally be performed on parasite mate-
rial stabilised with a chemical fixative (e.g. 96% ethanol; Ayana 
et al., 2019) or on a solid substrate (e.g. FTA cards; Doyle et al., 
2019a), allowing greater flexibility of sampling, transport, and 
storage.  

4) Use across multiple drug classes: the FECRT can inform on drug 
resistance across all drug classes using a similar experimental format. 
Some in vitro phenotypic assays are limited to single drug classes; e.g. 
egg hatch assays with benzimidazoles (von Samson-Himmelstjerna 
et al., 2009). Other in vitro tests have wider application across mul-
tiple drug classes; e.g. larval development assays with some livestock 
GIN species for benzimidazoles, macrocyclic lactones and imidazo-
thiazoles (Lacey et al., 1995; Ruffell et al., 2018). However, there are 
a number of instances where in vitro tests are unable to detect 
resistance to macrocyclic lactone drugs; e.g. motility assays with 
livestock GIN (George et al., 2018) and migration and motility assays 
with D. immitis microfilariae (Maclean et al., 2017; Evans et al., 
2017). Molecular tests rely on the use of known and distinct genetic 
markers for each of the different drug classes. Although we currently 
do not have candidate genetic markers for all drug classes, once these 
subsets of markers are established, there is potential for their use in a 
single assay format to detect genetic variants associated with resis-
tance across the multiple classes.  

5) Use across multiple worm species: FECRTs, accompanied by a larval 
culture or a molecular species identification step, are able to measure 
resistance to any drug class across all important GIN. Larval devel-
opment assays are effective with some species (principally 
H. contortus), but are not effective for other species with some drugs 
(e.g., T. circumcincta and macrocyclic lactones; Lloyd, 1998). Mo-
lecular assays would need to be validated for each species, however, 
some commonalities across species may be expected, for example, 
mutations in the isotype 1 β-tubulin gene have been reported to be 
associated with benzimidazole resistance across multiple GIN species 
of livestock, horses, and companion animals (Beech et al., 2011; 
Kitchen et al., 2019).  

6) Specific knowledge requirements: the tests differ with respect to the 
required level of understanding of the specific changes that occur 
within a worm population as resistance develops. In vivo and in vitro 
tests are based on relatively simple observational measurements of 
parasite phenotypes, for example, egg numbers in faeces, egg hatch 
rate, and numbers of larvae able to develop to the infective stage. 
Molecular tests on the other hand require specific knowledge of the 
genetic changes that represent useful markers for diagnosis of 
resistance; to assay these genetic changes, knowledge of at least the 
gene sequence, and perhaps, whole genome sequence may be 

required. Initiatives such as the 50 Helminth Genomes Project (In-
ternational Helminth Genomes Consortium, 2019) and databases 
such as WormBase ParaSite (Howe et al., 2017) provide significant 
advancement toward this goal. For some species, high quality 
genome datasets are available (Doyle et al., 2020), however, for 
many species these data are either not yet available or the data 
sufficiently poor such that the development of such assays can be 
confounded.  

7) Cost: The costs for the different tests include labour costs involved in 
collecting samples in the field and their examination in the diag-
nostic lab, as well as cost of the equipment and consumables required 
for the laboratory component of the test. The FECRT is rather labour 
intensive, and thus expensive. For example, the cost associated with 
performing FECRTs (not including cost of labour on-farm) offered by 
a diagnostic lab in Australia is approximately $US600, which in-
cludes efficacy data for 7 different drugs or drug combinations (Tim 
Elliot, Invetus Pty. Ltd., personal communication). Larval develop-
ment assays are somewhat cheaper than FECRTs, at an approximate 
cost $US450 for 3 drug classes tested against H. contortus (O’Brien 
2015). Labour costs are less for molecular testing, and although they 
require the use of specific and often expensive laboratory equipment 
and expertise, molecular diagnosis is becoming routine in advanced 
diagnostic laboratories and most aspects of the technical re-
quirements are common to a wide range of pathogens including 
bacterial, viral and fungal species. While no accurate costs are 
available for molecular anthelmintic resistance testing in the current 
absence of a commercial test, in Australia, the New South Wales 
Primary Industries offers realtime quantitative PCR-based diagnostic 
tests for various viral, bacterial or fungal pathogens at a cost of 
approximately $US60 per test (NSW DPI, 2019). Importantly, mo-
lecular diagnostic platforms and DNA sequencing technologies are 
developing at a rapid pace, and so molecular tests are likely to 
become even more affordable and improve in their flexibility even in 
the short term future. 

3. Current status of anthelmintic resistance marker 
development for each of the major drug classes and helminth 
species 

The degree to which the molecular mechanisms of resistance are 
understood, or for which resistance markers have been identified, varies 
considerably among the different drug classes and parasite species. 
Hence, the expected timeline of being able to transition a laboratory- 
based research tool into an assay for use as a commercial resistance 
diagnostic also varies between the different drug classes and worm 
species. 

Many GIN species, particularly of livestock, have extremely high 
levels of sequence polymorphism which makes identifying causal 

Box 1 
Properties of the “Ideal” Molecular Diagnostic Test.  

- Detects resistance mutations in all target parasite species of relevance  
- Detects resistance mutations for all drug classes that need to be considered  
- Detects all mutations that contribute to the resistance phenotype for each drug  
- Provides accurate quantification of resistance mutation frequencies  
- Provides accurate prediction of drug sensitivity phenotype  
- Detects resistance mutations present at very low frequencies, providing high sensitivity  
- Highly cost effective with low cost per sample  
- Rapid: either rapid pen-side test or laboratory test that takes less than 24 h  
- High throughput and scalable so that it can be applied to large numbers of samples  
- Simple to perform such that it does not require specialist training and can be performed in routine diagnostic laboratories, or “on-farm”  
- Easily interpretable results, for both the diagnostic technician and the end-user  
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resistance mutations challenging (Gilleard and Redman, 2016; Salle 
et al., 2019). Nevertheless, significant progress has been made in iden-
tifying the genetic basis in resistance to several drug classes. Here, we 
briefly summarise the status for each of the major drug classes with a 
view to highlighting the degree to which there is an adequate level of 
knowledge to suggest that a molecular test for resistance is possible in 
the short-to-medium term:  

1) Benzimidazoles: Resistance to broad spectrum benzimidazoles is the 
best understood of the various anthelmintic resistance mechanisms. 
There is a great deal of evidence that mutations in the isotype 1 
β-tubulin gene (F200Y, E198A, E198L and F167Y) are the major 
determinants of resistance for many of the trichostrongylid GIN 
species of ruminants. The order of prevalence overall is F200Y >
F167Y > E198A and E198L, although the relative frequency and 
importance of each mutations can vary significantly between nem-
atode species and geographical location (Kwa et al., 1994; Ghisi 
et al., 2007; von Samson Himmelstjerna et al., 2007; Redman et al., 
2015; Avramenko et al., 2019). Most attempts to develop molecular 
tests for anthelmintic resistance have focused on these three posi-
tions in the isotype 1 β-tubulin gene, although there is some evidence 
that other loci and mechanisms may also be involved in benzimid-
azole resistance, for example, variation in the isotype-2 β-tubulin 
gene (Kwa et al., 1993) and increased levels of drug metabolism 
(Stuchlikova et al., 2018), in some resistant species.  

2) Imidazothiazoles: We have a solid understanding of the target and 
mechanisms by which levamisole acts, and in turn, a number of 
candidate genetic markers for resistance second to that of the 
benzimidazole class. The levamisole-sensitive nicotinic acetylcholine 
receptor (nAChR) in C. elegans is well understood, with a pentameric 
structure composed of protein subunits encoded by five genes, Cel- 
unc-38, Cel-unc-63, Cel-unc-29, Cel-lev-1 and Cel-lev-8. Orthologues of 
several of these genes have been identified in H. contortus and other 
strongylid nematodes (Fleming et al., 1997; Culetto et al., 2004; 
Towers et al., 2005; Neveu et al., 2010); in some instances, reduced 
expression of these subunits, for example, Hco-unc-29 and 
Hco-unc-63, have been characterized in resistant relative to suscep-
tible H. contortus isolates (Kopp et al., 2009; Sarai et al., 2013; Wil-
liamson et al., 2011). A screen of ~17,000 cDNA-amplified fragment 
length polymorphism (cDNA-AFLP) tags identified just 11 that were 
present in two levamisole resistant isolates but absent from two 
susceptible isolates (Fauvin et al., 2010). One of these cDNA-AFLP 
tags identified a truncated transcript of the Hco-acr-8 gene, which 
was suggested to act as a dominant negative allele in the resistant 
populations. The same truncated transcript was subsequently found 
in three additional resistant isolates, two from Australia and one 
from the US (Sarai et al., 2013; Williamson et al., 2011). An inde-
pendent study revealed a 63 bp deletion leading to altered splicing of 
part of intron-2 in the Hco-acr-8 transcript in 12 additional levami-
sole resistant isolates originally derived from Zimbabwe, South Af-
rica and the USA (Barrerre et al., 2014). Although the correlation 
between the presence of the truncated Hco-acr-8 transcript and the 
levamisole resistant phenotypes was not perfect across all the isolates 
examined in these studies, this work suggests that deletion mutations 
in the Hco-acr-8 gene are at least associated with levamisole resis-
tance in H. contortus and warrants further validation studies to 
determine its suitability as a marker of levamisole resistance.  

3) Macrocyclic lactones: most of the work to date on resistance to 
macrocyclic lactones has been undertaken on H. contortus where, 
until recently, progress on the identification of resistance loci has 
been hampered by a lack of good genomic resources. Consequently, 
many studies have focused on hypothesis-based selection of candi-
date genes and the investigation of genetic associations between 
genetic variation and/or differential expression of candidate genes in 
relatively small numbers of susceptible and resistant isolates. This 
has led to a wide range of candidate genes being implicated, 

including P-glycoproteins, glutamate-gated chloride (GluCl) chan-
nels, and gamma aminobutyric acid (GABA) channels. Although 
some encouraging results have been reported, evidence of genetic 
associations between these candidates and phenotypic resistance 
have been generally inconsistent across studies (Kotze et al., 2014). 
For example, a subset of SNPs within the dyf-7 gene common to 
multiple ivermectin-resistant isolates of H. contortus with sensory 
amphid neuron defects from five continents (Urdaneta-Marquez 
et al., 2014) were subsequently shown to be not predictive of resis-
tance in other H. contortus isolates from Africa, Australia and Europe 
(Laing et al., 2016; Rezansoff et al., 2016; Elmahalawy et al., 2018). 

The recent transition from candidate-based single (or few) gene 
approaches to unbiased genome-wide and genetic mapping ap-
proaches has begun to resolve some of the genetic uncertainty 
associated with candidate genes, and in turn, identify promising new 
markers linked to resistance. Genetic crosses between susceptible 
and resistant parental isolates of H. contortus, followed by serial 
backcrossing, drug-selection, and whole genome sequencing have 
identified a single genomic quantitative trait locus (QTL) localised on 
chromosome V that is associated with ivermectin resistance in two 
independent ivermectin-resistant isolates (MHco10 [CAVR] and 
MHco4 [WRS], originally derived from Australia and South Africa, 
respectively (Redman et al., 2012; Doyle et al., 2019b). A subsequent 
independent F2 mapping cross also identified the same locus in a 
multi-drug resistant strain derived from the southern US (MHco18 
[UGA2004]) (Doyle, unpubl. data). These data are further supported 
by analyses of multiple ivermectin resistant H. contortus field pop-
ulations in western Canada, whereby evidence of selection in the 
chromosome V region measured by amplicon sequencing was 
observed (Rezansoff, 2018). Collectively, these data provide support 
for a single major ivermectin locus on H. contortus chromosome V 
that is of widespread importance. The ability to resolve the genetics 
of ivermectin resistance in H. contortus, including the identification 
of a single QTL, has been significantly advanced by the use of highly 
resolved genomic resources for H. contortus (Doyle et al., 2020), and 
has refocused efforts away from many previously proposed candidate 
genes. There are several hundred genes in the mapped Chromosome 
V region and finer mapping of the region is being undertaken to 
identify the likely single causal gene, or sufficiently tightly linked 
markers, for use in a molecular diagnostic test similar to that avail-
able for the isotype-1 β-tubulin markers for benzimidazole resis-
tance. 

A similar genetic cross followed by genome sequencing strategy 
was employed to map variation associated with multidrug resistance 
in a field derived strain of T. circumcincta (Choi et al., 2017). Among 
many genome-wide signals of differentiation between the susceptible 
and backcrossed populations, a number of candidate genes, and in 
particular a copy number variant of the drug efflux associated 
Tci-pgp-9, were linked to ivermectin resistance. This apparent 
multigenic signal was similarly observed in a genome-wide analysis 
of sub-optimal response to ivermectin by the filarial nematode 
Onchocerca volvulus, whereby multiple genes in a limited number of 
molecular pathways were proposed to be involved in neurotrans-
mission, development, and stress responses were linked to regions of 
the genome undergoing selection in response to drug treatment 
(Doyle et al., 2017). These studies suggest the feasibility of devel-
oping diagnostic markers will be challenging in some contexts, and 
that panels of genetic markers may be needed to be informative. 

In contrast, the application of a whole genome approach across 
multiple field isolates has revealed a small number of SNPs that may 
be useful markers for resistance to macrocyclic lactones in the canine 
heartworm D. immitis (discussed in detail in section 5.4).  

4) Amino acetonitrile derivatives: laboratory-selected and field-derived 
monepantel-resistant isolates of H. contortus have been shown to 
possess numerous different mutations in the gene coding for the 
nAChR target of this drug (Hco-mptl-1) (Rufener et al., 2009; Bagnall 
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et al., 2017; Niciura et al., 2019). These various mutations would be 
expected to result in the formation of truncated, and presumably 
non-functional, target receptors in the resistant worms. In terms of 
implications for design of a resistance diagnostic, causal mutations in 
a single gene could be seen as an advantage in terms of simplicity in 
requiring a focus on just a single locus. However, any test would need 
to account for many possible mutations across the length of this gene 
as more than ten different mutations have been reported to date from 
three isolates (Rufener et al., 2009; Bagnall et al., 2017), and it is 
likely that more will exist in other field-derived resistant isolates. 

4. What practical information does a molecular test need to 
provide ? 

Parasite control is complex and there are an endless number of re-
quirements one might demand of a molecular diagnostic test before it is 
applied in the field (see Box 1). 

It is clear that if we require molecular diagnostic tests to fulfil all the 
criteria outlined in Box 1 then it is unlikely they will be deployed in the 
foreseeable future. However, given the limitations of current in vivo and 
in vitro resistance tests, molecular diagnostic tests have the potential to 
significantly improve drug resistance diagnostics even if they only 
provide incomplete information and fulfil only some of the criteria in 
Box 1. It is also important to bear in mind that the information that a 
molecular test needs to provide will vary considerably according to the 
nature of the application and drug-use environment in which the test is 
to be utilised. This means that we should not set the bar too high before 
attempting to implement molecular diagnostics in the field. Instead, we 
need to move towards an iterative approach in which molecular diag-
nostic tests used in research are piloted for more routine diagnostic use 
at a relatively early stage in their development in order to provide 
practical knowledge to inform further refinement and improvement. 
Such proof-of-concept studies should also help promote greater aware-
ness of the value and practicality of diagnostic testing to support 
evidence-based parasite control. 

There are situations where it may be sufficient to simply discriminate 
between parasite populations that are largely susceptible to a drug 
versus populations that have some level of resistance, with no need to 
accurately quantify the level of drug efficacy between 0 and 100%. In an 
ideal drug-use environment, identification of a worm population as 
being resistant, at whatever level, would allow a livestock producer to 
choose an alternative drug to which the helminths on the property are 
fully susceptible. This situation pertains, for example, in Western Ca-
nadian sheep where H. contortus is resistant to ivermectin and/or 
benzimidazoles on many, but not all farms, and where the newly- 
licensed drugs closantel and abamectin/derquantel are available and 
highly effective (Gilleard, unpubl. data). A diagnostic test that could be 
used to determine if ivermectin and benzimidazoles were still highly 
effective on a farm would allow their use, and hence, preserve the newer 
and more expensive drugs for when they are truly needed. In cattle, 
where resistance to some compounds among some helminth species is 
still relatively uncommon (Cotter et al., 2015; Avramenko et al., 2020), 
the use of a molecular test to simply detect resistance may be valuable. 
In addition, a molecular test that is able to discriminate between 
D. immitis that are susceptible or resistant to macrocyclic lactones 
(Ballesteros et al., 2018) would be of value (see section 5.4). 

In some parts of the world, where widespread resistance to multiple 
drug classes occurs in small ruminants, the ability to quantify the level of 
resistance becomes more important. The ideal molecular test in these 
situations would accurately relate resistance allele frequency (or some 
other molecular measurement) to drug efficacy, either in terms of per-
centage efficacy (0–100%), or more likely in broad bands of low- 
medium-high-level resistance. This would allow drug-use decisions to 
be based firstly on whether resistance to a specific drug class existed on 
the property, and secondly on the degree to which the resistance had 
reduced the expected efficacy of the drug. In a situation where some 

resistance is expected towards all the major drug classes, a livestock 
producer may be able to choose a drug that retained a high level of 
expected efficacy over a drug with a very low expected efficacy. Such 
continued use of a drug to which some resistance already exists is not 
ideal as it will most-likely result in further selection pressure and 
increased levels of resistance to this drug, however, it will at least allow 
some control of parasites to be maintained in the short term. In countries 
where combination products are available, or settings where producers 
choose to administer two drugs simultaneously, knowledge on what 
drugs remain most effective (when some degree of resistance to all drugs 
is expected) will allow producers to choose the most effective drug 
combinations. 

The existence of high levels of resistance to multiple drug classes 
(benzimidazoles, macrocyclic lactones, imidazothiazoles) in many small 
ruminant production systems means that for molecular tests to be useful 
in such environments they would need to detect resistance across mul-
tiple chemical classes. A test for a single drug class would have limited 
value as it would not provide any information as to what alternative 
drugs remain the most effective on a property. On the other hand, where 
resistance is more limited in scope, such that some drug classes are ex-
pected to be highly effective, the ability to use a molecular test for only a 
single drug class may still be of benefit. For example, with human STHs, 
where the focus at present is on the use of benzimidazoles, a test for just 
this drug class would be of benefit for detecting the emergence of 
resistance, informing on the need to use alternatives, and guide efforts to 
achieve elimination of human STHs relying on mass drug administration 
with just this single class of anthelmintic. 

There is considerable potential for molecular tests in surveillance for 
anthelmintic resistance. Although it is critical that the emergence of 
resistance in different regions is detected at an early stage, surveillance 
is currently limited to a relatively small number of ad hoc research 
projects. Molecular tests are much more suited to large scale surveil-
lance than efficacy-based or in vitro tests as the former can utilise ro-
botics and high throughput sequencing technologies to increase 
workflow. In addition, the tools to implement more routine surveillance 
for resistance emergence are already available in some cases. A case also 
can be made that we are similarly placed in other cases such as such 
benzimidazole resistance in Ancylostoma caninum in dogs (Kitchen et al., 
2019) and, as discussed above, levamisole resistance in H. contortus in 
small ruminants (Barrere et al., 2014). Further, molecular tests such as 
DNA sequencing generate information-rich data that can be used to 
monitor genetic change over time, for example, during mass drug 
administration, to ensure parasite populations respond predictably to 
drug pressure, or that if resistance does emerge, the mode of selection 
(for example, soft or hard genetic sweeps (Doyle and Cotton, 2019)) and 
appearance of resistant individuals (for example, by recrudescence or 
new transmission (Hedtke et al., 2020)) can be predicted and managed. 

5. What might be a good starting point for field use of molecular 
diagnostics? 

It is critical that molecular diagnostic tests are not expected to be a 
panacea for all the current challenges around anthelmintic resistance 
diagnostics, or for a single test to be equally applicable in all situations 
(see Box 1). Instead, there is a need for a stepwise approach in which 
molecular diagnostics are introduced in a targeted way to provide spe-
cific value in particular situations. If this can be achieved then there will 
be an increasing number of proof-of-concept examples to allow a culture 
change in attitudes towards the value of molecular diagnostics in 
anthelmintic resistance management. A number of potential examples 
are discussed below. These are not intended to be prescriptive, nor 
exhaustive, but aim to illustrate how molecular diagnostic tests could 
provide value in specific situations.  

1) Molecular diagnostics to quantify species abundance as an adjunct to 
the FECRT 
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Routine testing of anthelmintic drug efficacy is undertaken by pre- 
and post-treatment faecal egg counts as part of FECRTs. A major limiting 
factor to accuracy and interpretability of these tests is the lack of in-
formation on the species present pre- and post-treatment. This can be 
achieved, at least to the genus level by culture to L3 and morphological 
examination, but this is a time consuming and specialist task, and hence 
is costly and rarely performed. However, there are now several tech-
nologies such as LAMP assays (Rashwan et al., 2017a), multiplex 
quantitative PCR (Roeber et al., 2012, 2017; Höglund et al., 2013; 
McNally et al., 2013) or ITS-2 rDNA nemabiome sequencing (Avra-
menko et al., 2015, 2017, 2018; Redman et al., 2019) which allow 
species quantitation on either larvae or eggs to be reliably performed. 
The application of these in a more routine diagnostic setting could 
provide significant value in resistance diagnosis. For example, if 
pre-treatment species diversity is reduced to one or two species 
post-treatment, this not only confirms that resistance is present, but also 
identifies the resistant parasite species, as illustrated recently by McIn-
tyre et al. (2018). Such knowledge on the identity of species showing 
resistance in a mixed-species population may inform on alternative drug 
choice or management strategies. The converse is also true; if there is 
little or no change in species diversity post-treatment, this may suggest 
that resistance exists in all species detected, or alternatively, it may 
suggest that an apparent treatment failure is due to factors other than 
resistance, such as underdosing. Another example is in the use of the 
narrow spectrum drug closantel, which is specific for the blood-feeding 
H. contortus but has no activity against the other GIN species. Species 
quantification in this case can determine whether apparent treatment 
failure is due to the presence of drug resistant H. contortus or simply the 
presence of other non-target worm species.  

2) Detection of benzimidazole resistance in ovine GIN species in specific 
regions 

The molecular mechanism of resistance is best understood for 
benzimidazoles, and therefore, this provides a potential opportunity to 
apply molecular diagnostics tests of benzimidazole resistance both as 
proof-of-concept and in a commercial setting. In many countries and/or 
regions, benzimidazole resistance is at an advanced stage for multiple 
species of small ruminant trichostrongylid GINs (Kaplan and Vidya-
shankar, 2012), and consequently, a diagnostic test specifically for 
benzimidazole resistance is likely to be of little operational value or 
commercial interest. However, in some regions of the world, benz-
imidazole resistance is still at an early stage for several important ovine 
GIN species and therefore, a benzimidazole resistance-only diagnostic 
molecular test would be of significant practical and potentially com-
mercial value. For example, control of the trichostrongylid nematode 
Nematodirus battus, which is a major cause of diarrhoea and mortality in 
young lambs in the UK, is primarily through the use of benzimidazoles 
due to their higher efficacy than the macrocyclic lactones (Abbott et al., 
2012). Although benzimidazole resistance has been detected in N. battus 
(Mitchell et al., 2011; Morrison et al., 2014), a recent survey of UK farms 
found only 5 out of 170 farms tested contained the resistance-associated 
F200Y β-tubulin variant at a frequency greater than 20% (Melville et al., 
2020). Importantly, resistance to the other drug classes has yet to be 
reported in this parasite species. In this situation, a molecular diagnostic 
test limited to just benzimidazole resistance would enable an 
evidence-based approach in deciding whether to use the first choice 
benzimidazole drugs or switch to a second choice drug, and therefore, 
maximise parasite control and avoid selection for higher levels of 
resistance alleles on specific farms. 

Similarly, a diagnostic test specifically for benzimidazole resistance 
may be useful for sheep GIN in western Canada, where benzimidzole 
resistance is widespread for H. contortus but is still relatively rare for the 
other major species of concern such as T. circumcincta and 
T. colubriformis (Gilleard, unpub. data). In this case, a diagnostic test 
would enable this drug class to still be used effectively in many flocks, in 

conjunction with a second drug against H. contortus such as closantel, as 
and when required, and so preserve the use of other drug classes until 
needed. This would both minimize treatment costs and reduce the se-
lection pressure being applied, and so slow the emergence of resistance 
to the newer anthelmintic drug classes.  

3) Benzimidazole resistance in cattle nematodes 

Cattle producers have relied primarily on macrocyclic lactones for 
GIN control for many years (Sutherland and Leathwick, 2011). How-
ever, macrocyclic lactone resistance is increasingly common in several 
bovine GIN species such as Cooperia oncophora, Cooperia punctata and 
H. placei in many countries, with a number of reports also describing its 
presence in the highly pathogenic nematode Ostertagia ostertagi (Gas-
barre 2014; Geurden et al., 2015; Ramos et al., 2016). Because of this 
situation, cattle producers are now more interested in alternative drug 
choices such as benzimidazoles. Although, benzimidazole resistance is 
emerging in O. ostertagi in New Zealand and Australia, available evi-
dence suggests it is still at an early stage for most cattle GIN species in 
many regions (Sutherland and Bullen, 2015; Cotter et al., 2015; Wag-
horn et al., 2016; Avramenko et al., 2020). For example, in North 
America, benzimidazole resistance appears to be at a very early stage of 
emergence in all the major cattle nematodes (Chaudhry et al., 2014; 
Avramenko et al., 2020). A recent study of calves sourced from 38 
different stocker herds from Arkansas and Oklahoma used deep ampli-
con sequencing to detect the F200Y variant in a number of trichos-
trongylid nematode species (C. oncophora, C. punctata, O. ostertagi, H. 
placei, H. contortus, and T. axei). The F200Y variant was present in a 
small minority of herds and at very low frequency for all species (<5%) 
except for T. axei where this variant was found in 4 out of the 5 herds for 
which this parasite species was detected, and was at a frequency of 
57.4% in one case. Further, the isotype 1 β-tubulin codon 167, 198 or 
200 benzimidazole-resistance associated mutations were not found in 
O. ostertagi and C. oncophora populations in any of the 43 beef herds 
sampled across Canada using an allele frequency threshold of 0.1% 
(Avramenko et al., 2020). Consequently, in this situation, a specific 
molecular diagnostic test for benzimidazole resistance could provide 
value in a number of different ways. These include routine surveillance 
for the emergence of benzimidazole resistance as the use of this drug 
class increases, quarantine screening of purchased cattle to ensure that 
benzimidazole-resistant parasites are not brought onto a farm, and to 
allow the selection of an alternative drug, such as levamisole, if benz-
imidazole resistance alleles are already present. Additionally, the mo-
lecular tests could be used to detect the presence of 
benzimidazole-resistant H. contortus in cattle (possibly resulting from 
the flow of this species between small ruminants and cattle).  

4) Macrocyclic lactone resistance in D. immitis 

As described above, resistance to macrocyclic lactones in small and 
large ruminants is widespread in some parts of the world, possibly 
reducing the usefulness of resistance diagnostics (Rose et al., 2015; 
Geurden et al., 2015; Ramos et al., 2016). However, the situation is 
different with respect to the canine heartworm, D. immitis, where 
resistance to this drug class is considered to be an emerging issue 
(Bourguinat et al., 2011; Geary et al., 2011; Pulaski et al., 2014; 
Moorhead et al., 2017). Resistance to heartworm preventives (all of 
which, so far, are macrocyclic lactones) is recognized as a serious issue 
because heartworm infection can be lethal. 

Bourginat et al. (2015) investigated genetic markers for resistance 
using a whole-genome approach across four susceptible D. immitis 
populations and four ‘loss of efficacy’ populations, and identified 186 
potential SNP markers for resistance, with a subset of 42 SNPs being 
most promising for resistance diagnosis. The number of useful SNPs was 
narrowed further by Bourginat et al. (2017) through analysis of a further 
ten field isolates. More recently, Ballesteros et al. (2018) provided some 
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clinical validation for these markers by measuring their association with 
the ability to reduce microfilaraemia by treatment of infected dogs with 
moxidectin. They described a 2 SNP model as a potential marker for 
resistance, and hence provided a basis for further clinical validation of 
this as a useful resistance diagnostic. 

Given the pathogenicity of heartworm infection in dogs, alongside 
the evidence to date pointing to a useful SNP-based molecular marker 
for resistance, it would seem appropriate that this model be seen as one 
in which development of a molecular assay should be prioritised. Such a 
diagnostic test would face fewer obstacles than those outlined in section 
4. above with respect to livestock as the heartworm test would need to 
apply to only one parasite species and one drug class, with the micro-
filariae being very easy to sample from infected dogs.  

5) Benzimidazole resistance and SNPs in β-tubulin genes in human STH 

The World Health Organization (WHO), national Ministries of 
Health, and a number of Non-Governmental Organizations (NGOs) and 
Foundations have implemented mass drug administration (MDA) pro-
grams to reduce the morbidity of STH in humans around the world. 
Typically, this involves treatment of school-aged children (SAC) and pre- 
SAC once a year, or more often, with either albendazole or mebendazole 
at standard dose rates of 400 mg or 500 mg (single dose per person), 
respectively, as these anthelmintics are moderately effective (Moser 
et al., 2017) and are donated (ABZ by GlaxoSmithKline; MEB by Johnson 
& Johnson). In 2017, approximately 750 million people were treated 
with albendazole and mebendazole donations. These anthelmintics 
reduce morbidity and transmission, but people become reinfected and 
treatment is needed in successive years. The large amount of these drugs 
being used to treat human STH, and other parasitic infections, and the 
need to use these same drugs repeatedly is likely to impose selection 
pressure for resistance in STH (Vercryusse et al., 2011). 

The principal STHs being targeted by these MDA programmes are 
Ascaris lumbricoides, the hookworms (Necator americanus, Ancylostomum 
duodenale and A. ceylonicum), and Trichuris trichiura. There are a number 
of studies that suggest a decline in the efficacy of benzimidazole drugs 
(e.g., Moser et al., 2017; Soukhathammavong et al., 2012; Humphries 
et al., 2017; Krucken et al., 2017; Vlaminck et al., 2019). So far, there 
have only been a limited number of studies that have investigated SNPs 
in β-tubulin in STH species, and these molecular investigations have 
been on small numbers of samples from Kenya, Haiti, Panama (Diawara 
et al., 2013a, 2013b), and Tanzania (Albonico et al., 2004; Diawara 
et al., 2013b; Schwenkenbecher et al., 2007) using either pyrose-
quencing, Sanger sequencing and realtime PCR. More recently, methods 
have also been established to detect SNPs in STH β-tubulin using LAMP 
assays (Rashwan et al., 2016, 2017b); while LAMP assays are highly 
sensitive for detecting the presence of mutations and do not require 
expensive sequencing equipment, the throughput of samples is limited 
due to a lack of automation. 

These various studies have detected SNPs, most commonly at codon 
200 in T. trichiura and N. americanus and less commonly at codon 167 or 
198, in these species. The only significant association between treatment 
response and mutant SNP frequency was at codons 200 and 198 in 
T. trichiura (Diawara et al., 2013a). A SNP in codon 167 in 
A. lumbricoides was observed commonly but there was no correlation 
with drug efficacy, and in fact, efficacy was uniformly high against this 
species. It was concluded that this SNP was not informative for pre-
dicting response to treatment with benzimidazoles in A. lumbricoides 
(Diawara et al., 2013a). However, as mentioned above, sample sizes 
were small and further studies, in which egg count reduction is 
adequately determined, on larger sample sizes, are needed to establish 
whether these SNPs in the particular β-tubulin genes analyzed, can be 
predictive of anthelmintic resistance in human STHs. One of the limi-
tations with linking β-tubulin SNPs in human STH is that, unlike nem-
atode infections in animals, experimental infections from parasites that 
survive treatment cannot be established, for ethical reasons, so that 

isolates that are truly refractory to treatment can be genetically 
analyzed. 

While the β-tubulin genes that have been analyzed so far in human 
STH seem most similar to the isotype 1 gene used for detection of 
benzimidazole resistance in animal Trichostrongylid nematodes and the 
ben-1 gene in C. elegans (all Clade V nematodes), T. trichiura (Clade II) 
and A. lumbricoides (Clade III) are phylogenetically quite different from 
the veterinary nematodes where benzimidazole resistance has been most 
studied. High throughput sequencing of populations of human STHs that 
are susceptible or refractory to drug treatment is needed to determine 
which β-tubulin gene(s) cause resistance, or whether resistance may be 
caused by other genes. 

A degree of uncertainty still exists around the use of molecular tests 
to detect resistance to benzimidazole drugs in human STH, and the de-
gree of ‘readiness’ to implement molecular testing is therefore much less 
than for the other examples highlighted here. However, despite this, we 
suggest that the development of benzimidazole resistance tests for 
human STH warrants urgent attention because of the opportunity to 
establish sensitive molecular diagnostics before resistance impacts on 
the usefulness of these drugs. 

6. Conclusions 

It is clear that there is a need for sensitive diagnostic tools to detect 
anthelmintic resistance as it emerges in field settings across livestock, 
companion animals and humans. This will allow for drug-use decisions 
(most importantly, the use of alternative drugs and combinations) to be 
made in order to ensure that the impact of any emerging resistance is 
minimised. The FECRT is the only diagnostic currently used in the field, 
however, it suffers from a lack of sensitivity, high costs, and labour- 
intensive sampling procedures, and hence is not used widely. In vitro 
phenotypic tests remain as laboratory tools only and currently lack 
utility across different drug classes and parasite species. Although mo-
lecular tests are currently used as research tools, they offer significant 
advantages in terms of sensitivity, cost, sampling procedures and speed 
that make them ideal for use in diagnosing resistance in field settings. 

We argue that there is sufficient evidence of the effectiveness of 
molecular tests in research settings for them to begin to be developed as 
field diagnostics. The precise way in which a test would be deployed will 
differ between regions due to differences in the composition and 
complexity of the parasite communities, the extent to which resistance 
has developed, and the number of alternative drugs available. An early 
step would be their use in species identification and/or quantification as 
an adjunct to the FECRT, with further steps able to be taken in the short 
term to introduce molecular tests into specific parasite/drug class in-
teractions in small and large ruminant industries. While such prototype 
diagnostic tests will not satisfy many of the criteria required of an ‘ideal’ 
molecular diagnostic, this needs to be balanced against the lack of 
sensitivity, cost and sampling issues that affect the usefulness of the 
FECRT. Other early steps in the introduction of molecular tests into 
parasite management could be their use with canine heartworm and 
human STH. The development and use of prototype molecular tests in 
managing specific parasite/drug class resistances in the field will pro-
vide valuable information on practical aspects of test performance. In 
this way, the use of such prototypes will provide direction for the further 
development of improved molecular anthelmintic resistance 
diagnostics. 
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Sallé, G., Doyle, S.R., Cortet, J., Cabaret, J., Berriman, M., Holroyd, N., Cotton, J.A., 
2019. The global diversity of Haemonchus contortus is shaped by human 
intervention and climate. Nat. Commun. 10, 4811. 

Sarai, R.S., Kopp, S.R., Coleman, G.T., Kotze, A.C., 2013. Acetylcholine receptor subunit 
and P-glycoprotein transcription patterns in levamisole-susceptible and -resistant 
Haemonchus contortus. Int. J. Parasitol. Drugs Drug Resist. 3, 51–58. 

Schwenkenbecher, J.M., Albonico, M., Bickle, Q., Kaplan, R.M., 2007. Characterization 
of beta-tubulin genes in hookworms and investigation of resistance-associated 
mutations using real-time PCR. Mol. Biochem. Parasitol. 156, 167–174. 

Soukhathammavong, P.A., Sayasone, S., Phongluxa, K., Xayaseng, V., Utzinger, J., 
Vounatsou, P., et al., 2012. Low efficacy of single-dose albendazole and 
mebendazole against hookworm and effect on concomitant helminth infection in Lao 
PDR. PLoS Neglected Trop. Dis. 6, e1417. 
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