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Neuronal oscillations and the rate-to-phase transform:
mechanism, model and mutual information

Douglas McLelland and Ole Paulsen

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK

Theoretical and experimental studies suggest that oscillatory modes of processing play an
important role in neuronal computations. One well supported idea is that the net excitatory
input during oscillations will be reported in the phase of firing, a ‘rate-to-phase transform’, and
that this transform might enable a temporal code. Here, we investigate the efficiency of this code
at the level of fundamental single cell computations. We first develop a general framework for the
understanding of the rate-to-phase transform as implemented by single neurons. Using whole
cell patch-clamp recordings of rat hippocampal pyramidal neurons in vitro, we investigated
the relationship between tonic excitation and phase of firing during simulated theta frequency
(5 Hz) and gamma frequency (40 Hz) oscillations, over a range of physiological firing rates.
During theta frequency oscillations, the phase of the first spike per cycle was a near-linear
function of tonic excitation, advancing through a full 180 deg, from the peak to the trough
of the oscillation cycle as excitation increased. In contrast, this relationship was not apparent
for gamma oscillations, during which the phase of firing was virtually independent of the
level of tonic excitatory input within the range of physiological firing rates. We show that a
simple analytical model can substantially capture this behaviour, enabling generalization to
other oscillatory states and cell types. The capacity of such a transform to encode information
is limited by the temporal precision of neuronal activity. Using the data from our whole cell
recordings, we calculated the information about the input available in the rate or phase of firing,
and found the phase code to be significantly more efficient. Thus, temporal modes of processing
can enable neuronal coding to be inherently more efficient, thereby allowing a reduction in
processing time or in the number of neurons required.
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A fundamental question in neuroscience is the nature of
the neural code. How, precisely, do neurons represent and
transmit information? Action potentials, or ‘spikes’, are
the presumed building blocks of the code, but controversy
remains as to the details of the code itself (Rieke et al.
1997). In the eight decades since Adrian described the
trains of pulses in frog nerves generated in response to
muscle stretch (Adrian, 1926), ideas of a code based on
the average number of spikes in a given time interval have
dominated, the so-called rate code. Throughout, however,
neuroscientists have been aware that the precise timing of
spikes might also encode information, a temporal code.

Theoretically, a temporal code would have the potential
to efficiently and rapidly transmit information (Gautrais
& Thorpe, 1998) and support useful computations
(Hopfield, 1995). However, there has been a relative
paucity of strong experimental evidence of a temporal
code in recordings of neuronal activity, and the biophysical

ability of individual neurons to generate patterns of action
potentials with sufficient temporal precision has been
questioned. Recently, however, it has become increasingly
clear that precise temporal patterns of spiking activity
(with properties not trivially intrinsic to the stimulus) can
indeed be recorded from neurons at all levels, from early
sensory input (e.g. somatosensory afferents; Johansson &
Birznieks, 2004) to the highest cortical levels (e.g. place
cell phase precession in the rodent hippocampus; O’Keefe
& Recce, 1993). Moreover, it has been demonstrated
that individual neurons are capable of generating
precisely timed, repeatable patterns of activity, provided
they are driven by fluctuating rather than purely tonic
input (Bryant & Segundo, 1976; Mainen & Sejnowski,
1995; Schaefer et al. 2006).

In order for a temporal code to operate, a temporal
reference is required. A good candidate for this is
oscillatory activity, which is prevalent in the cortex and
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could provide a common reference both within local
circuits and across cortical areas.

The best-studied example of an oscillation-based
temporal code is hippocampal phase precession in rodents.
When a rodent explores an environment, prominent
theta frequency oscillations (4–12 Hz) are seen in the
hippocampus. Also, individual cells in the hippocampus,
place cells, are seen to fire in restricted areas of the
environment, their place fields. As an animal traverses a
neuron’s place field, the phase of firing advances relative to
the ongoing theta frequency oscillation (O’Keefe & Recce,
1993). In fact, in reconstructing an animal’s position from
neuronal activity, using phase information substantially
improves the accuracy over that estimated from firing rate
alone (Jensen & Lisman, 2000).

What mechanisms control the phase of firing of
individual neurons? One attractive possibility, which has
been implemented in theoretical models, is based on
a simple rate-to-phase transform (Hopfield, 1995), in
which the phase of firing advances with increasing tonic
input. Electrophysiological studies have suggested that a
transform of this nature could indeed be implemented by
neurons (Kamondi et al. 1998; Magee, 2001; Harris et al.
2002; Mehta et al. 2002; Margrie & Schaefer, 2003) but
have not explored the basis for this transform.

Here, we take advantage of the precise experimental
control of neuronal input afforded by the whole-cell patch
clamp set-up in the in vitro brain slice to examine the
properties of the rate-to-phase transform in hippocampal
pyramidal neurons. A simple mathematical description
of this transform is presented, allowing generalization
to other types of neurons and oscillations. Finally, we
estimate the mutual information of the transform based
on the experimentally observed temporal precision.

Methods

Slice preparation

Horizontal hippocampal slices (300 μm) were prepared
from a total of 29 juvenile Wistar rats (P13–P19),
following decapitation under deep isoflurane-induced
anaesthesia, in accordance with UK Home Office
regulations. Slices were maintained at room temperature
in a submerged-style holding chamber until transferred
one by one to the recording chamber and superfused with
artificial cerebrospinal fluid at 30◦C, containing (mM):
NaCl 126; KCl 3; NaH2PO4 1.25; MgSO4 2; CaCl2 2;
NaHCO3 24; glucose 10; pH 7.2–7.4; and bubbled with
carbogen gas (95% O2, 5% CO2).

Recordings

Whole-cell patch clamp recordings were made from
pyramidal cells in area CA1, under visual guidance

using infrared differential interference contrast video
microscopy. Patch pipettes (serial resistance 5–10 M�)
were pulled from standard-walled borosilicate capillary
tubing (GC120F-10, Harvard Apparatus, Edenbridge,
UK). Electrode solution contained (mM): potassium
gluconate 110; Hepes 40; NaCl 4; ATP-Mg 4; GTP 0.3; with
5 mg ml−1 biocytin included for consistency with other
studies; pH was adjusted to 7.4 using KOH (1 M).

Current clamp recordings were made using Axoclamp
2B or Multiclamp 700A amplifiers (Axon Instruments,
Union City, CA, USA). Capacitance was fully
compensated, and bridge balance monitored and
adjusted throughout (18–35 M�). Measured voltages
were corrected for the liquid–liquid junction potential
of −15.5 mV, calculated using the built-in function of
pCLAMP (Axon Instruments) (Ng & Barry, 1995). The
voltage signal was low-pass filtered at 1 kHz or 3 kHz,
using the built-in Bessel filters of the amplifiers, before
being digitally converted using ITC-16 or ITC-18 A/D
boards (Instrutech Corp., Port Washingon, NY, USA) and
acquired online at 4 kHz (for 1 kHz filtered input signals)
or 8 kHz (for 3 kHz filtered input signals). Dynamic
clamp was implemented using an ITC-18 A/D board
(Instrutech).

All current clamp and dynamic clamp command signals
were generated, and data acquired and analysed using Igor
Pro software (Wavemetrics, Lake Oswego, OR, USA).

Recording protocols

We applied a range of levels of tonic excitatory current,
with or without a sinusoidally modulated current or
conductance, as described in Results. The order of
presentation of different levels of excitatory current
was randomised, and at each level oscillatory and
oscillation-free trials were interleaved, with each condition
repeated 5 times. Tonic excitatory current steps lasted 3 s,
but only the latter 2 s were analysed, in order to avoid the
rapidly adapting response to step onset (typically, a CA1
pyramidal neuron in vivo shows a fairly gradual rise and
fall in firing rate as the animal traverses the place field
of that cell, O’Keefe & Recce, 1993; Skaggs et al. 1996). To
avoid the build-up of slow adaptive responses to prolonged
excitation, there was a 2 s rest period between trials. This
period also enabled us to monitor the baseline state of
cells, to ensure stability over the course of recording.

We tested a range of inputs which yielded firing rates
approximately matching those recorded in vivo (see, e.g.
O’Keefe & Recce, 1993).

Analyses

Linear fits to the firing rate in response to tonic input alone
(the ‘oscillation-free’ firing rate) were used as a measure
of cell activation for that level of input. When this value
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was used as the independent variable for quantification
of other variables, it provided satisfactory normalization
across cells (see Fig. 1B and C). Because linear fits to the f–I
curves were used, values can be extrapolated into ‘negative’
firing rate ranges, allowing the inclusion of responses to
levels of input which, although subthreshold in the case
of the oscillation-free input, did generate spikes when in
combination with oscillatory currents.

Instantaneous input resistance and membrane time
constant at resting potential were estimated from
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Figure 1. Phase of firing relative to theta frequency sinusoidal current is dependent on the level of
tonic excitation
A, membrane potential traces for a typical cell receiving a fixed amplitude of theta frequency (5 Hz) sinusoidal
current input (trace indicated in grey at the top for comparison of timing) and a range of levels of tonic depolarizing
current (indicated to the right of the traces). Spikes are truncated at –20 mV for clarity. B, f–I curve for two typical
cells, with (filled symbols and lines) and without (open symbols and dashed lines) sinusoidal theta frequency
current. As is apparent in A, firing tends to lock to the oscillatory input, yielding plateaux in the f–I curve at
firing rates equal to integer multiples of the oscillation frequency. C, f–I curves for the two cells shown in B, with
normalization on the abscissa carried out by converting the tonic current input level to the firing rate induced in the
absence of oscillatory input (see Methods). This method of normalization is used throughout for the presentation
of pooled data. D, spike time histograms for the same cell as in A, relative to the oscillatory cycle, across the range
of tonic input levels tested (first spike per cycle, black; second spike per cycle, dark grey; third spike per cycle, light
grey). E, φ–I curve for the same cell (mean ± S.D.). F, scatter plot of mean firing phase versus oscillation-free firing
rate for the population of cells.

exponential fits to the initial 10–20 ms of membrane
potential response to repeated (> 20) brief hyper-
polarizing current pulses.

Phase values are reported in degrees, with 0 deg taken
as the peak of the sinusoidal current input.

Use of non-circular statistics

In analysing phase data, it is often necessary to use
circular statistics. However, while the circular mean can
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be easily interpreted, further descriptive statistics do not
provide the direct intuitive understanding of the under-
lying distributions that is provided by their non-circular
equivalents (e.g. standard deviation). We therefore find
it desirable to use non-circular statistics where possible.
Additionally, this facilitates the description of probability
distributions required for information theoretic estimates.

We justify the use of non-circular statistics in the
present case, noting that for both theta and gamma
frequency inputs, there was always a portion of the
oscillation cycle during which virtually no spikes occurred
(in the quadrant orthogonal to the circular mean phase of
spikes, fewer than 0.05% of spikes occurred for the theta
oscillation, and fewer than 2% of spikes occurred for the
gamma oscillation). As such, spikes can be unambiguously
assigned to a given oscillatory cycle (there is no confusion
between late spikes in one cycle and early spikes in the
following cycle). By choosing an appropriate range over
which to express spike phase, the confounding circular
wrap-around point can be avoided in calculation of the
mean and variance. In support of this argument, the
difference between normal and circular means was on
average only 0.13 deg for theta oscillations and 0.37 deg
for gamma oscillations.

Mutual information estimates

We estimated mutual information (Shannon, 1948)
between the tonic input and either the rate of firing or the
phase of firing (where theta frequency oscillatory input
was included) or interspike interval (where no oscillatory
input was included), according to the standard formula

I (R ; S) = H (R) − H (R |S)

where I(R; S) is the mutual information between response
R and stimulus S; H(R) is the entropy of the response; and
H(R | S) is the conditional entropy of response given the
stimulus. We opted not to use our discrete data points
in the calculation of these values, because of the bias
inherent in that approach (Panzeri et al. 2007). Instead,
we represented the responses as continuous functions of
the stimulus based on our data, and applied the following
formulae for calculation of the relevant entropy values,
using notation as in Borst & Theunissen (1999):

H (R) = −
Rmax∫

Rmin

p (r) log2 p (r) dr

H (R |S) = −
Smax∫

Smin

p (s)

Rmax∫
Rmin

p (r|s) log2 p (r|s) dr ds

The stimulus distribution itself was assumed to be flat
over the range of input values tested. While we do not
believe that this is likely to reflect the reality in most
physiological systems, this should not affect our
conclusion, since for all codes studied, the distribution
of information across stimulus values was very nearly flat.
Hence, any skew in the distribution of stimulus values
should have a similar effect on each of the codes.

For the phase code, experimentally obtained φ–I (mean
phase–current) curves for each cell were fit by arccos
functions of the tonic input current, as suggested by our
analytical model, and the standard deviation at any given
point on that curve estimated from the experimental data
(assuming normally distributed phase values for any fixed
level of tonic current; data were not significantly different
from normal distributions, Kolmogorov–Smirnov test,
P > 0.1). With regard to the rate code, the response is
a discrete variable, viz. the number of spikes in a fixed
interval (we used integer multiples of 200 ms, that is,
1 theta cycle, for direct comparison with the phase code).
Since f–I curves were well fit by a series of cumulative
Gaussian functions (one for each spike-per-cycle, see
Fig. 1B and C), the requisite probability functions
(one for each of the possible spike totals in the
period of interest) were fit by difference-of-cumulative
Gaussian functions. Regarding the interspike interval (ISI)
code, we used the corresponding instantaneous spike
frequency values (f i) since these were linearly related
to tonic current, allowing straightforward estimation
of mutual information. Distributions of f i values were
not significantly different from normal distributions
(Kolmogorov–Smirnov test, P > 0.1). Standard deviation
of f i was estimated, based on experimental recordings, as
a decaying exponential function of tonic input, and the
potential for multiple measurements of the ISI (three or
more spikes in the relevant period) was taken into account.

Mutual information was estimated independently for
each cell, and only over the range of inputs which had
been specifically tested in that cell (i.e. we did not use
estimated model parameters to extrapolate across the
range of possible inputs).

Results

We first report data from CA1 pyramidal neurons
recorded in current clamp mode (n = 15; mean resting
potential on whole-cell access, V R = −73.7 ± 1.9 mV;
membrane time constant, τm = 22.5 ± 5.7 ms; input
resistance, R in = 142 ± 36 M�; mean ± S.D.).

In order to investigate the rate-to-phase transform in
single neurons, we injected a combination of sinusoidally
modulated current of fixed amplitude, and a range
of levels of tonic excitatory current. Two frequencies
of oscillatory current were tested: theta (5 Hz) and
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gamma (40 Hz), both of which have been reported in
the subthreshold membrane potential of hippocampal
pyramidal cells, recorded in vivo in the anaesthetized
rat (Soltesz & Deschênes, 1993; Kamondi et al. 1998). A
sinusoidal current generated oscillations in the membrane
potential approximating those described in vivo (5 mV
peak-to-peak for theta; 2 mV peak-to-peak for gamma). In
most cells, 40 pA peak-to-peak oscillatory current proved
to be appropriate. In a few cells with higher membrane
impedance, 30 or 20 pA was used. We tested the response
of cells to the same range of tonic excitatory input levels
in the presence and absence of oscillatory input.

Theta frequency input

The firing pattern of CA1 pyramidal cells in response to
tonic current injection alone has been previously described
(Lanthorn et al. 1984). Consistent with those results, the
firing rate of the cells we recorded was a near-linear
function of tonic current injection over a limited range,
rising from an arbitrarily low value near threshold,
consistent with Type I cell behaviour, and reaching a
maximum near 20 Hz. Higher levels of current injection
typically led to depolarization-block and deterioration of
the cell.

In contrast, the frequency–current (f–I) curve in the
presence of theta frequency sinusoidal input was strikingly
non-linear, with distinct plateaux at firing rates equal
to integer multiples of the oscillation frequency (Fig. 1A
and B).

There was considerable variability in the threshold
current and f–I slope values between cells. Therefore,
for the rest of this study, when pooling data across cells,
the equivalent input is expressed as the firing rate in the
absence of oscillations. This was almost linearly related
to the tonic current input in all cells, and provides a
satisfactory normalization (Fig. 1C).

At low input levels, the presence of the theta oscillation
primarily resulted in an elevation of firing rate relative to
the oscillation-free case; at higher input levels both relative
elevation and suppression of firing rate were apparent
(Fig. 1C).

The phase of firing relative to the theta frequency
oscillatory input was strongly dependent on the level of
tonic excitation (Fig. 1A and D–F), as reported previously
for hippocampal pyramidal cells (Kamondi et al. 1998)
and mitral cells in the olfactory bulb (Margrie & Schaefer,
2003) in vivo. Recording in vitro affords precise control
of electrical inputs to the cell (spontaneous synaptic
inputs to CA1 pyramidal cells are minimal in the acute
hippocampal slice), allowing us to investigate the details
of this input-to-phase transform, which we will refer to as
the phase–current (φ–I) curve.

Figure 1D shows spike phase histograms from a typical
cell. At low, just suprathreshold levels of tonic input, spikes
occurred at a phase of 55.4 ± 14.2 deg (taking phase zero
to be the peak of the oscillatory current input). Examining
the subthreshold membrane potential trace also shown in
Fig. 1D, this phase range evidently lies close to the peak
of the membrane potential oscillation (the phase shift
between the theta frequency current input and voltage
response for this cell was 44 deg). Above 1 spike per cycle,
as the tonic excitatory drive to the cell increased, the
phase of firing of the first spike in each cycle advanced
monotonically, to −105.2 ± 20.2 deg at the highest levels
of excitation tested (Fig. 1D and E).

Beyond a certain level of input, secondary and then
tertiary spikes began to occur within each oscillatory cycle.
These were similarly phase-locked and advanced with
increasing tonic input, such that the interspike interval
(ISI) between first and second spikes, and between second
and third spikes was constant (91.2 ± 9.7 deg between first
and second spikes, 93.7 ± 17.9 deg between second and
third spikes).

As well as advancing the phase at which spikes occurred,
the increasing excitation also allowed spikes to occur
later in the cycle, so that at the point at which tertiary
spikes began to arise, they occurred at 82.3 ± 23.0 deg,
considerably later than the equivalent value for primary
spikes (Fig. 1D). Note however, that the retreat of late
spikes was not symmetrical with the advancement of early
spikes (at the level of input discussed here, 30 deg of retreat
compared to 160 deg of advance).

The pattern of behaviour described above for a
typical cell was reflected consistently for the entire
population of cells recorded (n = 15; Fig. 1F). Pooling
data from all cells and levels of input, the mean
standard deviation of spike phases at a fixed level of
input was 17.5 ± 8.5 deg, corresponding to 9.7 ± 4.7 ms.
Approximating the φ–I curve by a linear fit, the mean
slope of theta phase advance (mean of individual cell phase
advance slopes), expressed relative to the oscillation-free
firing rate was −14.4 ± 5.7 deg Hz−1 (range −6.8 deg to
−26.8 deg Hz−1). That is, a change in tonic input which
would, in the absence of oscillations, yield a 1 Hz increase
in firing rate will yield an average advance of spike timing
of 8.0 ms.

Gamma frequency input

We next assessed the relation between tonic input and
firing in the presence of gamma frequency (40 Hz)
sinusoidal input (Fig. 2).

The presence of the gamma oscillation did not
change the slope of the f–I curve compared to the
oscillation-free case (mean suprathreshold f–I regression
slopes, 0.137 Hz pA−1 in the oscillation-free case;
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0.144 Hz pA−1 with gamma oscillation included; paired
t test P > 0.1, n = 15; Fig. 2B, C). No plateaux were
observed for the input values tested.

With regard to the phase of firing, φ–I curves
were strikingly different from those observed for theta
frequency input. Cells did not entrain to the gamma
oscillation, and the phase of firing was almost independent
of tonic input level. The phase of firing was nonetheless
restricted to only a portion of the oscillation cycle
(Fig. 2D), with a mean phase across all levels of input
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Figure 2. Phase of firing relative to gamma frequency sinusoidal current is minimally dependent on the
level of tonic excitation for physiological firing rates
A, membrane potential traces for a typical cell (same as shown in Fig. 1A) receiving a fixed amplitude of gamma
frequency (40 Hz) sinusoidal current input (trace indicated in grey at the top for comparison of timing) and a range
of levels of tonic depolarizing current (indicated to the left of the traces). Spikes are truncated at –20 mV for
clarity. B, f–I data for the same cell, with (filled symbols) and without (open symbols) sinusoidal gamma frequency
current. The oscillatory component has strikingly little effect on the firing rate. C, f–I data for the population of
cells recorded (n = 15), with input normalized across cells as described for Fig. 1C. D, spike time histograms for
the same cell as in A, relative to the oscillatory cycle, across the range of tonic input levels tested. There was never
more than one spike in any cycle. E, spike phase versus current curve for the same cell (mean ± S.D.). F, linear fits
to phase versus oscillation-free firing rate curves for the population of cells. Cells with significant regression slope
(P < 0.05) are shown in black, non-significant in grey. Mean slope of phase advance was 0.676 ± 1.51 deg Hz−1,
accounting for very little of the variance in spike phase (mean R2 = 0.015). The mean standard deviation of firing
phase was 47.1 ± 16.8 deg.

of 55.8 ± 7.7 deg. The mean standard deviation of spike
phase at a fixed level of input was 43.4 ± 4.9 deg. For this
cell, phase of firing was statistically dependent on the level
of tonic excitation (Fig. 2E; linear regression, P < 0.05)
but with very low gradient (−1.672 deg Hz−1), accounting
for a very small proportion of the observed variance
(R2 = 0.012). Similar behaviour was observed across the
population of cells recorded (Fig. 2F), with a mean
phase of firing of 64.2 ± 16.1 deg, and a mean standard
deviation around this of 47.1 ± 16.8 deg, corresponding
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to 3.3 ± 1.2 ms. In 8 out of 15 cells, there was a
significant dependence of phase on tonic input level
(linear regression, P < 0.05). The slope of this was always
very shallow, however, and while negative in most of
those cells, it was in fact positive in 1 out of the 8.
The mean slope of phase advance across all 15 cells
was − 0.68 ± 1.5 deg Hz−1. This equates to a total phase
advance of around 10 deg over the range of inputs tested,
accounting for only a small proportion of the variance in
the phase of firing (mean R2 = 0.015).

Mathematical model of phase locking

We have demonstrated that the firing of hippocampal
pyramidal cells receiving combined tonic excitation and
oscillatory input will phase lock to the oscillation and
systematically phase advance with increasing tonic input, if
the oscillation is of low (theta, 5Hz) but not high (gamma,
40 Hz) frequency. Can the occurrence of these activity
states be predicted and understood using a simple neuron
model?

Following Gerstner & Kistler (2002), the membrane
potential of a single-compartment leaky integrate-and-fire
cell receiving both oscillatory and tonic current input, with
voltage reset on reaching threshold, can be described as
follows:

Vm (t) = VRe− t−t̂
τm + I tonicR in

(
1 − e− t−t̂

τm

)

+ IoscR inA
(

cos (ωt + ϕ) − e− t−t̂
τm cos (ωt + ϕ)

)

(1)

where V m(t) is the membrane potential at time t , V R the
reset potential following the most recent spike at time t̂,
τm the membrane time constant, R in the input resistance,
ω equal to 2πf radians, I tonic the tonic current input, I osc

the amplitude of the oscillatory current sinusoid, and

A = 1√
1 + (ωτm)2

(2)

ϕ = − arctan (ωτm) (3)

Note that these equations treat the resting membrane
potential as 0 mV.

Phase locking can be approached analytically by solving
for t under the condition that the membrane potential
reaches threshold at a time after the preceding spike equal
to the period (p) of the oscillation, i.e. set Vm(t) = Vth and
t − t̂ = p . The spike phase, φ, is then:

φ = arccos

⎛
⎝ Vth − VRe− p

τm(
1 − e− p

τm

)
IoscR inA

− I tonic

IoscA

⎞
⎠ − ϕ

(4)

Equation (4) has two real solutions (within the range for
which real solutions exist at all, that is when the terms
within the arccos brackets fall in the range −1 to 1),
one on the up-slope and one on the down-slope of the
sinusoidal component. Naturally, only the former is valid
in the current context of membrane potential rising to
threshold.

The model predicts that, as I tonic increases, cells will
enter a phase locked firing regime, with one spike per
oscillation cycle, initially at the peak of the membrane
potential oscillation. Further increases in I tonic will yield
an advance of the firing phase, exactly as we recorded for
the first spike per cycle in cells receiving theta frequency
oscillatory input. As shown by Fig. 3, the arccos function
suggested by the above equations provides a satisfactory fit
to the φ–I curves obtained experimentally. Figure 3 shows
the predicted φ–I curve for a cell with basic membrane
properties matching the mean of our experimentally
recorded cells (R in = 144 M�; τm = 24 ms), along with
φ–I curves from three example cells, fit by arccos
functions. Note that the experimentally recorded φ–I
curves presented are substantially broader than predicted
analytically, even allowing for a fall in R in and τm when
depolarized and spiking. In the limit as τm approaches
zero, A approaches 1, and the φ–I curve approaches its
maximum width of 2I osc, or in the case of our experiments,
80 pA. Active properties of the neurons in question
can account for this discrepancy, notably resonance in
the theta frequency range (Pike et al. 2000; Hu et al.
2002) and attenuation of the response to tonic current,
due to I h. Apart from this scaling factor, the arccos
function provides a very satisfactory fit to the experimental
data.

Using the equations derived above, it is straightforward
to predict the system behaviour for changes in oscillation
parameters (amplitude or frequency) or intrinsic cell
properties (R in and τm), as Fig. 4 makes explicit. Of note
is the robustness of the φ–I curve shape to changes in the
conductance state of the cell: for a fourfold reduction in τm,
the slope of the φ–I curve decreases by only 1.167. These
figures refer specifically to the parameters presented in
Fig. 4E (for a 5 Hz oscillation, and a shift in τm from 20 ms
to 5 ms). This relationship becomes substantially steeper
as τm or oscillation frequency increases: for example, for
a 40 Hz oscillation, the same shift in τm would yield
a decrease in φ–I curve slope of 2.29. This can be
understood by examining the value of A (eqn (2)) as a
function of τm and oscillation frequency.

Outside of the critical range of I tonic which yields phase
locked states, the cell will either be entirely subthreshold,
or else enter less regular firing regimes (see Tiesinga et al.
2002; Brody & Hopfield, 2003). As our recordings for
gamma frequency input illustrate, the phase of firing can
still be restricted in this case, because the membrane
potential trajectory is only positive for a fraction of the
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oscillation cycle (see Fig. 5), but no strong, systematic
dependence of phase on tonic input level is established. As
is apparent in Fig. 5C, some advance of spike phase with
increasing I tonic could be expected, but the extent of this
is slight when compared with the variance in spike phase
due to other factors.

The system described by the above equations
corresponds to the first plateau in the f–I curve we
recorded for theta frequency input, since it describes an
oscillation-locked firing state with one spike per cycle.
Note that the equation is entirely insensitive to multiple
threshold crossings within a single cycle, so that this
analytical description of phase locking is no longer valid
as firing rate increases beyond the first plateau. However,
as outlined below, for some sets of parameters the phase
of the first spike per cycle may be analytically predictable
regardless of the presence of multiple spikes per oscillatory
cycle.
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Figure 3. Analytically predicted and experimentally measured φ–I curves
A, the analytically predicted φ–I curve for a passive point neuron model with basic membrane properties matching
the mean of our recorded cells (Rin = 142 M�, τ m = 24 ms). B–D, φ–I curves from typical cells, fit by an arccos
function, as suggested by the analytical model (phase extent of φ–I curve fits fixed at 180 deg in keeping with
the model, but phase lag and slope of the curve allowed to vary freely). The Rin and τ m values reported for each
cell were recorded at resting membrane potential. Note that φ–I curves for the experimentally recorded cells are
frequently wider than can be accounted for in the passive model (the upper limit on φ–I curve width, as τ m

approaches zero is twice the oscillatory current amplitude, or 80 pA in this case; see text for discussion).

Pseudo phase-locking

An important extension to the above account is suggested
by our recordings from cells receiving theta frequency
input. In that case, it is clear that secondary and higher
order spikes per cycle can arise without disrupting
the smooth phase advance of the first spike per cycle
(although, for a few cells, a very slight non-linearity in
the φ–I curve is apparent at the point at which secondary
or tertiary spikes arise).

Consider the case in which the cell membrane time
constant, τm, is substantially less than the oscillation
period. From one cycle to the next, all of the exponentially
decaying terms in the above equations approach zero. As
a result, phase locking is not restricted to the firing rate
plateaux. This will hold true for any set of parameters
for which the sum of tonic and oscillatory currents is
subthreshold for sufficient duration to allow system reset
(adequate decay of the exponential terms).
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Extension from tonic to phasic currents

We can easily extend this description of the system to
include intermittent excitation. Assuming again that the
membrane time constant is sufficiently shorter than the
oscillation period, it is possible to significantly alter the
fraction of the cycle for which a given level of step
current is active without substantially changing the phase
of firing (assuming that the step is applied in the period
leading up to the time of firing). Equivalently, only modest
increases in excitatory current step amplitude are required
to compensate for substantial reductions in step duration
(Fig. 6).
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Figure 4. Analytically predicted φ–I curves for variations in oscillation parameters (amplitude and
frequency) and intrinsic cell properties (Rin and τm)
Analytically derived φ–I curves for a passive point neuron model with the following parameters, except where
otherwise stated: Rin = 150 M�, τ m = 20 ms, Iosc = 40 pA, oscillation frequency = 5 Hz (these default values
shown by the red traces). A, increasing oscillation amplitude leads to horizontal stretch of the f–I curve, symmetrical
about its midpoint. B, increasing oscillation frequency leads to an upward and rightward shift of the φ–I curve,
along with an increase in its slope. C, decreasing Rin leads to a rightward shift of the φ–I curve, with no effect on
curve slope or phase lag. D, changing τ m has an effect identical to proportional changes in oscillation frequency. E,
parallel changes in Rin and τ m (as seen with, e.g. a change in net synaptic drive to a cell) yield a simple combination
of the effects of independent changes in Rin and τ m. Specifically, increased τ m and Rin yields a left shift of the
curve, with increased phase lag and an increase in slope. In the lower panel of E, φ–I curves have been horizontally
aligned by the midpoint (dashed line), emphasizing that substantial changes in conductance state of the cell could
yield surprisingly small changes in the shape of φ–I curve (dependent on specific parameters; see text for details).

It is relatively simple to go further to an intuitive
understanding of how the system will respond to changes
in the temporal structure of the input, with the proviso
that active properties of the cell may significantly confound
this intuition.

Current versus conductances

Oscillations in real neurons arise not as a result of applied
current, but of conductance changes. How does this
change the behaviour of the system, compared to that
described above?
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In the CA1 region of the hippocampus, at least part
of the theta oscillation in pyramidal cells is thought to
arise from rhythmically modulated perisomatic inhibitory
conductance inputs, driving a chloride conductance, with
a reversal potential therefore only ∼20 mV negative to the
working range of the cell.

In order to test for any specific effects of oscillatory
conductance (as opposed to current) input, we simulated
inhibitory theta input in pyramidal cells in vitro using
dynamic clamp (n = 14). Excitatory inputs to these
cells are mostly electrotonically fairly distal, and so we
implemented the depolarizing drive as a current rather
than a conductance, bearing in mind the relatively short
conductance length constant reported for pyramidal
neurons (Williams, 2004).

From Fig. 7A it is clear that neuronal behaviour during
conductance-based oscillatory input is not fundamentally
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Figure 5. Peri-threshold membrane potential behaviour during gamma frequency input
A, peri-spike membrane potential traces for a cell receiving a fixed level of tonic input (80 pA) and fixed amplitude
sinusoidal oscillatory input at gamma frequency (40 pA, 40 Hz), aligned by oscillation phase. Dashed lines in the
cycle preceding the spikes indicate the phase range over which spikes occurred. Note that, in the cycle preceding
the spike, there is always a downwards trend in membrane potential late in the cycle. The implication is that, if the
cell has not spiked by a certain point in the cycle, the trough of the oscillatory input is sufficient to overcome the
cell’s intrinsic inward currents and postpone spiking to the next gamma cycle. B, the first derivative of the above
traces (mean shown in orange) emphasizes the negative slope of the membrane potential for part of the cycle
preceding spiking. C, mean of membrane potential first derivatives (as in B) for different levels of tonic input. With
regard to the phase at which positive membrane potential slope resumes late in the cycle, note that this advances
systematically with increasing tonic input. As reflected in the φ–I curves for gamma frequency input, however, this
advance is slight compared with the overall variance in spike phase.

different from that during current-based input. Figure 7B
compares the population responses in the current and
conductance cases (normalized by the firing rate to a given
level of tonic input alone, in the absence of oscillatory
input). The extent and slope of the phase curves are
very similar in the two cases (the horizontal offset of
the φ–I curves is because the oscillatory component in
the current-based case contributes zero mean current,
whereas in the conductance-based case the oscillation
introduces a mean inhibition). We might expect that, for
conductance-based oscillations, increasing depolarization
at high levels of tonic current input would lead to a
larger amplitude oscillation, decreasing the slope of the
φ–I curve. There is some indication that this occurs, but
even so, the effect is small, and restricted to the highest
input levels tested. Thus, this simple, analytical model
holds well also for conductance-based oscillations.
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Encoding efficiency of firing rate and phase

How efficiently do the rate and phase of firing convey
information about the tonic input to a cell during
oscillations?

One way to approach this question is to estimate the
mutual information between the tonic current input level
and either the rate or the phase of firing (Shannon,
1948; Borst & Theunissen, 1999). In doing so, we are
confronted with a choice of methods. We could estimate
the mutual information from the recorded data directly,
and incorporate a measure to compensate for the bias
introduced by discrete sampling of the stimulus range
(e.g. Panzeri et al. 2007). Alternatively, we can describe
response probabilities as a continuous function of the
input, deriving the relevant parameters from the data,
and estimate mutual information on that basis. Since we
have a theoretical basis for the form of this function, which
yields a good description of the data, we opt for the latter
approach (see Methods).

Up to this point we have considered transforms of
input to rate or phase. The phase transform is, of course,
only valid in the presence of oscillatory activity. In
comparing the mutual information content of the different
transforms, it is interesting to ask whether any differences
are due to the presence of the oscillatory activity itself, or
whether they depend on fundamental differences in the
nature of spike count (discrete variable) and spike timing
(continuous variable) coding schemes. Does an equivalent

25 mV

40 pA

100 ms

Full Cycle
50% of Cycle
25% of Cycle
12.5% of Cycle
Sinusoidal Input

Figure 6. Excitatory current step duration and
amplitude trade-off for fixed spike phase
Output from a numerically simulated single
compartment integrate-and-fire model (lower traces
show the tonic and oscillatory current inputs, upper
traces show the resulting membrane potential). With
shortening of the excitatory current step duration, spike
phase can be maintained by modest increases in step
amplitude. For the physiologically relevant parameters
tested here (5 Hz oscillation, τ m 20 ms), reducing step
duration to only 50% of the oscillation cycle
necessitates only a 0.67% increase in step amplitude,
and even for a step duration of 12.5% of the cycle, a
40% increase in step amplitude compensates.

to the phase transform exist in the non-oscillatory regime?
In the absence of an external temporal reference against
which to judge the timing of spikes, any temporal reference
must be intrinsic to the neuron itself. Thus, the equivalent
transform is the interspike interval (ISI).

Figure 8A shows the mutual information estimates for
the population of cells recorded with theta oscillatory
input implemented as an inhibitory conductance using
dynamic clamp (n = 14), assessed for a range of windows
of temporal integration (0.2–1.0 s, or equivalently 1–
5 theta cycles). The temporal codes (phase and ISI) were
more efficient than the rate codes. Figure 8B shows the
mean and standard deviation of within-cell information
differences for the various codes.

Comparing the phase and rate codes, the phase code
yields significantly more information over all relevant
time intervals (paired t tests, P < 0.001 for phase code
versus rate codes both with and without oscillations).
Comparing the phase code to the rate code in the
absence of oscillations, after 0.2 s, the mean difference
in information (± S.D.) was 1.27 ± 0.37 bits (mean of
differences for individual cells); and after 1 s, 1.07 ± 0.47
bits. Comparing the phase code to the rate code with
oscillations, the difference in information was 1.12 ± 0.31
bits after 0.2 s, and 1.35 ± 0.38 bits after 1 s.

In order to transmit the same information available in
one theta cycle via the phase code, the rate code had to
be evaluated over nearly 0.85 s, or a 4.25 times greater
interval. Equivalently, more than four neurons encoding
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the same information would be required using a rate code
to match one neuron using a phase code. Naturally, each
neuron need not encode the same information, but even in
the limit of allowing each neuron to encode independent
information, the phase code would be more than twice as
efficient over a single theta cycle.

The performance of the ISI code was very similar to that
of the phase code, with a mean difference in information
of 0.15 ± 0.46 bits after 0.2 s; and 0.17 ± 0.51 bits after
1.0 s (difference not statistically significant).

Comparison of the rate codes in the presence and
absence of oscillatory input is also of interest. The
rate code in the presence of oscillations was marginally
superior to the oscillation free rate code at short estimation
intervals (0.12 ± 0.16 bits at 0.2 s; paired t test P < 0.05),
but was superseded as the estimation interval increased
(−0.33 ± 0.22 bits at 1.0 s, paired t test P < 0.005). This
reflects the tendency towards cycle locking of spikes, which
reduces the uncertainty in the response to a given level of
input, thereby increasing the information available over
short intervals. However, over longer intervals, the cycle
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Figure 7. Cell response to oscillatory conductance injection, via dynamic clamp, does not differ
significantly from oscillatory current injection
A, spike phase histograms for a typical cell receiving a theta frequency (5 Hz) sinusoidally modulated inhibitory
conductance (implemented via dynamic clamp) and a range of levels of tonic current input. First spike per cycle
are indicated in black, second in dark grey, and third in light grey. The conductance input (dashed line) and
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the conductance trace is inverted for clarity of presentation. B, comparison of φ–I scatter plots for current based
(grey) and conductance based (black) oscillatory input. Apart from a horizontal shift due to the mean inhibitory
component of the oscillatory conductance, no qualitative difference in behaviour is revealed.

locking reduces the number of different response states
available to the cell (or at least skews the distribution
of responses towards a minority of the possible states),
reducing the total response entropy and thus decreasing
the mutual information.

Discussion

Basic principles of the rate-to-phase transform

We have set out a basic framework for the understanding of
a neuronal rate-to-phase transform, and the circumstances
under which it will arise.

According to this framework, any neuron receiving
tonic excitatory drive combined with slow oscillatory
input (oscillation period long compared to τm) will
implement a rate-to-phase transform, with an increase
in tonic drive yielding advance of the first spike per cycle.
Our in vitro recordings demonstrated that real neurons (in
this case, hippocampal CA1 pyramidal cells) will readily
implement this transform given appropriate oscillation
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parameters (here, 5 Hz oscillatory input of physiologically
relevant amplitude). In the context of temporal coding
schemes, this transform resembles latency-to-first-spike
codes which have now been identified for a number
of systems (Johansson & Birznieks, 2004; Gollisch &
Meister, 2008), with two additional features. First, latency
has typically been measured relative to some external
reference, such as stimulus onset, whereas for the
oscillatory rate-to-phase transform, the oscillation itself
serves as temporal reference. Second, the oscillation based
code has the further advantage that it will be repeated or
updated on each cycle.

The computational power of such an oscillation-based
coding system has been previously described, using a
theoretical model (Hopfield, 1995). This was further
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codes (phase and ISI) were not significantly different from each other (P > 0.05) but were both significantly more
efficient than rate codes (P < 0.001).

supported by a subsequent study, demonstrating that
the neuronal behaviour required by that model could be
implemented by mitral cells of the mouse olfactory bulb
in vivo (Margrie & Schaefer, 2003).

The oscillatory rate-to-phase transform described could
also underlie codes based on the order of first spikes
across cells (Thorpe et al. 2001) rather than on spike phase
per se.

Gamma frequency oscillations

Our experiment did not uncover a rate-to-phase
transform in CA1 pyramidal neurons using purely tonic
input on a gamma frequency (40 Hz) oscillation, at least
in part because they could not sustain a sufficiently high

C© 2009 The Authors. Journal compilation C© 2009 The Physiological Society



782 D. McLelland and O. Paulsen J Physiol 587.4

firing rate. However, this is unlikely to be a general
limitation for phase coding. Indeed, several classes of
neuron exhibit faster τm and can fire at higher rates
than hippocampal pyramidal cells, and thus, according to
our model, would be likely to implement a rate-to-phase
transform at higher oscillation frequencies. Even
hippocampal pyramidal cells might be able to support
gamma phase coding in vivo. First, during gamma activity
in vivo, pyramidal neurons are likely to have faster τm

than we observe in vitro. Secondly, although these neurons
are unable to sustain high frequency firing to tonic input,
fluctuating inputs as seen in vivo may allow the spike phase
to be controlled relative to the gamma oscillation over brief
time intervals.

Tiesinga et al. (2002) studied entrainment of
interneuron firing to gamma frequency oscillatory input,
and the associated mutual information between input
level (actually, in their case, the number of inhibitory
inputs per cycle, but this is in effect equivalent to the
level of tonic input we describe) and output spike phase.
As might be expected given the faster τm of these cells and
their intrinsic potential to sustain higher firing rates, a
phenomenon closely resembling the rate-to-phase trans-
form was observed, but specifically in the entrained state,
that is, where there was strictly one spike per cycle. This
conforms to the system described by eqn (4) and would
be equivalent to observing control of firing phase only on
the firing rate plateaux (for theta frequency input in our
case; Fig. 1B). This version of the rate-to-phase transform
is the basis of several recent models (Brody & Hopfield,
2003; Hopfield, 2004; Hopfield & Brody, 2004).

We wish to emphasize an important functional
difference between this entrainment-specific rate-to-
phase transform and the theta frequency rate-to-phase
transform that we report, where phase locking is not
restricted to the oscillation-entrained firing state. This
difference is dependent on the oscillation period being
sufficiently longer than the neuronal τm, and yields an
important difference in the context of information coding.
For fast oscillatory input, a substantial proportion of
the possible input levels may result in non-phase-locked
firing across a substantial fraction of the oscillation cycle
(apparent in Tiesinga et al. 2002; Brody & Hopfield,
2003; Hopfield, 2004; Hopfield & Brody, 2004). This is
true for input levels both higher and lower than the
range yielding entrained firing, so that the phase of firing
might not be unambiguous for downstream neurons,
which, for efficient use of this code, would also need to
be informed whether or not the signalling neuron was
operating in the entrained range. For slow oscillatory
input, such as we demonstrate for theta frequency input,
this signal ambiguity is avoided. If the cell fires at all, the
rate-to-phase transform is implemented, at least up to
levels of input yielding maximal phase advance (180 deg
relative to threshold phase).

Note also that, in the fast oscillation regime, spike timing
in one cycle is dependent on the timing of the spike in
the previous cycle. This has two significant consequences.
Firstly, when there is a change in tonic input to the cell,
phase of firing may not shift immediately to the analytically
predicted value, but rather iterate towards it over the
course of several cycles. Secondly, transient events which
perturb the spike phase in a given cycle would have effects
on spike timing in subsequent cycles. This is not true
of the slow oscillation regime, in which spike phase will
match analytical predictions within the cycle following a
change in tonic input level, and within the same cycle if
the input change occurs early relative to the analytically
predicted spike time. Similarly, the subthreshold period
of the oscillation allows spike timing in each cycle to be
independent of events in the preceding cycle. Of course,
active neuronal properties with sufficiently slow dynamics
may influence subsequent cycles, as has been described in
the context of phase response curves (Lengyel et al. 2005).

Hippocampal phase precession and the rate-to-phase
transform

The phenomenon of phase precession in hippocampal
place cells provides the best evidence of a phase code in the
mammalian CNS (O’Keefe & Recce, 1993). What are the
implications of our results for the understanding of place
cell phase precession?

The results presented here suggest that, for phase
coding, the phase of only the first spike per cycle should
be used to infer information about the input, rather than
the phase of all spikes or the mean phase.

The neuron-level processes underlying the generation
of place cell phase precession have not yet been identified.
Putative mechanisms include a transform of excitation to
phase (Harris et al. 2002; Mehta et al. 2002), much as we
describe here, or the interference between two or more
oscillations (O’Keefe & Recce, 1993; Kamondi et al. 1998;
Magee, 2001; Lengyel et al. 2003; Burgess et al. 2007). It
is worth noting that place cells in vivo are reported to
advance monotonically through a full 360 deg as the place
field is traversed. Our results demonstrate that the simple
combination of varying tonic input on fixed oscillations
can only account for controlled phase advance over at
most 180 deg (non-sinusoidal rhythmic input patterns
could increase the useable fraction of the cycle, but the
requirement for a subthreshold period would remain).
Higher levels of tonic input would yield non-phase-locked
firing, unrestricted by oscillation phase.

We note, however, that place cell phase precession is not
uniform across the place field. Plots of place cell phase
data presented in the literature exhibit two distinct trends
(O’Keefe & Recce, 1993; Harris et al. 2002; Mehta et al.
2002; Huxter et al. 2003). This observation has received
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quantitative support (Yamaguchi et al. 2002). On entry
to the place field, phase of firing is well restricted and
advances smoothly over the first 180 deg of the oscillation
cycle, in a manner strikingly consistent with that
predicted by the rate-to-phase transform which we
describe. In the latter part of the place field, phase of firing
is less well restricted, occupying the remaining 180 deg
of the oscillation cycle. This cannot be accounted for
by a simple rate-to-phase transform as presented here.
However, it would be consistent with firing in the less
ordered regime entered when cells are driven beyond
180 deg of phase advance, provided there were some
mechanism to inhibit firing around the oscillation peak.

Kamondi et al. (1998) recorded from rat hippocampal
pyramidal cells in vivo, with a specific interest in
the phenomenon of place cell phase precession. They
demonstrated the potential for cells to implement the
rate-to-phase transform that we describe, with the same
limitation of 180 deg of phase advance. Likewise, they
qualitatively report asymmetry of spikes around the
oscillation peak (most spikes on the upslope), similar to
what we found. In a model, they were able to reproduce
this behaviour by the introduction of a slowly activating
outward current (specifically I KS, although one can
envisage that, in general, a similar effect will be generated
by any adapting currents, be they spike activated or slow
voltage dependent). Our analytical results highlight an
important role for this type of mechanism. By extending
the effective subthreshold period of the oscillation, the
system has more time to ‘reset’, so that the late spikes
from one cycle do not interfere with the timing of the
first spike in the next. Indeed, without such a mechanism,
even 180 deg of well controlled phase advance would not
be possible. We note that, from the results presented by
Margrie & Schaefer (2003), considerably less asymmetry
of firing is present in mitral cells of the mouse olfactory
bulb (approximately 80 deg advance for 55 deg retreat,
measured from their figures, compared to, e.g. 160 deg
advance for 30 deg retreat in our data). Whatever the
reasons for these differences, their presence hints at a
functional relevance.

Efficiency of coding

Consider a system which must convey information about
some input signal that it receives. The rate with which
it can transmit information is limited by the number of
distinct responses it can generate within a given interval
(with each response representing the presence of a different
input). Shannon (1948) set out a mathematical framework
to quantify this. For neurons implementing a rate code,
this value is set by the range of firing rates, a discrete
number. In the context of a temporal code, however, the
output variable is continuous – if times of firing could
be determined precisely as real numbers, then the system

would have the potential to transmit infinite information
per signal. Of course, in reality this is limited by noise and
the potential of the neuronal hardware to generate (and
for the receiving neurons, to distinguish) precisely timed
spikes.

Efforts to derive information capacity limits for single
neurons using rate or temporal codes began soon after
Shannon developed his information theory framework
(Mackay & McCulloch, 1952; Rapoport & Horvarth, 1960;
Stein, 1967), but have been hampered by the paucity
of relevant physiological data. More recent studies have
tended to examine the efficiency with which neurons in
sensory systems can encode external stimuli (Rieke et al.
1997) but are limited in what they can tell us about the
transforms performed by individual neurons, or their
efficiency in doing so.

Other recent studies have characterized the temporal
precision with which neurons can generate spikes (Mainen
& Sejnowski, 1995; Schaefer et al. 2006). Indeed, Schaefer
et al. (2006) examined specifically the role of oscillations
in enhancing this precision. While they did not explore
these effects in terms of the information content, it is
clear that some of the phenomena that they describe
(the role of the subthreshold period imposed by the
oscillation, and the improved spike discrimination during
the oscillation trough and upstroke) are consistent with the
theta frequency phase transform which we have explored
here.

The data we recorded offered the possibility to estimate
directly the information available in the rate or timing of
firing of a single neuron, for a simple input signal, and
explicit, well characterised transforms. We found that, for
the system studied, significantly more information was
available via the temporal codes (phase or ISI) than via the
rate code. This additional information could account for
the increase in accuracy of position reconstruction from
place cell activity when phase information was included
(Jensen & Lisman, 2000).

It is striking that the phase code is as efficient as the ISI
code – no information is lost by the addition of an external
oscillation. At the same time, this oscillation provides a
common temporal reference, enabling a code based on
the rank order of spikes across a population of cells which
could be read out by a simple biophysical mechanism
(Gautrais & Thorpe, 1998; Thorpe & Gautrais, 1998), as
well as facilitating the computations that can be performed
using phase as stimulus representation (Hopfield, 1995).
We are not aware of a physiologically based mechanism
which could efficiently read out an ISI code.

The higher coding efficiency afforded by phase coding
might also be important given the spatial constraints
on neuron numbers (both in terms of physical space
occupied and wiring distances). Depending on the way
information is distributed across different neurons, rate
coding would require from two to five times as many cells
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to match the information transmission of the phase code
(for the parameter set we explored; presumably for other
parameter values and cell types, the relative efficiency of
rate and phase coding systems would be different).

Multiple factors will influence the efficiency of
information transfer in the phase coding regime. Notably,
we tested cell responses with purely tonic input, whereas
physiological inputs to the cell are composed of multiple
discrete synaptic events. It is to be expected that this input
noise will affect rate and phase codes to different extents.
Furthermore, the influence of noise on phase coding
will vary with oscillation parameters, such as amplitude
and frequency. In this context, however, we note that
Schaefer and colleagues found similar enhancement of
spike precision in vivo, and for simulated oscillations in
vitro (Schaefer et al. 2006), so that for some systems at
least, the high information content which we estimate for
phase coding is likely to be valid in vivo. The question of
optimal performance in the phase coding regime is further
complicated by the fact that the rate of signal update is
linked to the coding mechanism: slow oscillations will
typically allow more accurate signal discrimination, but at
the expense of a lower rate of signal update. Thus, rapidly
changing parameters may require faster oscillations for
optimal encoding. We would suggest that this variability
in the requirements of specific systems may in part account
for the range of different oscillatory states encountered in
the mammalian brain.
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