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ABSTRACT
The plaque assay is a standard quantification system in virology for verifying infectious
particles. One of the complex steps of plaque assay is the counting of the number of
viral plaques inmultiwell plates to study and evaluate viruses. Manual counting plaques
are time-consuming and subjective. There is a need to reduce the workload in plaque
counting and for a machine to read virus plaque assay; thus, herein, we developed
a machine-learning (ML)-based automated quantification machine for viral plaque
counting. The machine consists of two major systems: hardware for image acquisition
and ML-based software for image viral plaque counting. The hardware is relatively
simple to set up, affordable, portable, and automatically acquires a single image or
multiple images from a multiwell plate for users. For a 96-well plate, the machine
could capture and display all images in less than 1 min. The software is implemented
by K-mean clustering using ML and unsupervised learning algorithms to help users
and reduce the number of setup parameters for counting and is evaluated using 96-
well plates of dengue virus. Bland–Altman analysis indicates that more than 95% of the
measurement error is in the upper and lower boundaries [±2 standard deviation]. Also,
gage repeatability and reproducibility analysis showed that the machine is capable of
applications. Moreover, the average correct measurements by the machine are 85.8%.
The ML-based automated quantification machine effectively quantifies the number of
viral plaques.
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INTRODUCTION
A plaque assay is one of the standard measurements (Dulbecco, 1952) for viable viruses in
virology laboratories. Applications of this method range from basic research through drug
discovery to vaccine development (Premsattham et al., 2019). In principle, viruses infect
the cell monolayer in a semisolid medium, thus limiting only the horizontal spread. The
area of cell death (i.e., plaque) is visualized under a microscope before staining with neutral
red or crystal violet (BioTek Instruments, Inc, 2021; Cacciabue, Currá & Gismondi, 2019).
The plate is manually counted and calculated to quantify the virus. The manual counting
of plaques is tedious and requires well-trained personnel for verification. The plaque assay
can be performed in low to medium throughput formats, such as 6-, 12-, or 24-well plates.
This method requires more reagents and highly skilled operators to appropriately perform
the assay. Recently, a simplifiedmicrowell plaque titration assay was developed with Herpes
simplex (Bhattarakosol, Yoosook & Cross, 1990) and dengue viruses (Boonyasuppayakorn et
al., 2016). Automated data acquisition and quantification methods have been developed
under a flatbed scanner (Boonyasuppayakorn et al., 2016; Sullivan et al., 2012).

Recently, automated imaging-based counters have been applied to plaque assays;
however, the current versions face multiple challenges. For example, Cellular Technology
Limited developed a commercial Elispot and viral plaque-counting machine called
ImmunoSpot CLT Analyzers (Cellular Technology Ltd., Shaker Heights, OH, USA).
The machines can automatically acquire high-resolution images for each well plate with
a high speed and automatically count plaque using software. Even though the software
focuses on counting Elispot assays the company can optimize the setup, such as plaque
intensity and size to develop programs for counting viral plaques for each well plate (Smith
et al., 2013; Sukupolvi-Petty et al., 2013). However, the program has limitations: it cannot
be easily optimized and standardized for various viral plaques. Moreover, commercial
machines and their services are often expensive and proprietary.

For plaque counting on a personal computer, general image-processing tools,
such as ImageJ, OpenCV, Labview, R, have been employed (Boonyasuppayakorn et
al., 2016; Rasband, 1997-2015; R Core Team, 2016; Cai et al., 2011; Cacciabue, Currá
& Gismondi, 2019; Geissmann, 2013; Katzelnick et al., 2018; Moorman & Dong, 2012).
Boonyasuppayakorn et al. (2016) developed an ImageJ program and employed it for a
modified 96-well plaque assay for the dengue virus. A flatbed scanner was used in the
assay to acquire the 96-well plate image before cropping it into each well image. However,
the plate must be contrast-enhanced by adding nontransparent liquid, such as milk,
before scanning, which increases the workload. Work in several studies (Cai et al., 2011;
Cacciabue, Currá & Gismondi, 2019; Geissmann, 2013; Katzelnick et al., 2018; Moorman &
Dong, 2012) have developed programs to count viral plaque based on image segmentation,
morphological analysis, and image threshold, but the programs require image-processing
knowledge to implement and may not be suitable for some assays. To date, no machine
learning (ML)-based program has been developed for plaque counting.

Due to the need of reducing the number of staff that conduct viral plaque assay, we
developed an automated quantification machine based on ML. The machine comprises
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the hardware system for image acquisition and ML-based software for image viral plaque
counting. The hardware is relatively simple to set up, affordable, portable, and automatically
acquires a single image or multiple images from a multiwell plate for users. The software is
implemented using K-mean clustering, which is a ML algorithm and unsupervised learning
algorithm to help users. The algorithm helps by reducing the number of setup parameters
for counting.

The automated quantification machine was built and evaluated with 96-well plates of
dengue virus. The processes for standardizing the manual and software counting algorithm
and evaluating the performance of the system on several plaque images are described in
the next section. The counting results from the machine are consistent with those from
manual counting.

MATERIALS & METHODS
Cell and viruses
Simplified dengue microwell plaque assays were performed following the procedure
reported in Boonyasuppayakorn et al. (2016). In summary, the 10-fold serially diluted
viruses in a maintenance medium to 10−6 were used as the reference. LLC/MK2
(ATCC R©CCL-7) cells at 1 × 104 cells per well (50 µl) of a 96-well plate were mixed
with all dilutions and undiluted samples.

Then, the dilution was prepared and the cells were incubated as explained in
Boonyasuppayakorn et al. (2016). Finally, the dengue virus cells were fixed and then stained
as the standard assay. The number of plaque-forming units (p.f.u.) per ml was determined
manually and using the automated quantification machine for evaluation.

Automated quantification machine
The automated quantification machine was developed to acquire viral plaque images of
each well plate and automatically display the counting results in an easy-to-usemanner. The
major components of the machine are the hardware for image acquisition and ML-based
software for image viral plaque counting.

Hardware for image acquisition
The automated quantification machine was developed to reduce workload and enable
personal use in laboratories. Thus, the machine is relatively simple to set up, affordable,
portable, and automatically acquires single or multiple images from multiwell plates for
users. Then, the hardware components of the machine include an IAI Tabletop, Model TT-
A3-I-2020-10B-SP (IAI Robot (Thailand) Co., Ltd., Bangkok Thailand), a USBmicroscope
camera, Dino-Lite AM4113T (AnMO Electronics Corporation, Hsinchu, Taiwan), and an
adjustable light source panel, 150 mm × 150 mm surface LED illumination source.

A photo and a schematic of the automated quantification machine are shown in Figs. 1A
and 1B, respectively. The IAI Tabletop is a 3-axis Cartesian robot with a working space of
200 mm × 200 mm × 100 mm (x-, y-, and z-axis). Its repeating positioning accuracy is
less than ± 0.02 mm. The x-axis of the IAI Tabletop is installed with the multiwell plate
fixture and the light source panel and the z-axis is installed with a camera holder and a USB
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Figure 1 Automated quantification machine. (A) Prototype of automated quantification machine. (B)
Schematic of automated quantification machine.

Full-size DOI: 10.7717/peerjcs.878/fig-1

microscope camera. With the Cartesian robot configuration, the IAI Tabletop can move a
multiwell plate along the x–y plane for automatic and accurate positioning to capture the
well images with the USB microscope camera and move the USB microscope camera along
the z-axis to automatically focus the image.

The USB microscope camera is a color camera with a resolution of 1280 × 1024
pixels and 10×–50×, 220× magnification range. It is equipped with an LED coaxial light
source. With low magnification, the camera can capture a full-size well image of a six-well
plate, and with medium magnification, the camera can capture a full-size well image of a
ninety-six-well plate. To change the magnification of the camera, the magnification ring is
manually adjusted.

The adjustable light source panel is a square surface LED illumination source. It is
installed on the x-axis of the IAI Tabletop and underneath the multiwell plate fixture. The

Phanomchoeng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.878 4/21

https://peerj.com
https://doi.org/10.7717/peerjcs.878/fig-1
http://dx.doi.org/10.7717/peerj-cs.878


light source panel has high parallelism of light. The high parallelism of the light source
panel renders the object edges clearer and sharper in an image. For viral plaque counting,
the back-light technique is employed since it gives better image quality than the bright-
and dark-field techniques. The back-light technique can be performed by turning off the
LED coaxial light source and turning on the light source panel.

To control the machine hardware, the hardware is connected to a personal computer
via USB cables and is controlled by a window application developed using C# language.
The window application communicates to the IAI Tabletop by PSEL protocol to control
the position of the multiwell plate. It also communicates to the USB microscope camera
by DNVIT SDK to control the coaxial light source and image acquisition. Images are saved
in PNG format. The user interface and user experience (UI/UX) design was considered
in creating the window application. The window application consists of 1. calibration
routine 2. single image and multiwell plate image acquisition 3. Google Firebase database
(https://firebase.google.com).

The calibration routine is used to calibrate the movement of the IAI Tabletop. A
screenshot of the calibration control is shown in Fig. 2A. Due to the installation process,
the coordinate of the multiwell plate fixture is not the same as the coordinate of the IAI
Tabletop. This causes the misalignment of the well center position when capturing an
image. To apply the calibration routine, the user can work in two steps. The first step is to
control the IAI Tabletop by UI control to locate the A1, A12, and H1 well center positions,
as shown in Fig. 2A. The second step is to click the calibration routine button. Then, the
algorithm automatically recalculates the new coordinate of the IAI Tabletop and makes the
coordinate of the multiwell plate fixture and IAI Tabletop the same.

The single and multiwell plate image acquisition allows the user to select how to acquire
well images. A screenshot of the image acquisition control is shown in Fig. 2B. With the
single image acquisition, the user only selects or keys in the desired well number, such as
A1, B2, and H12. Then, the machine moves, captures, and displays the desired well image.
Moreover, with the multiwell plate image acquisition, the user only clicks one button to
make the machine automatically capture and display all multiwell plates. For the 96-well
plate, the machine can capture and display all images within less than 1 min. Once images
are captured, the user may use the ML-based software for image viral plaque counting.

The Firebase database is used to collect all results of the machine for backup. The data
in the Firebase database allows new features of the machine to be developed in the future,
such as the data storage and exploration features, data analysis tools, data dashboard, web
applications, and remote operation. These will provide greater convenience to users.

Machine learning software for image viral plaque counting
The algorithm for image viral plaque counting is ML and K-mean clustering (Arora &
Varshney, 2016). It helps users and reduces the number of setup parameters for counting.
The algorithm is also implemented in aWindows application developed by visual studio C#
language and image-processing library, (MVtec Halcon MVTec Software GmbH, Munich,
Germany;MVTec Software GmbH, 2021a).
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Figure 2 Screenshot of calibration control and image acquisition control. (A) Calibration control. (B)
Image acquisition control.

Full-size DOI: 10.7717/peerjcs.878/fig-2

The viral plaque is surrounded by noninfected cells and is identified using a counterstain,
typically a neutral red or crystal violet solution. The white areas indicate the virus plaques,
which cause the solution around them to degrade. To count the viral plaques, three major
steps are taken to process each image: locating the well position, filtering the color image
for image enhancement, and counting the number of viral plaques with K-mean clustering.

The region of interest (ROI) is the focus region, which is important for counting viral
plaques. The ROI is determined first, followed by the algorithms applied to the corrected
location to prevent algorithm error. To locate the well position, a shape-based matching
algorithm is employed to find the best matches of a shape model in an image (MVTec
Software GmbH, 2021b). It does not use the gray values of pixels and their neighborhood as
a template, but it defines the model by the shape of contours. In this case, the circular shape
of the well is used as the template. Then, the algorithm finds the best-matched instance
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of the shape model. The position and rotation of the found instances of the model are
returned in the pixel coordinates and angle, which are used to create the ROI image.

There are many techniques for filtering color images for image enhancement, including
converting the RGB color space to HSV color space or binary image and applying a mean
filter. Herein, the CIELAB color space is employed (MVTec Software GmbH, 2021a; Ly
et al., 2020). It presents a quantitative relationship of color on three axes: L* represents
the lightness, a* represents the red–green component of a color, and b* represents the
yellow–blue component of a color. The CIELAB color space decouples the relationship
between lightness and color of an image. Thus, the image brightness is less effective for
image-processing. Only a* and b* are used to convert the image to a binary image. The
a* and b* values of image pixels in ROI are used for clustering into the two groups, white
and dark groups, by K-mean clustering, as shown in Fig. 3A. The yellow area represents
the white group or white area, and the blue area represents the dark group or dark area.
The red dot represents the centroid of each area. The result of the binary image is shown
in Fig. 3B. After this process, a mean filtering process is applied to the binary image.

To count the number of viral plaques, a simple image threshold is employed for region
selection. The suspected viral plaque regions are selected and analyzed. An example of
suspect regions is shown in Fig. 4A. If the size, length, area, and roundness of a region are
appropriated, the region is counted as the viral plaques. An example is shown in Fig. 4B.
However, if the size and area of a region are too large because of their overlay, the K-mean
clustering is employed in the region. To do that, the grid points are generated inside the
large regions along the x–y coordinate, as shown in Fig. 4C. Then, K-mean clustering is
employed to cluster the grid points. Moreover, to determine the optimal value of k or
the appropriate cluster number, the Silhouette algorithm (Ogbuabor & Ugwoke, 2018) is
implemented. The grid points are clustered into k clusters by K-mean clustering. Then,
the average Silhouette coefficients for each k cluster are calculated. The Silhouette plot is
shown in Fig. 4D. The maximum value of the average Silhouette coefficients is considered
the optimal number of clusters. Finally, the number of viral plaques is the summation of
the optimal number of clusters and the previous number of viral plaques (Fig. 4E).

A flowchart of the ML-based software for image viral plaque counting is shown in Fig. 5,
and an example of the machine counting results is shown in Fig. 6.

VIRAL PLAQUE READING DIFFERENCES BY HUMANS
Plaque assays were created at the Medical Virology Research Center, Chulalongkorn
University, Thailand. More than 25 96-well plates of dengue virus were used to evaluate
differences in viral plaque readings. The number of viral plaques from 96-well plates was
read by six experts, which included 1,777 wells that could be read by all experts. The
remaining wells could not be read by experts, either because they were unclear or because
no viral plaques were present; hence, they were not included in the evaluation. The number
of viral plaques read by experts ranged between 0 and 31. To evaluate variations in expert
readings, a boxplot of expert reading results for a given number of viral plaques is presented
in Fig. 7. Since the actual number of viral plaques is unknown, the mode value of six expert
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Figure 3 Converting RGB image to binary image. (A) a* and b* values of image pixels. (B) Binary im-
age by K-mean clustering.

Full-size DOI: 10.7717/peerjcs.878/fig-3

Figure 4 Viral plaque counting with K-mean clustering algorithm. (A) Suspect viral plaque regions. (B)
Appropriated region. (C) Grid points inside the larger region. (D) Silhouette plot. (E) Final result.

Full-size DOI: 10.7717/peerjcs.878/fig-4
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Figure 5 Machine learning (ML)-based software for image viral plaque counting.
Full-size DOI: 10.7717/peerjcs.878/fig-5

readings was used as a reference in this case. Data that had nomode was not included in the
evaluation. Figure 7A shows the distribution of readings by all experts for each number of
viral plaques and Fig. 7B shows an example reading distribution by an expert for different
numbers of viral plaques.

Figure 7 shows that the expert reading distributions in the range of 0–3 are small, but
the distribution of expert readings increases when the number of viral plaques increased.
When the number of viral plaques exceeds 12, the range of possible readings by an expert
varies by more than a factor of 5.

To understand the variation in expert readings, a gage repeatability and reproducibility
(R&R) analysis was employed (Automotive Industry Action Group, 2010; Burdick, Borror &
Montgomer, 2005). A random sample of 300 wells (part) with and without viral plaques was
used, in which the number of viral plaques varied from 0–25. Each well was subsequently
read by six experts/operators. The results of the gage R&R were evaluated using a nested
model (The MathWorks Inc, 2021) and analysis of the expert data was executed inMATLAB
(The MathWorks Inc, 2021) using the MATLAB Toolbox to examine the results.

The gage R&R analysis was performed for various numbers of viral plaques in six ranges:
0–1, 2–3, 4–8, 9–10, 11–15, 16–25, and 0–25. The results are shown in Table 1.

Table 1 indicates that in the range of 0–1, the variation or sigma of expert readings
according to the R&R process is 0.9406. The variation or sigma increases as the range
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Figure 6 Example of machine counting. (A) Counting results by an expert. (B) Counting by machine.
Full-size DOI: 10.7717/peerjcs.878/fig-6

of viral plaque numbers increases. The variation or sigma reaches as high as 4.6900 in
the range of 16–25. For the overall range of 0–25, the variation or sigma is 2.8063. The
reading distribution and reading variation values were used to design the experiment setup
described in the following section.
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Figure 7 Expert reading distributions. (A) Reading distribution of all experts for each number of vi-
ral plaques. (B) Reading distribution examples of an expert for each number of viral plaques. The red +
marks represent the outliners of the measurement. The blue line having the slope of 1 represents the mea-
surement reference values. The red dashed line represents the trend line of the measurement results of ex-
perts.

Full-size DOI: 10.7717/peerjcs.878/fig-7

EXPERIMENT
More than 25 96-well plates of dengue virus were used to evaluate the automated
quantification machine. The 96-well plates were put in the machine, and their images
were captured. Then, the images were screened for evaluation. There were 1,777 images
qualified for evaluation. Next, the number of viral plaques in each image was manually
determined by six experts from the research center and by the automated quantification
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Table 1 Gage repeatability and reproducibility (R&R) analysis for each range of viral plaque numbers.

Reference number of viral plaques

0–1 2–3 4–8 9–10 11–15 >16 All

Var. Sigma Var. Sigma Var. Sigma Var. Sigma Var. Sigma Var. Sigma Var. Sigma

Gage R&R 0.8847 0.9406 1.5433 1.2423 6.3720 2.5243 7.2413 2.6910 9.2160 3.0358 21.9960 4.6900 7.8756 2.8063
Repeatability 0.8510 0.9225 1.2298 1.1090 3.9490 1.9872 5.2781 2.2974 5.3403 2.3109 10.0464 3.1696 5.6792 2.3831
Reproducibility 0.0337 0.1835 0.3136 0.5600 2.4230 1.5566 1.9632 1.4011 3.8757 1.9687 11.9496 3.4568 2.1964 1.4820
Operator 0.0337 0.1835 0.3136 0.5600 2.4230 1.5566 1.9632 1.4011 3.8757 1.9687 11.9496 3.4568 2.1964 1.4820
Part 0.3568 0.5973 0.5092 0.7136 5.4656 2.3379 2.0874 1.4448 4.2479 2.0610 6.3211 2.5142 39.8431 6.3121
Total 1.2415 1.1142 2.0525 1.4327 11.8376 3.4406 9.3288 3.0543 13.4639 3.6693 28.3171 5.3214 47.7187 6.9079

machine software (note that 721 images showed 0 viral plaque). The number of viral
plaques was evaluated based on the mode of expert readings and well as by the machine.

In the case of many viral plaques in an image, the image was ambiguous. For this reason,
the number of viral plaques complicated efforts by the experts to read them. Therefore, an
experimental counting criteria was defined based on the reading distribution in Fig. 7, the
variation in expert readings in Table 1, and the criterion of the Medical Virology Research
Center. If the difference between the number of viral plaques counted by the expert reading
mode and the machine is within the maximum number of errors (Table 2), the number of
viral plaques counted by the machine is correct. This counting criterion was employed in
the evaluation, and the results are presented in the Results section.

The gage R&R analysis was employed to evaluate the repeatability and reproducibility
of the machine (Automotive Industry Action Group, 2010; Burdick, Borror & Montgomer,
2005). For the analysis, 240 wells (part) with and without viral plaques were used. Due to
the number of samples, the number of viral plaques of the 240 wells varied from 0 to 18.
Then, each well was put into the machine to be captured the image and count the number
of viral plaques. This procedure was repeated three times to represent three operators using
the machine to count the number of viral plaques. Finally, each well has three measurement
results from the machine. The gage R&R using the nested model is employed to evaluate
the results (The MathWorks Inc, 2021).

MATLAB and MATLAB Toolbox were used to perform the analysis and the gage R&R
analysis of the machine data.

RESULTS
Distribution software counting for each number of viral plaques
The measurement of the number of viral plaques is depicted in Fig. 8. There are 1,777
measurements in the range of 0 to 29 viral plaques. For each number of viral plaques, the
boxplot is used to show the mean and distribution of the measurement by the machine.
The red + marks represent the outliners of the measurement, which includes less than
5% of the measurement. The boxplot shows that in the range of 0 to 9 viral plaques, the
standard deviation (SD) of the measurement is less than 1, and the SD increases as the
number of viral plaques increases.
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Table 2 Maximum number of errors for the software evaluation.

Reference number of viral plaques Maximum number of errors

0–1 ±0
2–3 ±1
4–8 ±2
9–10 ±3
11–15 ±4
>16 ±5

Figure 8 Distribution software counting for each number of viral plaques. (A) Distribution of software
counting for each number of viral plaques. (B) Distribution of software counting for the range [0–12] of
number of viral plaques. The red + marks represent the outliners of the measurement. The blue line hav-
ing the slope of 1 represents the measurement reference values. The red dashed line represents the trend
line of the measurement results of the machine.

Full-size DOI: 10.7717/peerjcs.878/fig-8

The blue line having the slope of 1 represents the measurement reference values. The
red dashed line represents the trend line of the measurement results of the machine. The
number of viral plaques obtained by the machine ranges from 0 to 29, as calculated form
From Fig. 8A using Eq. (1). The goodness-of-fit equation generated an R2 of 0.8408.

y = 0.8054×x, (1a)

Goodness-of-fit:

R2
= 0.8408, (1b)

where y is the number of viral plaques by the machine, and x is the number of viral plaques
by the expert. The values range from 0 to 29.

For Fig. 8B, the trendline of the measurement results of the machine shows the number
of viral plagues ranging from 0 to 12, as calculated using Eq. (2). The goodness-of-fit
equation generated an R2 of 0.8870.

y = 0.9539×x, (2a)

Goodness-of-fit:

R2
= 0.8870. (2b)

Phanomchoeng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.878 13/21

https://peerj.com
https://doi.org/10.7717/peerjcs.878/fig-8
http://dx.doi.org/10.7717/peerj-cs.878


In the range of 0 to 29 viral plaques, the slope of the trend line of the machine is 0.8054,
whereas, in the range of 0 to 12 viral plaques, the slope is 0.9539. For a number of viral
plaques in the range of 0–12, the line has a slope close to 1 with R2 of 0.8870. Therefore, the
counting results by the machine and experts correspond to the highest evaluation quality.
Moreover, to evaluate the correlation between the counting by the expert and machine,
Pearson’s coefficient method was used to measure the strength of the association between
the machine and manual counting (Mukaka, 2012). The Pearson’s coefficient r of these
variables is 0.9221 with a p-value of less than 0.0001. Since the p-value is less than 0.05, the
variables reliably correlate.

Bland–Altman
To evaluate the performance of the machine, the Bland–Altman plot was used (Myles
& Cui, 2007). The measurements from the expert and machine were considered. The
difference in the measurement results from the expert and machine, error mean bias,
and error SD were determined. The Bland–Altman plot is shown in Fig. 9. The results
indicate that 95.01% of the measurement error is in the upper and lower boundaries (±2
SD). Therefore, the error from the machine is within the boundary limit. The machine
effectively and efficiently quantified the number of viral plaques.

Performance of the machine
Counting viral plaques is ambiguous, even by an expert. Thus, counting criteria were
defined, as shown in Table 2. If the error between the number of viral plaques counted by
the expert reading mode and machine is within the maximum number of errors, as shown
in Table 2, the number of viral plaques counted by the machine is correct.

The counting error between expert mode and the machine is presented using the
boxplot (Fig. 10). The magenta line presents the maximum number of errors for each
reference number of viral plaques. Figure 10 shows that in the range of 0–18 viral plaques,
the mean measurements of the machine are within the boundary error, and the error is
acceptable. For the range of 19–29 viral plaques, the error is large and out of the boundary.
Consequently, when the number of viral plaques is larger, it is more difficult to measure
the number of viral plaques. The accuracy of the reading from the large number is not
significant to quantify viral infection or research. Moreover, only 55 of the 1,777 images
are in the range of 19–29 viral plaques.

Based on the criteria in Table 2, the percentage of correct and incorrect measurements
by the machine is shown in Fig. 11. The light blue bar represents the percentage of correct
measurement which the machine measurement and expert reading mode are exactly the
same. The dark blue bar represents the percentage of correct measurement which the
machine measurement is within the defined range of expert reading mode and the red bar
represents the percentage of incorrect measurement of the machine. The percentage of
correct measurement is high when the number of viral plaques is low. In the range of 0–29
viral plaques, the percentage of correct measurement is more than 80%. In addition, the
average correct measurement by the machine is 85.8%. This number is consisted of the
percentages of exact correct and within the range are 60.0% and 25.8%, respectively.
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Figure 9 Bland–Altman plot of the machine measurement results.
Full-size DOI: 10.7717/peerjcs.878/fig-9

Figure 10 Distribution software error for each number of viral plaques.
Full-size DOI: 10.7717/peerjcs.878/fig-10
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Figure 11 Percentage of correct measurement by the machine.
Full-size DOI: 10.7717/peerjcs.878/fig-11

R&R of the Machine
The R&R of the machine was evaluated by gage R&R analysis according to Automotive
Industry Action Group (2010) and Burdick, Borror & Montgomer (2005). The gage R&R is
shown in Table 3. Previous authors (Automotive Industry Action Group, 2010; Burdick,
Borror & Montgomer, 2005) suggest that the measurement system is acceptable if the
number of distinct categories (NDC) is greater than or equal to 5. Moreover, for the
percentage of gage R&R of total variations (PRR), the measurement system is capable if
PRR is less than 10% and not capable if PRR ismore than 30%.Otherwise, themeasurement
system is acceptable.

NDC of the machine is 6 and the PRR is 21.72%, which is between 10% and 30% criteria
(Table 3). Due to the cost of the machine and previous results and evaluations, the R&R of
the machine is acceptable, and the machine is capable of application.

DISCUSSION
Counting the number of viral plaques is ambiguous, even for experts. Consequently, the
Medical Virology Research Center defined experimental counting criteria for evaluating
the machine output (Table 2) based on the distribution and variation of expert readings.
If the number of viral plaques is small, the maximum number of errors is small, and as the
number of viral plaques increases, the maximum number of errors increases. However,
in the case of a large number of viral plaques, the reading accuracy is not sufficient for
quantifying viral infection or in viral research.

The automated quantification machine was evaluated using 96-well plates of dengue
virus. According to the analysis, the measurement results obtained using the machine
correlate well with the manual counting results. For 0–29 viral plaques, the trend line of
the result of the machine has a slope of 0.8054 with R2 of 0.8408, and in the range of 0–12

Phanomchoeng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.878 16/21

https://peerj.com
https://doi.org/10.7717/peerjcs.878/fig-11
http://dx.doi.org/10.7717/peerj-cs.878


Table 3 Gage R&R analysis parameters for the machine.

Source Variance %Variance Sigma 5.15 x sigma % 5.15 x sigma

Gage R&R 0.8861 4.7196 0.9413 4.8479 21.7246
Repeatability 0.0000 0.0000 0.0000 0.0000 0.0000
Reproducibility 0.8861 4.7196 0.9413 4.8479 21.7246
Operator 0.8861 4.7196 0.9413 4.8479 21.7246
Part 17.8891 95.2804 4.2296 21.7822 97.6117
Total 18.7752 100 4.3330 22.3151

Notes.
Number of distinct categories (NDC): 6.
% of Gage R&R of total variations (PRR): 21.72.
The last column of the above table does not to necessarily sum to 100%.

viral plaques, the slope is 0.9539 with R2 of 0.8870. The correlation in the range of 0–12
viral plaques is better than that in the range of 0–29 viral plaques.

The Pearson’s coefficient r of the data is 0.9221 with a p-value of less than 0.0001.
This shows that the machine counting results correlate with the manual counting results.
Further, the Bland–Altman plot shows that more than 95% of the measurement errors
are in the upper and lower boundaries (±2 SD). Thus, the manual and machine counting
results are consistent.

As shown in Fig. 8B, for 0–12 viral plaques, the boxplot is close to the reference line,
indicating the manual and machine counting results are in good agreement. However,
for 13–29 viral plaques, the boxplot mean is below the reference line, indicating that the
measurement results of the machine are less than the manual measurement results. This
information can be used to improve the algorithm for measurement in the range of 13–29
viral plaques in future studies.

The large error in the results of the machine in the range of 13–29 viral plaques could
be attributed to the criteria of the Silhouette algorithm. The Silhouette algorithm uses only
the location information of the grid points to calculate the Silhouette score for selecting the
suitable number of clusters. To improve the algorithm, other criteria, such as the number
of grid points and areas, can be included in the algorithm to calculate the new Silhouette
score.

Base on the gage R&R analysis, the major variations in PRR results from reproducibility,
which occurs when the user puts the sample to the machine and measures the number of
viral plaques. If the brightness of the environment light is changed, the image color may
be changed, which affects the algorithm. This may be overcome by creating a cover for the
machine to reduce the effect of environmental light. The repeatability of the machine is 0
since the counting algorithm has no variation.

According to the performance analysis, the average correct measurement of the machine
is 85.8% in the range of 0–29 viral plaques. However, most of the errors occur when the
number of viral plaques is high. If only small and medium numbers of viral plaques are
evaluated, the average correct measurement of the machine would be more than 85.8%.

The plaque sizes varied by various conditions such as pH of the buffers, concentrations of
the semisolid, or under antiviral treatment. Moreover, previous reports have optimized the
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plaque readings in 24- and 96-well plates in antiviral drug discovery (Boonyasuppayakorn et
al., 2016; Katzelnick et al., 2018; Yin et al., 2019). In order to cover this issue, our developed
software provides the manually adjustable plaque sizes customized by users. The user can
config the parameters the range of plaque sizes, save, and use them for the specific scenario.

Even though there are automated imaging-based counters for plaque assay, the current
commercial versions have multiple challenges, especially their complexity and cost. They
may unsuitable for personal use in the laboratory. Thus, for situations of limited resources,
the developed machine may be more suitable for a personal laboratory. Additionally, the
developed machine can be applied to Elispot counting (Kukiattikoon et al., 2021).

CONCLUSIONS
The developed automated quantification machine with ML-based software effectively
quantified the number of viral plaques in a 96-well plate in a simple process and at a low
cost. The automated quantification machine was evaluated using 96-well plates of dengue
virus. The performance analysis showed that the machine measurement results correlate
well with manual counting results, and the average correct measurement by the machine is
85.8%. The machine meets the requirements of reducing workload and performing virus
plaque assay reading in the laboratory.
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