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Abstract

Background

Clear-cell renal cell carcinoma (ccRCC) is the most common type of kidney cancer.

Although ccRCC is characterized by common recurrent genetic abnormalities, including

inactivation of the von Hippel-Lindau (vhl) tumor suppressor gene resulting in stabilization of

hypoxia-inducible factors (HIFs), the tumor aggressiveness and outcome of ccRCC is vari-

able. New biomarkers are thus required to improve ccRCC diagnosis, prognosis and thera-

peutic options. This work aims to investigate the expression of HIF and proteins involved in

metabolism and pH regulation. Their correlation to histoprognostic parameters and survival

was analyzed.

Methods

ccRCC of 45 patients were analyzed. HIF-1α, HIF-2α, HAF, GLUT1, MCT1, MCT4, CAIX

and CAXII expression was assessed by immunohistochemistry in a semi-quantitative and

qualitative manner. The GLUT1, MCT1, MCT4, CAIX and CAXII mRNA levels were ana-

lyzed in an independent cohort of 43 patients.

Results

A significant correlation was observed between increased GLUT1, MCT1, CAXII protein

expression and a high Fuhrman grade in ccRCC patients. Moreover, while HIF-1α, HIF-2α
and HAF expression was heterogenous within tumors, we observed and confirmed that

HIF-2α co-localized with HAF.

We confirmed, in an independent cohort, that GLUT1, MCT1 and CAXII mRNA levels

correlated with the Fuhrman grade. Moreover, we demonstrated that the high mRNA level

of both MCT1 and GLUT1 correlated with poor prognosis.
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Conclusions

This study demonstrates for the first time a link between the aggressiveness of high- Fuhr-

man grade ccRCC and metabolic reprogramming. It also confirms the role of HIF-2α and

HAF in tumor invasiveness. Finally, these results demonstrate that MCT1 and GLUT1 are

strong prognostic markers and promising therapeutic targets.

Introduction

Renal carcinomas represent 3% of solid tumors and are the sixth leading cause of cancer death.

The most common is clear-cell renal cell carcinoma (ccRCC), which is a unique model of solid

tumors characterized by recurrent genetic abnormalities on the 3p25–26 locus resulting in

inactivation of the von Hippel-Lindau (vhl) tumor suppressor gene. Despite the existence of

this common mechanism of inactivation, these tumors are morphologically heterogeneous.

The architecture can be solid, alveolar or acinar. The tumor cell cytoplasm is mostly clear, but

a granular eosinophilic cytoplasm can be found and some cells are fusiform. There is also het-

erogeneity in their response to treatment. Highly costly anti-angiogenic targeted therapies are

related to a high rate of morbidity, which has highlighted the need to establish new criteria for

the definition of prescription and predictive factors of response. To date, the Fuhrman grade

[1], defined in terms of the nuclear morphology of tumor cells, is the prognostic factor used

routinely worldwide for grading renal cell carcinoma. It has been demonstrated to be the most

powerful histoprognostic parameter able to predict cancer specific survival regardless of the

pathological stage, although no link with a biological process has been established. However,

the Fuhrman grade is criticized regarding its reproducibility and accuracy.

Inactivation of the vhl gene, which translates into a deficit in the VHL protein (pVHL), is

the initial event in tumorigenesis of ccRCC [2]. pVHL functions as part of an E3 multiprotein

ubiquitin ligase complex that targets the hypoxia-inducible factor-α (HIF-α) for proteosomal

degradation. Thus, the absence of pVHL results in HIF stabilization, increased target expres-

sion irrespective of the oxygen concentration and gives a proliferative advantage to tumor

cells. Stabilization of the HIF-α subunits is mainly due to specific post-translational modi-

fication. However, additional mechanisms have been identified. Koh et al. showed that the

hypoxia-associated factor (HAF), an E3 ubiquitin ligase, binds to HIF-1α to promote its ubi-

quitination, regardless of the level of oxygen and pVHL [3]. Yet, HAF interaction with HIF-2α
increases its transcriptional activity. These results suggest that HAF, overexpressed in various

tumor types, is an essential element in the establishment of a tumor switch in which the tumor

acquires a more aggressive phenotype due to transition of expression of HIF-1α to HIF-2α
[4]. Moreover, HIF-1α and HIF-2α play non-redundant roles. HIF-1 appears to drive genes

involved in metabolism, whereas HIF-2 drives the expression of genes encoding pro-survival

factors [5]. These distinct roles have been mostly defined in VHL-deficient RCC cells in which

HIF-2 has been shown to be necessary and sufficient to maintain tumor growth.

As ccRCC are glycolytic and lipogenic tumors [6], we focused attention on the metabolic

HIF-target genes. The glucose transporter 1 (glut1), carbonic anhydrase 9 (ca9) and 12 (ca12)

and monocarboxylate transporter 4 (mct4) are downstream targets of HIF involved in glycoly-

sis and intracellular pH (pHi) homeostasis. GLUT1 is often expressed in aggressive and/or

hypoxic tumors reflecting an exacerbated need for nutrients to support endless proliferation.

On the other hand, the carbonic and lactic acid produced by the glycolytic pathway must be

rapidly exported out of cancer cells to maintain viability and proliferation. CAs and MCTs
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(both lactate/H+ symporters MCT1 and the hypoxia-inducible MCT4) are associated with

poor prognostic factors in many cancers.

To identify new tools to adjust and improve prognosis, diagnosis and treatment in ccRCC

in parallel to the Fuhrman grade, we present a study characterizing changes in the expression

of the two different isoforms of HIF and the HAF modulating protein, in addition to changes

in the expression of proteins involved in metabolism related to the Fuhrman grade.

Materials and methods

Patients and tissue handling

Tissue samples from 73 patients with ccRCC that had undergone surgery in the urology depart-

ment of the Nice University Hospital between May 2006 and March 2009 were selected (IHC

cohort). As defined by the 2016 World Health Organization criteria, diagnosis was based upon

pathology and cytogenetic analysis. To compare each group of Fuhrman grade, we selected 15

cases in all 3 groups (45 patients) corresponding to Fuhrman grades II, III and IV (Table 1). Ini-

tial management of surgical specimens was performed according to a standardized protocol.

The surgical specimens were obtained immediately after nephrectomy. Fresh samples were col-

lected for genetic examination. Tumor tissue was formol fixed within 1h and for 72h. All hae-

matoxylin and eosin stained sections were reviewed by 2 uropathologists for confirmation of

the original diagnosis and grade of each case. Blocks were considered representative of the

tumor if they harbored the contingent of the highest grade and if they also included non-tumor

kidney tissue used as endogenous immunohistochemistry (IHC) controls for some markers.

For each block, the lowest and highest grades exhibited on the slide were noted.

Informed consent was obtained from all individual participants included in the study. All

patients gave written consent for the use of tumor samples for research. The study included

only the major patients. All of the samples are the property of the tissue collection of the

Pathology department, which are declared annually to the French Health Ministry. The proce-

dures followed were approved by the institutional review board of the University Hospital of

Nice. This study was conducted in accordance with the Declaration of Helsinki.

Immunohistochemistry

IHC was performed on 2μm-thick sections. Immunolabeling and detection were performed

using a Dako Autostainer AutoMate, as per the manufacturer’s recommendations. The

Table 1. Summary of clinicopathological parameters of the IHC cohort.

Variables Screening cohort

(n = 45)

Fuhrman grade II

(n = 15)

Fuhrman grade III

(n = 15)

Fuhrman grade IV

(n = 15)

Mean age 63.6 60.5 64.3 65.9

Sex

Male 30 (67%) 10 (67)% 12 (80%) 8 (54%)

Female 15 (33%) 5 (33)% 3 (20)% 7 (46)%

Pathological stage

pT1a 12 (27%) 9 (60%) 2 (13%) 1 (7%)

pT1b 8 (18%) 3 (20%) 4 (27%) 1 (7%)

pT2b 1 (2%) 0 1 (7%) 0

pT3a 22 (49%) 3 (20%) 7 (47%) 12 (80%)

pT3b 2 (4%) 0 1 (7%) 1 (7%)

Mean diameter 5.4 3.2 5.9 7.2

https://doi.org/10.1371/journal.pone.0193477.t001
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antibodies used were against HIF-1α (generated in our laboratory [7]), HIF-2α (Novus,

nb100-122), HAF (Abcam, AB95957), GLUT1 (Abcam, AB53654), MCT1 (generated in our

laboratory [8]), MCT4 (Millipore, AB3316P), CAIX (generated in our laboratory [8]), CAXII

(Sigma, HPA008773). The detection was performed using the Envision Flex Kit (Dako), with

3–30 diaminobenzidine as a chromogen.

IHC evaluation

Semi-quantitative analysis of the IHC was performed by two readers independently, with

proofreading of cases for which results were discordant. A reading grid was established for

each antibody. Expression of each protein was evaluated in the highest grade zone of the

tumor represented on the slide. When different grades were present, the expression level of the

lowest grade was also evaluated. For HIF-1α, HIF-2α and HAF, semi-quantitative analysis was

done using the validated Allred score [9]. The quality, homogeneity and heterogeneity of the

staining was analyzed and it was noted if the staining of the tumor was more prone to be cen-

tral or peripheral. As there is no consensus in the literature on the quantification of the expres-

sion level of GLUT1, MCT1, MCT4 and CAXII with IHC, the "German immunoreactive

score" was used [10]. The score was calculated by combining an estimation of the percentage

of labeled cells (proportion) with an estimate of the intensity of the labeling (intensity).

Regarding the proportion, a lack of labeling was scored at 0, from 1% to 10% of labeled cells

was scored at 1, from 11% to 50% at 2, from 51% to 80% at 3 and from 81% to 100% at 4. The

intensity was assessed on a scale of 0 to 3, with 0 for negative, 1 for slight, 2 for moderate and 3

for strong staining. Finally, the total score was determined by multiplying the scores of inten-

sity and proportion, the theoretical score ranging from 0 to 12.

As the analysis of CAIX expression by IHC has been the subject of several publications, a

method of analysis emerged. The authors defined the cut-off at 85% of labeled cells [11]. For

comparison of our results with published data, we used a variant of the "German immunoreac-

tive score" integrating the threshold value (85%) validated by previous studies. The proportion

was estimated as 0 in the absence of staining, at 1 for staining of less than 85% and 2 for stain-

ing of more than 85%. The intensity was evaluated from 0 to 3 as defined above. The final

score was determined by multiplying the scores of intensity and proportion, the theoretical

scores ranging from 0 to 6.

M0 patients for qPCR analysis—Independent qPCR cohort

Tissue samples from 43 patients with non metastatic ccRCC who had undergone surgery in

the urology department of the Rennes University Hospital were selected (Table 2). As defined

by the 2016 World Health Organization criteria, diagnosis was based upon pathology and

cytogenetic analyses.

Overall Survival (OS) were calculated from patient subgroups with mRNA levels that were

less or greater than the third quartile value. This retrospective study was approved by the insti-

tutional review board and was conducted in accordance with the Declaration of Helsinki.

Gene expression microarray analysis

Normalized RNA sequencing (RNA-Seq) data produced by The Cancer Genome Atlas

(TCGA) were downloaded from cbioportal (www.cbioportal.org, TCGA Provisional; RNA--

Seq V2). Different parameters were available for 376 non-metastatic ccRCC tumor samples.

The results published here are in whole or in part based upon data generated by the TCGA

Research Network: http://cancergenome.nih.gov/ [12, 13].
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Statistical analysis

The expression score for each protein in the territory of the highest grade of each tumor was

compared to the stage, grade and diameter. The mean and median score of expression of each

protein were calculated for each group of Fuhrman II, III and IV. A univariate analysis of the

correlation between these parameters was performed using the Kendall nonparametric rank

test (inter-tumoral comparison). In some cases, within tumors, a contingent of low-grade (II)

was adjacent to a contingent of high-grade (III, IV). In these cases, the expression score for

each protein was compared between the two contingents. Comparison of these scores was per-

formed using the Wilcoxon rank-sum test (intra-tumoral comparison). Statistical tests were

performed using Statview software. The p was found to be significant below the 0.05 value.

OS was defined as the time from date of diagnosis to the date of death from any cause, cen-

soring those alive at last follow-up. The Kaplan Meier method was used to produce survival

curves and analyses of censored data were performed using Cox models.

Results

Clinical and histological characteristics

The detailed clinical pathological parameters are reported in Table 1. Median patient age was

63.6 years with 30 males (66%) and 15 females (33%).

Immunostaining for HIF subunits and HAF

Immunoreactivity to HIF-1α, HIF-2α and HAF was located at the nucleus as shown in the

immunostaining depicted in Fig 1A, 1C and 1E, respectively. No specific tissue localization

was observed for HIF-1α expression (Fig 1B). Globally, the expression patterns were heteroge-

nous and patchy for HIF-2α and HAF (Fig 1D and 1F). However, expression of HIF-2α was

mainly at the invasive front (Fig 1D). Expression of HAF was similar to HIF-2α with higher

expression predominating at the periphery of tumor nodules, as represented by the dashed tri-

angle. We confirmed this specific HAF/HIF-2α colocalisation using serial cut sections as

observed on Fig 1D and 1F. We observed no exclusivity in HIF-1α (Fig 1B) and HIF-2α (Fig

1D) expression. Moreover, no correlation between HIF-1α, HIF-2α and HAF expression and

the Fuhrman tumor grade was found, using the Allred score correlation analysis, as shown on

Fig 1G, 1H and 1I.

Table 2. Characteristics of the patients included in the survival study–qPCR Cohort.

Variables qPCR cohort

(n = 43)

Mean age 63

Sex

Male 27 (62.8%)

Female 16 (37.2%)

Furhman grade

II 20 (46.5%)

III 16 (37.2%)

IV 7 (16.3%)

Metastatic status

M0 43 (100%)

M1 0 (0%)

https://doi.org/10.1371/journal.pone.0193477.t002
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Expression status of metabolic actors

Expression of the glycolytic marker GLUT1 was mainly located at the cell membrane (mem-

branous) (Fig 2A). Expression was heterogeneous as low (Fig 2B, top left) and high (Fig 2B,

bottom right) expression was observed on the same tumor.

Fig 1. Expression and correlation of HIF-1α, HIF-2α and HAF in ccRCC. (A, C and E) Positive nuclear staining to HIF-1α, HIF-2α and HAF,

respectively, in primary ccRCCs at high magnification (x100). (B, D and F) Heterogenous nuclear staining of HIF-1α, HIF-2α and HAF,

respectively, in a tumor at low magnification (x20). (G, H and I) Correlation of HIF-1α, HIF-2α and HAF, respectively, with the Fuhrman grade.

https://doi.org/10.1371/journal.pone.0193477.g001

Fig 2. Expression and correlation of GLUT1 in ccRCC. (A) Positive membranous staining to GLUT1 in primary ccRCCs at high magnification (x100). (B)

Heterogenous membranous staining to GLUT1 in a tumor at low magnification (x20). (C) Correlation of GLUT1 with the Fuhrman grade.

https://doi.org/10.1371/journal.pone.0193477.g002
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Twenty-three patients out of 45 presented contiguous high- and low-grade nodules in the

same tumor. Among these patients, 10 presented a higher GLUT1 expression in high-grade

nodules and 13 a similar level of expression resulting in significant over expression in high-

grade zones (z = 2.803, p = 0.0051) (Table 3). When considering inter-tumor comparison, we

showed a statistically significant positive correlation between the Furhman grade and protein

expression for GLUT1 (tau = 0.231, p = 0.0252) (Fig 2C and Table 4). We also compared the

GLUT1 immunopositivity to the tumor stage (pT) (Table 5) and tumor diameter (Table 6). No

significant correlation between these two parameters and expression of GLUT1 was observed

suggesting that GLUT1 only positively correlated with the tumor grade.

MCT1 (Fig 3A) and MCT4 (Fig 3C) showed a clear membranous staining pattern with sub-

stantial variation in intensity and extent (Fig 3B and 3D). However, cytoplasmic staining for

MCT4 also appeared in high-grade tumors (Fig 3C—bottom right insert) in the same tumor

expressing membranous staining (Fig 3C—top right insert).

Similarly to GLUT1, among the 23 tumors with contiguous high- and low-grade nodules,

13 and 8 presented, respectively a significantly higher expression in high-grade zones for

MCT1 (z = 3.180, p = 0.0015) and MCT4 (z = 2.521, p = 0.0117) (Table 3). The strongest corre-

lation was observed for MCT1 with the Fuhrman grade (tau = 0.448, p< 0.0001) (Table 4 and

Fig 3E) whereas no correlation was found between MCT4 and the aggressive phenotype

(Table 4 and Fig 3F). Moreover, positive correlations between tumor stage and MCT1

(tau = 0.418, p�0.0001) or tumor stage and MCT4 (tau = 0.254, p = 0.0138) were obtained

(Table 5). MCT1 also correlated to diameter (tau = 0.274, p = 0.008) (Table 6). Taken together,

these results strongly suggest an important role for MCT1 in ccRCC tumor aggressiveness

compared to MCT4.

Expression of CAIX and CAXII was located at the plasma membrane (Fig 4A and 4C) and

presented variation in intensity (Fig 4B and 4D).

We found high- and low-expressing areas in the same tumor. Among the 23 tumors with

contiguous high- and low-grade nodules, 12 presented significantly higher CAXII expression

(z = 3.059, p = 0.0022) (Table 3). For intra-tumor comparison, no correlation was found when

comparing the low-grade and high-grade contingent (Table 3). Fig 4E and 4F represent

Table 3. Correlation between the expression score of each protein compared to the low-grade contingent (Fuhr-

man grade II) and the high-grade (Fuhrman grades III and IV) contingent and the characteristics of the immuno-

chemistry using the Wilcoxon rank-sum test.

Parameter Protein z p

Low-grade versus high-grade contingents GLUT1 2.803 0.0051

Low-grade versus high-grade contingents MCT1 3.180 0.0015

Low-grade versus high-grade contingents MCT4 2.521 0.0117

Low-grade versus high-grade contingents CAIX 0.255 0.7989

Low-grade versus high -grade contingents CAXII 3.059 0.0022

https://doi.org/10.1371/journal.pone.0193477.t003

Table 4. Correlation between the Fuhrman grade and clinicopathological parameters using the Kendall nonpara-

metric rank test.

Parameter Protein tau p

Fuhrman GLUT1 0.231 0.0252

Fuhrman MCT1 0.448 <0.0001

Fuhrman MCT4 0.137 0.1845

Fuhrman CAIX -0.104 0.314

Fuhrman CAXII 0.574 <0.0001

https://doi.org/10.1371/journal.pone.0193477.t004
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association between CA expression and tumor grade. The association between CAIX and the

Furhman grade did not reach statistical significance (tau = -0.104, p = 0.314) (Fig 4E and

Table 4). However, a statistically significant correlation between the CAXII level of expression

and the Fuhrman grade was found (tau = 0.574, p<0.0001) (Fig 4F and Table 4). Moreover,

the MCT1 and CAXII levels of expression presented a positive correlation with pT (tau =

0.342, p = 0.0009) (Table 5) and diameter (tau = 0.32, p = 0.0019) (Table 6), whereas no corre-

lation was found for CAIX (Tables 5 and 6).

Taken together, these results highlight for the first time three new markers linked to the

Fuhrman grade and thus to the aggressiveness of the ccRCC: including GLUT1, MCT1 and

CAXII.

Overexpression of GLUT1 and MCT1 correlated with reduced overall

survival of non-metastatic RCC patients

Analysis of online available data (TCGA) showed co-occurrence of MCT1 and GLUT1

(p<0.001) and MCT1 and CAXII (p = 0.003) mRNA expression in samples from non-meta-

static RCC patients (S1 Table). Analysis of the same cohort showed that GLUT1 (p<0.001),

MCT1 (p<0.01) and CAXII (p<0.001) mRNA expression correlated with the Fuhrman grade,

while MCT4 and CAIX mRNA expression did not correlate with the Fuhrman grade (S1 Fig).

This analysis corroborates our results as demonstrate before for the protein level.

Next, we analyzed the impact of the mRNA expression on OS in the mRNA cohort

(Table 2) and in the TCGA mRNA cohort.

MCT4 and CAIX mRNA and protein expression did not correlate with the Fuhrman grade

as described before. As expected, we found that MCT4 and CAIX mRNA levels did not corre-

late with OS in both cohorts (Fig 5 and S2 Fig).

GLUT1, MCT1 and CAXII mRNA and protein expression correlated with the Fuhrman

grade as described before. As expected, overexpression of GLUT1 and MCT1 mRNA corre-

lated with reduced OS. Surprisingly, this was not the case for CAXII (Fig 6). MCT1 mRNA

(median survival: 63 months vs not reached, p = 0.0052) in the tumors of M0 patients corre-

lated with shorter OS. We observed the same trend with GLUT1 mRNA (median survival: not

Table 5. Correlation between pT stage and clinicopathological parameters using the nonparametric rank test of

Kendall.

Parameter Protein tau p

pT GLUT1 0.172 0.095

pT MCT1 0.418 <0.0001

pT MCT4 0.254 0.0138

pT CAIX -0.018 0.8619

pT CAXII 0.342 0.0009

https://doi.org/10.1371/journal.pone.0193477.t005

Table 6. Correlation between the tumor diameter and the characteristics of the immunochemistry using the Ken-

dall nonparametric rank test.

Parameter Protein tau p

Diameter GLUT1 0.149 0.1489

Diameter MCT1 0.274 0.008

Diameter MCT4 -0.093 0.3701

Diameter CAIX 0.188 0.0687

Diameter CAXII 0.32 0.0019

https://doi.org/10.1371/journal.pone.0193477.t006
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reached, p = 0.0876). The same results were found with the TCGA cohort, high GLUT1

mRNA (median survival: 79.5 months vs not reached, p = 0.004) and high MCT1 mRNA

(median survival: 79.5 months vs not reached, p = 0.007) correlated with shorter OS (S3 Fig).

Moreover, discrimination of patients with a concomitant high level of GLUT1 mRNA and

MCT1 mRNA had a substantially shorter OS (median survival: 18.5 months vs not reached,

p = 0.0001, Fig 6).

Discussion

Understanding the heterogeneity of ccRCC and the respective role of the different molecular

phenotypes is fundamental to determining the precise prognosis and the tumor sensitivity to

drugs in addition to defining potential therapeutic targets. While the impact of the Fuhrman

grade on prognosis is well established and widely integrated into clinical practice it is under-

pinned by unknown mechanisms.

To answer this problematic, we first provided topographic data from the analysis of entire

slides. This analysis is original and superior to analysis on tissue microarrays for several rea-

sons. On the one hand, it allows evaluation of the protein expression on a large number of

cells, which increases its reliability. On the other hand, intra-tumor heterogeneity is thus visi-

ble on different contingents of the same tumor, which have different characteristics and

grades. For example, GLUT1 overexpression has been correlated to poor prognosis [14]. How-

ever, data in the literature concerning correlation between the GLUT1 expression level and

tumor grade are contradictory [15, 16]. These dissimilarities are certainly due to methodologi-

cal discrepancies. Our studies into whole sections clearly demonstrated the heterogeneity of

GLUT1 expression. Moreover, high expression of GLUT1 correlated with poor OS in our

small cohort (43 patients). Although this result was not statistically significant, it was rein-

forced by the TCGA cohort (376 patients) by showing a statistically significant correlation.

Overexpression of CAIX is also common in solid cancers and is a poor prognostic factor,

except in ccRCC. However, studies carried out so far reported discordant results [17, 18]. In

our study, we did not observe correlation between CAIX expression (protein and mRNA) and

tumor grade or OS. We only observed a marked heterogeneity for CAIX expression, depend-

ing on the tumor area, which questions the relevance of previous studies based on tissue

microarrays. Although CAXII overexpression has been observed in many cancers and in

ccRCC, its prognostic value remains questionable. Our study clearly shows that CAXII is a

central biomarker, as we observed a strong correlation between the Fuhrman grade and

CAXII expression (protein and mRNA). However, differences between CAIX and CAXII

expression remain unexplained, which may reveal a dual role for these two direct HIF targets.

Furthermore, CAXII expression did not correlate with survival or prognosis. CAXII appears to

be a simple marker of aggressiveness (tumor grade). Finally, both MCT1 and MCT4 are also

highly expressed in tumors comparatively to matched normal tissue and often correlate with

poor prognosis [19, 20]. Moreover, clinical evidence demonstrated that the lactate produced

by tumors correlated with poor prognosis and resistance to radiotherapy [21]. Kim et al. pro-

vided a simultaneous analysis of MCT1 and MCT4 in ccRCC and demonstrated that overex-

pression predicted progression free survival [22]. Our study confirmed these results for MCT1

and for the first time directly correlated MCT1 with tumor grade, consistent with that reported

previously for cervix carcinoma [23]. This central role of MCT1 also concerns prognosis, the

Fig 3. Expression and correlation of MCT1 and MCT4 in ccRCC. (A and C) Positive membranous staining to MCT1 and MCT4 in primary ccRCCs at high

magnification (x100). (B and D) Heterogenous membranous staining to MCT1 and MCT4 in a tumor at low magnification (x20). (E and F) Correlation of MCT1 and

MCT4, respectively, with the Fuhrman grade.

https://doi.org/10.1371/journal.pone.0193477.g003
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Fig 4. Expression and correlation of CAIX and CAXII in ccRCC. (A and C) Positive membranous staining to CAIX and CAXII in primary ccRCCs at high

magnification (x100). (B and D) Heterogenous membranous staining to CAIX and CAXII in a tumor at low magnification (x20). (E and F) Correlation of CAIX and

CAXII, respectively, with the Fuhrman grade.

https://doi.org/10.1371/journal.pone.0193477.g004
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mRNA level of MCT1 correlated with OS. However, high mRNA levels of GLUT1 and MCT1

had a strong prognostic value. Indeed, the median survival of M0 patients with a tumor

Fig 5. Overexpression of MCT4 and CAIX did not correlate with reduced overall survival of non-metastatic

ccRCC patients. Kaplan–Meier analysis of OS of M0 patients. OS was calculated from patient subgroups with mRNA

levels that were less or greater than the third quartile. Statistical significance (p values) is indicated.

https://doi.org/10.1371/journal.pone.0193477.g005
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Fig 6. Overexpression of GLUT1 and MCT1, but not CAXII, correlated with reduced overall survival of non-metastatic RCC patients. Kaplan–

Meier analysis of OS of M0 patients. OS was calculated from patient subgroups with mRNA levels that were less or greater than the third quartile.

Statistical significance (p values) is indicated.

https://doi.org/10.1371/journal.pone.0193477.g006
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strongly expressing these two markers was about 18.5 months whereas in the rest of the popu-

lation it was greater than 150 months.

In our global analysis, we observed heterogeneous expression of GLUT1, MCT1, MCT4,

CAIX and CAXII, key molecular markers of the pH machinery, within tumor and between

tumors. Several scenarios could be proposed to explain these differences: (i) As ccRCC is

defined by the inactivation of the vhl gene and thus by stabilization of HIF-α isoforms, differ-

ent gene profils could be observed depending on which HIF-α isoform is stabilized. Raval et al.
have shown two expression profiles of HIF-α isoforms in vitro in ccRCC depending on either

HIF-1 and HIF-2 or HIF-2 alone [24]. Klatte et al. found no correlation between HIF-1α
expression and the Fuhrman grade [25], as observed in our study with both HIF-1α and HIF-

2α. The patchy localization of HIF-1α, the isoform involved in the control of genes involved in

metabolism, may partly explain the heterogeneity of expression of the markers we studied. (ii)

Furthermore, the heterogeneous pattern of protein expression found in different tumor areas

suggested that the protein expression could be modulated by variable local vascularization or

conditions of pH inside the tumor. Such modes of regulation have already been discussed for

CAIX [26, 27]. However, this latter scenario probably does not explain our results for GLUT-

1. (iii) The appearance of lobulation observed for some markers suggests the existence of dif-

ferent cell populations. It has been shown that higher-grade lesions were characterized by

superadded genetic abnormalities [28]. It will be interesting to study more specifically the

impact of oncogenes on GLUT-1, CAXII and MCT1 expression.

Interestingly, high expression of HIF-2α and HAF has been observed at the invasive front.

This overexpression is similar to that of already reported overexpression for MMP-1, a HIF-

2-induced protein, in the periphery of ccRCC [29], which contributes to degradation of the

extracellular matrix to facilitate invasion [30]. Our observations could provide a better under-

standing of tumor invasion and highlights HAF and HIF-2α as potential markers to define his-

tological assessment of the margin, especially for nephron sparing surgery. The preferential

expression of HIF-2α in cells localized at the invasive front is consistent with the differential

and non-redundant roles of the two isoforms of HIFα.

Moreover, our observations concerning HAF are consistent with the results of Koh et al.
[31]. To our knowledge, our study is the first to evaluate the simultaneous expression of HIF-

1α, HIF-2α and HAF in tumors from the same patients with ccRCC.

Interplay between glycolysis and oxidative phosphorylation (OXPHOS) permits tumors to

adapt their production of energy to the microenvironmental changes and energetic require-

ments of the tumor. Despite the observed decrease in the mitochondrial content of tumors,

cancer cells maintain a significant level of OXPHOS to rapidly switch from glycolysis to

OXPHOS during carcinogenesis [32]. Moreover, ccRCC have already been described to per-

form functional glycolysis and OXPHOS [33].

HIF-1α is responsible for the regulation of genes encoding enzymes involved in the glyco-

lytic pathway but HIF-2α target genes are involved in invasion, for example the matrix metallo-

proteinases. In our study, the expression of HIF-1α within the tumor correlated with the high

level of glycolysis previously described in ccRCC. However, at the invasive front of the tumor

HAF was co-expressed with HIF-2α but not with HIF-1α. In these cells, and according to the lit-

erature, we can thus hypothesize that HAF decreased the HIF-1α level inducing a decrease in

glycolysis and in the meantime a stabilization of HIF-2α. Moreover, HIF-2α (but not HIF-1α)

has been shown to cooperate with a number of oncoproteins frequently deregulated in cancer,

such as c-Myc, epidermal growth factor receptor, and K-Ras and promoted tumor aggres-

siveness, EMT and invasion [4, 24]. Finally, HAF and/or HIF-2 can increase OXPHOS (via c-

Myc and K-Ras, [32]) and higher reactive oxygen species production to induce invasion and

metastasis [34]. Recently, it has been shown that, in terms of metabolism, there is an inverse
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correlation between adenosine monophosphate-activated protein kinase (AMPK) (linked to the

OXPHOS state) and HIF-1α (linked to the glycolytic state) [35]. Our study questions the role of

metabolism in tumor development of RCC. It would be of interest, for example, to examine the

link between HAF / HIF-2α and AMPK / OXPHOS of cells at the invasive front.

A correlation between cell proliferation and tumor grade has already been reported in

ccRCC [36, 37]. As cells proliferate, their needs in energy increases justifying an increase in

expression of proteins involved in glycolysis, such as GLUT1. Therefore, as glycolysis in-

creases, lactate production and intracellular acidification are enhanced increasing expression

of proteins involved in pH regulation, such as MCT1, MCT4, CAIX and CAXII. Indeed, inter-

tumor comparisons showed a significant positive correlation between the level of mRNA and

protein expression of MCT1, GLUT1, CAXII and the Fuhrman grade. These results are espe-

cially robust as they are demonstrated in two cohorts with two different and complementary

techniques. We also observed a significant positive correlation between the protein expression

levels of MCT1, MCT4, CAXII and pT, and the level of MCT1 and CAXII expression and

diameter of the tumor. Moreover, intra-tumor comparison revealed significantly higher

expression of MCT1, MCT4, GLUT1 and CAXII in the higher grade contingent.

Our results clearly show for the first time that the most powerful histoprognostic parameter,

the Fuhrman grade, can be partly connected to metabolic markers and more precisely to

strong changes in metabolism. These results validate our hypothesis that tumor aggressiveness

is related to the metabolic switch and therefore to a high level of glycolysis. Therefore, we pro-

pose that association of GLUT1/MCT1 with the Fuhrman grade could be used as a potent tool

to precisely characterize ccRCC patients.
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