Bioinformatics, 38(12), 2022, 3281-3287
https://doi.org/10.1093/bioinformatics/btac320
Advance Access Publication Date: 13 May 2022
Original Paper

OXFORD

Bioimage informatics
Joint registration of multiple point clouds for fast

particle fusion in localization microscopy

Wenxiu Wang @ , Hamidreza Heydarian, Teun A.P.M. Huijben, Sjoerd Stallinga* and

Bernd Rieger*

Department of Imaging Physics, Delft University of Technology, Delft 2628CJ, The Netherlands

*To whom correspondence should be addressed.
Associate Editor: Alfonso Valencia

Received on September 15, 2021; revised on February 22, 2022; editorial decision on May 2, 2022; accepted on May 9, 2022

Abstract

Summary: We present a fast particle fusion method for particles imaged with single-molecule localization micros-
copy. The state-of-the-art approach based on all-to-all registration has proven to work well but its computational
cost scales unfavorably with the number of particles N, namely as N?. Our method overcomes this problem and
achieves a linear scaling of computational cost with N by making use of the Joint Registration of Multiple Point
Clouds (JRMPC) method. Straightforward application of JRMPC fails as mostly locally optimal solutions are found.
These usually contain several overlapping clusters that each consist of well-aligned particles, but that have different
poses. We solve this issue by repeated runs of JRMPC for different initial conditions, followed by a classification
step to identify the clusters, and a connection step to link the different clusters obtained for different initializations. In
this way a single well-aligned structure is obtained containing the majority of the particles.

Results: We achieve reconstructions of experimental DNA-origami datasets consisting of close to 400 particles with-
in only 10 min on a CPU, with an image resolution of 3.2nm. In addition, we show artifact-free reconstructions of
symmetric structures without making any use of the symmetry. We also demonstrate that the method works well
for poor data with a low density of labeling and for 3D data.

Availability and implementation: The code is available for download from https:/github.com/wexw/Joint-
Registration-of-Multiple-Point-Clouds-for-Fast-Particle-Fusion-in-Localization-Microscopy.

Contact: s.stallinga@tudelft.nl or b.rieger@tudelft.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The diffraction of light limits the resolution of conventional micros-
copy to about 200 nm. Several super-resolution microscopy techni-
ques enable ‘diffraction unlimited’ resolution (Hell, 2009; Klein ez al.,
2014; Vicidomini et al., 2018). Single-molecule localization micros-
copy is a widely used member of the family of super-resolution techni-
ques, and obtains super-resolved images by localizing single
fluorescent emitters. The resolution of these super-resolved images is
not infinite, but in practice restricted to about 20 nm due to the in-
complete fluorescent labeling and a limited number of collected pho-
tons per localization event (Nieuwenhuizen et al.,, 2013). In recent
years, significant improvements have been made to increase the pho-
ton count per localization (Metzger et al., 2016). Increasing the dens-
ity of labeling (DOL) using biochemical means is difficult, where
DOL values of around 50% are typically achieved. In addition, a
high local DOL can lead to an increased rate of mislocalizations
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(Fox-Roberts et al., 2017) which is detrimental for the quality of the
imaging process. If the sample includes many chemically identical bio-
complexes (called particles in the following), the limitation imposed
by a low DOL can be lifted by fusion of all these particles into one
single reconstruction, the so-called super-particle, leading to a much
better resolution and signal-to-noise ratio (Loschberger et al., 2012;
Szymborska et al., 2013). This approach by particle fusion, of course,
ignores potential heterogeneity in the underlying biology within the
collection of particles. Template-driven particle fusion methods have
been used (Broeken et al., 2015; Gray et al., 2016; Loschberger et al.,
2012; Szymborska ef al., 2013) but have a substantial risk of resulting
in a biased reconstructed structure. Heydarian et al. (2018b, 2021a)
proposed a template-free particle fusion method based on an all-to-all
registration (all-to-all method in short), which is robust against under-
labeling and misregistration. The all-to-all method has proven to
work well and produces reconstruction resolutions down to a few
nanometers. Despite this success, computational times of around a
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day for a number of particles N exceeding about 1000 are not uncom-
mon and are only feasible with the use of GPU acceleration. The root
cause lies within the unfavorable scaling of computational cost with
N2, because each particle is registered to all other particles, resulting
in N(N —1)/2 registration pairs. The all-to-all method has another
drawback, the so-called ‘hot-spot” problem. For symmetric structures,
random variations in the localization data with binding site are ampli-
fied by the pair-wise optimal registration process. Heydarian et al.
solved this problem by first detecting the present symmetry and then
imposing it on the data in a post-processing step. Thus, a particle fu-
sion algorithm that is fast and which avoids the hot-spot artifact is
desired.

An alternative to the all-to-all method is based on the Joint
Registration of Multiple Point Clouds (JRMPC) method (Evangelidis
and Horaud, 2017). In the JRMPC method, particles are iteratively
rotated and translated to fit to a Gaussian Mixtures Model (GMM),
which is updated itself in each iteration round. The key advantage of
the JRMPC method is that the computational complexity scales lin-
early with the number of particles N, which makes it inherently faster
than the all-to-all method if N grows large. In addition, hot-spot arti-
facts in symmetric structures are avoided without imposing (a priori)
symmetry information, because the joint registration treats each par-
ticle equally. There are, however, major drawbacks to the JRMPC
method. First, the outcome of the JRMPC turns out to be highly sus-
ceptible to the initialization of the GMM (number of Gaussians, cen-
ter positions and widths). Different initial settings of the GMM
parameters lead to different sets of final estimated particle rotations
and translations. Second, the final outcome usually consists of several
clusters, where the particles within the clusters are well-registered, but
where the clusters have different poses. We attribute these issues with
robustness of the algorithm to trapping in local optima of the iterative
optimization (outlined in Section 2.1 in detail).

The goal of the work presented in this article is to overcome the
robustness problems of the JRMPC method while maintaining the in-
herent speed advantage. To this end, we propose a processing pipeline
in which we combine JRMPC registration outcomes obtained with
different GMM initializations using cluster analysis tools. The cluster
analysis uses our recent unsupervised classification framework
(Huijben et al., 2021), which is based on the Bhattacharya distance
metric (Broeken et al., 2015) together with multidimensional scaling
(MDS) (Mead, 1992) and k-means clustering (Cheng, 1995; Jain
et al., 1999). The process of JRMPC and classification is repeated sev-
eral times for different GMM initializations. Pairs of clusters from dif-
ferent initializations may share particles. The relative poses of such
particles in different clusters is used in a final step to combine the dif-
ferent clusters into a single well-aligned structure.

2 Materials and methods

Our proposed algorithm has three main steps, illustrated in
Figure 1. The steps are (1) alignment of particles with JRMPC using
multiple initializations, (2) classification of JRMPC registered par-
ticles into clusters and (3) connection of the identified clusters into a
single final reconstruction.

The input data are a union of particles A = {A,-}fil, with N the
number of particles. Each particle is characterized by a set of lo-
calization coordinates V; and attendant localization uncertainties
A; as Aj = {V;;A;}. The coordinates of particle j represent M;
localizations:

dxM
V/:[Vfl...vfi...VfM]]G]R x T,

where the vj; are vectors with elements equal to the d coordinates of
the i-th localization in particle j. Depending on the data, the dimen-
sionality d can be 2 or 3. In general, the localization uncertainties of
the M; localization events in particle j are:

Ai = [2/‘1, c. 2]',' e Z/M,} € RdXdXM’,

where the X;; are d x d matrices equal to the covariance matrices of
the i-th localization in particle j. Often a more simple description of

(1 irmpc (2)classify (3)connect

Reconstruction L

Fig. 1. The three main steps of the proposed particle fusion algorithm. Step 1: Use
JRMPC (Evangelidis and Horaud, 2017) to initially align N input particles V =
{V,}fi1 with L random initializations of the GMM {X/,}I-, leading to L different
reconstructions {®'(V)}[-,. Step 2: Apply the unsupervised classification method of
Huijben et al. (2021) to classify each reconstruction @' (V) into #; clusters {chm,
separating different overlapping poses in the reconstructed particles. Step 3:
Connect particles from different clusters into the final super-particle reconstruction

C,, such that each input particle is present at most once

the localization uncertainty is possible. For 2D data for example, the
uncertainties are isotropic, and A; can be written as:

A; = [0j1,. .. 0ji ... Ojmy],

where the J;; are now scalar values that represent the localization un-
certainty in the xy plane for the i-th localization in particle j. For
most 3D data, A, is represented as:
Aj = [01,Tj15 -5 Oji, Tjis - - - Ojmy» Timy

where now 1;; is the localization uncertainty along the z-axis for the
i-th localization in particle j. This axial localization uncertainty is
typically larger than the uncertainty in the xy plane (Rieger and
Stallinga, 2014).

2.1 Alignment

The structure of the reconstruction is characterized in the JRMPC
method by a GMM with parameters G = {Gk}le, where each of
the K Gaussians components Gy, = [py, #y,, 0;] has a mixing coeffi-
cient (weight) pp, a set of d coordinates g, that represent the mean
of the Gaussian, and a standard deviation ¢, (an isotropic covari-
ance matrix aild is taken). The GMM parameters have an initial set-
ting Giy,, described in Section 3.2. The parameters that are updated
during the iterative JRMPC algorithm are:

0= {{Gk}ler{Rivt/}/lil}v (1)

where R; € R¥*? s the rotation applied to particle j and where #; €
R**! is the translation applied to particle j. The coordinates of the
reconstruction are then:

(V) = {R,V; + 4}, (2)

which thus contains the coordinates of all localization events in all
particles. It is noted that the localization uncertainties are not taken
into account in the JRMPC method. Further details on the steps in
each iteration round of the JRMPC are given in Supplementary
Appendix A.

The outcome of the JRMPC depends on the choice of the initial
GMM centers in Gi,. Our algorithm uses L differently initialized
GMMs {G! }F- |, leading to L different JRMPC alignments ®(V) =
{®'(V)}-, of the same union of particles with coordinates V.
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2.2 Classification
The JRMPC algorithm can end up in a local optimum, resulting in
multiple groups of particles (clusters) with different overlapping
poses in the reconstruction. To separate these clusters, we use an un-
supervised classification method recently proposed by our group
(Huijben et al., 2021). This method enables the analysis of structural
heterogeneity in localization datasets arising from e.g. naturally
occurring biological variations. Here, we use this pipeline to decom-
pose the L different JRMPC outcomes into clusters of particles,
where the particles within each cluster are well-aligned. First, we
compute the normalized Bhattacharya cost function between every
transformed particle @ (V,) and every other transformed particle
®L(V},) within the ]RMPC registration for each initialization
I=1,2,...,L. This one time computation gives an upper triangular
matrix with N(N — 1)/2 cost function values S. The normalized
Bhattacharya cost is in general given by the sum over the M, local-
izations of particle a and My, localizations of particle b as:

1 M, M,

5 —

M Mbq 17=1 deth;,’

Here 54);’: = P(Vag) — d)(vh',) is the diffe'ren'ce in transfo'rmed

(rotated and translated) coordinates of localization g of particle a

and localization  of particle b, and Q;f is defined in terms of the un-
certainty covariance matrices of the localizations as:

S(a,b) =

exp (_ 75¢abTQab ah) E)

Q= Zag(Zag + Zor) ' Zpy- 4)

For example, for 2D data with isotropic localization uncertain-
ties, this reduces to:

1 i% 1
S(a,b) =
M Mb g=1r=1 ((ﬁq + 5ir)

2(8%, + 53,)

The normalization of the cost function with the numbers of
localizations per particle reduces the impact of the variations in
these number, which makes it a better descriptor of the similarity be-
tween the structure of the particles. The next step is to transfer dis-
similarity values:

D(a,b) = max(S) — S(a, b) (6)

to spatial coordinates in a multidimensional space suitable for
classification using MDS (Mead, 1992). The transformed particles
will then be partitioned into clusters by k-means clustering
(Cheng, 1995; Jain et al., 1999) in this multidimensional space.
Parameter settings for the classification step are given in Section
3 2 This process is repeated for the JRMPC reconstructions [ =

,Lleading ton=1,2,...,m clusters that are denoted as C,
(see Flg. 1).

2.3 Connection

As we repeat the JRMPC reconstruction L times, pairs of clusters
from different initializations may share different particles.
Therefore, we need to combine the different clusters into a single
well-aligned structure. In a first step, we discard clusters with less
than ¢ particles. This threshold helps to filter out poorly aligned
clusters as well as clusters with particles of poor quality, as these
tend to accumulate in clusters with low number of particles.

Next, the cluster with the largest number of particles is selected
as initial estimate of the super-particle reconstruction C,. This main
cluster, Cl, is used as the target for a pairwise comparison of clus-
ters. A loop over all clusters C’ for [ # 1, is done, and clusters C’
and C are compared to check for particles that are in both clusters.
If there exists at least one common particle ¢ with coordinates V, €
V then the clusters Cf, can be added to the super-particle reconstruc-
tion estimate C, following:

Step 1: apply the inverse transformation of particle ¢ in cluster
C! to transform all particles in the cluster C., to the original position
and pose of V.:

Cly. = {RL}'C, —t. (7)

Step 2: apply the transformatlon of particle ¢ in the main cluster
C[ to all particles in the cluster C/ .|y, to the position and orientation
of ¢ Cl:

/ Il I
Cn‘CQ;‘ :Rc Cn'V( +tc . (8)

Now that the cluster C is aligned with the pose of the main clus-
ter C"’ the particles of C can be added to the super-particle recon-
struction estimate C,. Tn this way more and more particles
accumulate in the final reconstruction, yielding the final outcome of
our proposed algorithm.

Care must be exercised for two subtleties. First, it can happen
that there is more than one common particle between the two clus-
ters C', and Cl. Then, if there exists more than one common par-
ticles between two clusters, we will calculate all the common
particles’ translation matrices and rotation matrices from the cluster
Ch to the cluster C,

I I’ 1,1
telo_p =t~ RERI} e, ©)

Relr oo =RE{RI}, (10)

then we compare all the t, and t. and use the common particle with
rotation and translation matrix that are closest to the median of all
translation and rotation matrices of all the common particles.
Second, we must check if the particles of cluster C., are not already
in the reconstruction estimate C,. Only the unique particles that are
not already contained in the reconstruction are added to C,. In
Supplementary Appendix B, we give pseudo code for this connection
pipeline.

3 Experiments

3.1 Experimental data
We applied our method to four different localization microscopy
experiments described here:

DNA origami TUD-logo: We tested three different 2D TUD-logo
DNA origami datasets (Heydarian et al., 2018b) with DOL of 30%,

80% DOL
383 particles

50% DOL
442 particles

30% DOL
549 particles

o
<]
£
=
]
£
©
:
o
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©

our method

Fig. 2. Comparison of the particle fusion performance with our method and the all-
to-all method on experimental 2D TUD-logo DNA origami particles. (a, c, e)
Reconstruction by all-to-all registration (FRC resolution of 3.3, 3.5, 5.0nm for
80%, 50% and 30% DOL, respectively). Computational time for (a) is about 2h
(GPU)). (b, d, f) Reconstruction by our method (FRC resolution of 3.2, 3.1, 3.3 nm
for 80%, 50% and 30% DOL, respectively). Computational time for (b) is about
9.5 min (CPU). Scale bar of (a) applies to (b—f)
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4,943 particles
909,805 localizations

4,155 particles

692,139 localizations

2,541 particles
4,714,134 localizations

5,961 particles
2,359,937 localizations

Fig. 3. Particle fusion speed for experimental 2D DNA-origami with a large number
of particles. (a) Reconstruction of digit 1, computational time 1.1h (CPU).
(b) Reconstruction of digit 2, computational time 1.3 h (CPU). (c) Reconstruction of
digit 3, computational time 48 min (CPU). (d) Reconstruction of 3 x 4 grid, compu-
tational time 4.8 h (CPU). The number of particles and localizations in each recon-
struction are indicated below the figures. Scale bar of (a) applies all sub-images

50% and 80%. We compared the results of the currently proposed
method and the all-to-all method (Heydarian et al., 2018b) in
Figure 2. The data are available online (Heydarian et al., 2018a).

2D nuclear pore complex: We further applied our method to 2D
Nuclear Pore Complex (NPC) data which were previously described
in Loschberger et al. (2012). In Figure 4, we show our reconstruc-
tion of NPCs together with the reconstruction of the all-to-all
method (Heydarian ez al., 2018b) to compare the methods’ capabil-
ities in the reconstruction of symmetrical structures.

3D nuclear pore complex: We applied our algorithm to 3D
NUP107 NPC data (Heydarian et al., 2021a) acquired by two differ-
ent localization microscopy techniques. The data are available on-
line (Heydarian et al., 2021c). The poses of the NPCs are
experimentally constrained as they are all embedded in the nuclear
envelope which is imaged as flat as possible on the cover glass. The
lower and upper ring of all particles are therefore roughly perpen-
dicular to the optical axis of the microscope (Heydarian et al.,
2021a).

DNA origami Digits data: The so-called nanoTRON datasets (Auer
et al., 2020) consist of DNA origami structures in the shape of the
digits 1, 2 and 3 and in the shape of a 3 x 4 rectangular grid. The
data are available online (Heydarian et al., 2021b) and contains on
the order of a few thousand particles. These datasets are used to
showcase the processing speed advantages of our method.

Simulation data: Simulation data of the DNA-origami TUD-logo
was generated as described in Heydarian et al. (2018b).

3.2 Parameter settings

A number of parameters in the three algorithmic steps of alignment,
classification and connection must be set. The default values given
in the table in the Supplementary Appendix C are suitable for most
of the cases.

We estimate the number of initial GMM centers K by applying
the mean-shift method (Cheng, 1995; Fukunaga and Hostetler,
1975) to the outcome of { randomly selected input particles coarsely
transformed by JRMPC with Ky randomly generated GMM centers.
We set Ky = min (Zf\ilM/-)/N, 100, i.e. equal to the average num-
ber of localizations of all input patticles with a minimum of 100.
We choose (=20, if the number of input particles N <20 then
{ = N. The value of K estimated in this way is approximately equal
to the number of binding sites in most cases. All initial values for the
prior probabilities of the K Gaussians are set uniformly to

(b) e: 0.89 ® e: 0.86

1000r= Frequency=400 ggg 500 *
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Fig. 4. Comparison of particle fusion performance between our method and the all-
to-all method on 304 experimental 2D nuclear pore complex particles.
(a) Reconstruction with the all-to-all method without prior knowledge. A ‘hot-spot’
is visible due the enhancement by pair-wise registration. Fitted ellipticities e to the
reconstruction are shown below. (b, d, f) Histogram of the azimuthal angles of the
localizations in (a, ¢, e), respectively; for comparison, a red line indicates 400
counts. (c) Reconstruction with the all-to-all method after explicitly imposing eight-
fold symmetry. (e) Reconstruction with our method without prior knowledge. Even
without imposing symmetry no hot-spot occurs. Scale bar of (a) applies to (c, €)

pr = 1/K. The initial values of the center positions y{ are generated
randomly within a rectangular bounding box containing all the
localizations We initialize the transformation as R? =1, and
t0 =71’ — v,, where i’ is the average of the K GMM centers. The di-
agonal of the bounding box containing all the input particles after
applying the initial translation is set as the initial value of all
Gaussian standard deviations o). We set the default value for the
number of clusters 7, to 2 in the classification step because the regis-
tration of JRMPC usually only contains two flipped structures. The
threshold ¥ for a cluster to be used in the connection step is set as
N/(n; + 1). The default number of repetitions L for the JRMPC ini-
tializations is 2.

We use the default parameter settings throughout with two
exceptions. The reconstruction of the nanoTRON 3 x4 grid
(Fig. 3(d)) uses non-default parameters with a larger number of clus-
ters (1, = 8) to guarantee clusters that contain well-aligned particles.
The reconstruction of the 3D NPC particles (Fig. 5) uses a non-
default value for the initial Gaussian standard deviation (we use
v/1000, much smaller than the default value) to better fit with the
limited range of initial poses of the NPCs. An inferior alignment is
observed with the default value. In general, we find that the quality
of the individual clusters can be improved by increasing 7, or 9. A
larger number of JRMPC initializations L can help to increase the
number of particles in the final reconstruction after the connection
step.

3.3 Benchmark algorithms and evaluation metrics

We compare our proposed method with the all-to-all method
(Heydarian et al., 2018b) (Heydarian et al., 2021a). We use the
Fourier Ring Correlation (FRC) (Nieuwenhuizen et al., 2013) to
measure the resolution of the super-particle reconstructions. We
form two independent input image subsets from the super-particle
reconstruction to perform the FRC analysis. The first subset is the
main cluster C and the second subset consists of all other particles
in the reconstruction. These two subsets can be used as statistically
independent image subsets that are the necessary inputs for the FRC
measurement because each subset contains a similar number of dif-
ferent particles from different independent experiments. We cross-
checked the outcomes of this FRC computation with the standard
method of independently processing two subsets of the total set of
input particles and found outcomes within the uncertainty margin of
the FRC estimation. In addition, we calculate the localization distri-
bution over the azimuthal angles to analyze the reconstruction sym-
metry for symmetrical structures. For the 3D NPC data, we also
visualize and compare the distribution of z positions of the
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Fig. 5. Comparison of particle fusion performance between our method and all-to-all method on experimental 3D Nup107 particles acquired by different localization micros-
copy techniques. (a) Fusion of 306 Nup107 particles obtained from 3D astigmatic PAINT reconstructed by the 3D all-to-all method. (b, g, 1, q) Histogram of the z coordinate
of localizations in the reconstruction (a). (c, h, m, r) Histogram of the radius of upper ring’s localizations, (d, i, n, s) lower ring. (e, j, 0, t) Rose plot of the localization distribu-
tion over azimuthal angles for the upper and lower rings of the reconstructions. (f) Fusion of 356 Nup107 particles obtained from 3D astigmatic STORM reconstructed by the
3D all-to-all method. (k) Fusion of 306 Nup107 particles obtained from 3D astigmatic PAINT reconstructed by our method. (p) Fusion of 356 Nup107 particles obtained
from 3D astigmatic STORM reconstructed by our method. Scale bar indicates 50 nm and applies to a, f, k and p. Rose plots in (e, j) show 8-fold symmetry with nearly equal
number of localizations, but symmetry was used here in the reconstruction. Rose plots (o, t) without any prior knowledge reconstruction with our method also shows eight

clear peaks however with a stronger variation in the number of localizations

localizations, the radius of each of the two rings, and in a rose plot
the localization distribution over azimuthal angles. In the simula-
tions, we compute the root mean square distance between the local-
izations after particle fusion and the attendant binding sites to
quantify the quality of the fusion process (Heydarian ez al., 2021a).

4 Results

4.1 Computational cost

Compared to the all-to-all method, which has an unfavorable com-
putational cost scaling as N2, our method is much faster as it is lin-
ear with N. Figure 2(a and b) shows the reconstructions of 383
experimental TUD-logo particles with DOL =80% and 788 875
localizations obtained with the all-to-all method and our method.
We repeated our method on the 80% DOL TUD-logo particles 30
times in order to assess the uncertainty in FRC-resolution and com-
putation time. Both methods achieve a similar reconstruction qual-
ity, consistent with near equal FRC resolutions (3.3 * 0.3 nm for the
single instance of the all-to-all, 3.6 + 0.3 nm for the 30 runs for our
method). The computational time of the all-to-all method, however,
is almost 12 times longer than for our method. More importantly,
our computational time of 9.6 = 0.6 min was performed on a simple
CPU (40 core Xeon ES5-2670v3), opposed to the GPU-
implementation of the all-to-all registration (K40c Tesla GPU). The
all-to-all method is practically impossible on a CPU when having
more than 100 particles. The estimated number of Gaussian centers

K is 40 = 3, which is close to the actual number of binding sites
(37). The random initializations of the JRMPC usually result in a
final GMM that is similar to the combination of two inverted TUD-
logos, which can be classified appropriately in only two clusters.
Our method can effectively handle large amounts of particles be-
cause of the favorable reconstruction speed. To show the capability
of our method to handle this large data we applied it to the
nanoTRON datasets, which contain an order of magnitude more
particles than the TUD-logo datasets. We achieved clear structures
of the digits 1, 2 and 3 and of the 3 x4 grid in only 1.1h, 1.3 h,
48 min and 4.8 h, respectively, in CPU compared to a computational
time of multiple days for the GPU-accelerated all-to-all method. It
would have taken several days to resolve the full dataset with the
all-to-all method. Due to this speed limitation we only used part of
the data in the all-to-all method. The FRC resolution obtained by
the all-to-all registration for these four datasets (digits 1, 2 and 3
and of the 3 x 4 grid) containing 1219, 1309, 1278 and 1194 par-
ticles are 3.69+0.02nm, 4.40*=0.19nm, 3.98+0.22nm and
3.59 £ 0.15 nm, respectively (Huijben ez al., 2021). Our reconstruc-
tions include 4155, 4943, 2541 and 5961 particles for these four
datasets and the FRC resolutions are 2.76*0.92nm,
2.80 £ 0.54nm, 3.21 £0.33nm and 3.51 £0.28 nm, respectively.
These numbers are smaller as we are able to assemble more particles
in the final reconstruction compared to the all-to-all method. For
the digits 1, 2, and 3, the estimated K (25, 23, 34) is close to the ac-
tual number of binding sites (18, 23, 25). For the 3 x 4 grid particles,
our K-estimation algorithm estimates K =42 which is much more
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than the 12 binding sites. For that reason the JRMPC reconstruc-
tions have more clusters and we need a larger 7, = 8 to separate
them correctly.

4.2 2D NPC data: influence of symmetry

Our method also overcomes the second disadvantage of the all-to-all
method, the hot-spot problem occurring for symmetrical structures.
In Figure 4, we compare reconstructions of 2D NPC particles with
8-fold rotational symmetry. The reconstruction of the all-to-all
method without prior knowledge (Fig. 4(a and b)) shows one appar-
ent ‘hot-spot’ with more than 600 localizations compared to other
blobs with around 400 localizations. After imposing eight-fold rota-
tional symmetry the hot-spot disappears (Fig. 4(c)). Imposing this
symmetry changes the ellipticity of the reconstructed NPC ring from
the earlier 0.89 to 0.99. So, symmetry has been restored, but at the
expense of a shape that changed from an ellipse to a circle. Our
method applied to the same NPC particles does not result in a hot-
spot (Fig. 4(e)), quantified by a more uniform distribution of local-
izations over the 8 peaks (compare (b) and (f)). The ellipticity of our
reconstruction is 0.86 which matches reasonably well with the all-
to-all value of 0.89. The number of Gaussian components K in the
GMM is estimated by our algorithm to be 8 which is obviously
equal to the number of visible binding sites in the 2D NPC.

4.3 Low labeling 2D DNA origami data

A major accomplishment of the all-to-all method is its ability to han-
dle poorly labeled data. It appears our method outperforms the all-to-
all method even in this respect. Figure 2(c—f) shows a comparison of
reconstructions of hundreds of TUD-logos with low DOL values
equal to 50% and 30%. Our method results in a visually better recon-
struction quality, especially for the worst quality DOL = 30% dataset
(compare Figure 2(e and f)). Nearly all binding sites on the origami at
a distance of about 5 nm are resolved in (f) where in (e) especially the
edges are washed out and localizations are concentrated to a few bind-
ing sites. This is consistent with the FRC resolutions of 3.1 nm and
3.3 nm for the 50% and 30% DOL datasets, respectively, which com-
pares favorably with the FRC resolutions for the all-to-all method
equal to 3.5nm and 5.0 nm for the 50% and 30% DOL datasets, re-
spectively. The mean-shift method estimates K=46 for the data with
30% DOL and K=37 for 50% DOL. These two K values are very
close to the actual number of 37 binding sites of the origami design.
The initial Gaussian standard deviation is quite large (~100 nm) at
first. Most of the Gaussian components shrink to a small size (less
than 3 nm) eventually, and only a few to a medium size (~10 nm).
Most of the initially randomly generated GMM centers g, are finally
positioned near the binding sites of the TUD-logo.

4.4 3D NPC data

Another major achievement of the all-to-all method is the ability to
reconstruct 3D data (Heydarian et al., 2021a). Our method shows a
comparably good performance on 3D datasets. Figure 5 shows a
comparison of 3D Nupl107 NPC structures imaged with both
PAINT and STORM. Our method shows reconstructions of similar
quality as the all-to-all method (compare Figure 5(a and k) and com-
pare Figure 5(f and p)). Here, the all-to-all method relies on detect-
ing the rotational symmetry from the data and subsequently
promoting the symmetry in the reconstruction. In contrast, neither
prior knowledge or detection of symmetry nor extra post-processing
is needed with our method. Comparison of Figure 5(b, g, 1, q), (¢, h,
m, 1) to (d, i, n, s), respectively, further shows that our method
obtains similar NPC structural parameters (the distance between the
nuclear and cytoplasmic rings and their radius) as the all-to-all
method. The rose plots Figure 5(e, j) obtained from the all-to-all
method’s reconstructions show 8-fold symmetry for each ring, and
the number of localizations in each peak is almost the same. The
rose plots Figure 5(o, t) of our reconstructions also clearly show
eight peaks for each ring, but the number of localizations in each
peak is slightly different. This is reasonable considering that our
method does not rely on symmetry in the reconstruction. Our K-esti-
mation algorithm estimates K=34 for both cases, which is also

reasonable as the number of actual binding sites should be 32 given
the structure of the EM model (Kosinski et al., 2016; Thevathasan
et al., 2019). The default value of o, does not work here and we
used o) = v/1000 nm instead. The final center points of the GMMs
are nearly all distributed inside the 16 spheres of the 3D NUP
reconstructions.

4.5 Simulation data

We explore the limitations of the proposed method in terms of DOL,
localization precision and the number of particles by applying our
method on simulated TUD-logo datasets. Further details and results
can be found in Supplementary Appendix D. Even with poor quality
datasets (DOL as low as 40%, or localization precision as low as
12nm, or a number of particles as low as 10), our method can obtain
reconstructions with registration error in the range 5-10 nm.

5 Discussion

Several of the results we obtained can be qualitatively understood:
in comparison to the all-to-all-method our approach produces better
results for poor, underlabeled data. The reason is that in the pair-
wise registration of the all-to-all method pairs of poor quality par-
ticles must be aligned, which is more error prone than our approach
where each of the poor quality particles is aligned to the average of
all particles. The same line of reasoning applies to the case of sym-
metric structures. The pairwise registration of the all-to-all method
aligns random peaks that occur through the stochastic variations of
labeling within the particles, while for our approach each particle is
aligned to the average of all particles which smoothens out the sto-
chastic variations in labeling.

We attribute the JRMPC local optima that consist of several dis-
tinct clusters with different poses to a difference in convergence rate
between the widths of the Gaussian components and the particle
rotations. It seems that the Gaussian widths shrink relatively fast,
while the particle rotations only change slowly, as the iteration pro-
gresses. This results in posterior probabilities oy, for the Gaussian
component k that is nearest to localization i of particle j that quickly
converge to nearly one and to virtually zero for the other Gaussian
components. On the other hand, for the case of 3D NPC particles
with a limited range of poses in the dataset, the widths of the
Gaussian components appear too large, leading to sets of particle
rotations that are distributed too broadly. Summarizing, the recon-
struction quality appears to be sensitive to the initial setting and
convergence rate of the Gaussian widths.

Next to the limitations of our method on DOL and localization
uncertainty assessed by the simulation study, there are also some
assumptions that go into the proposed method that we wish to em-
phasize now. Firstly, the underlying biological structure is assumed
to be sufficiently rigid for the overall averaging to make sense.
Secondly, we assume a single underlying structure. Recently, how-
ever, we have studied the detection of structural heterogeneity using
particle fusion methods (Huijben et al., 2021). Our method can also
vastly accelerate the workflow of Huijben et al. (2021), as there the
initial step is to find a global alignment of all particles in the dataset,
followed by quantification of pairwise (dis)similarity between the
particles. Thirdly, the idea of fitting a GMM to localization micros-
copy data sets matches well structures with a discrete number of
binding sites for fluorophores and corresponding datasets with mul-
tiple localizations per binding site. In that case the GMM centers
will tend to gravitate toward the different binding sites. In case there
are only a few localizations per binding site, however, it will be diffi-
cult to match the GMM centers to the binding sites, and the quality
of the registration process may be compromised.

A number of algorithmic improvements can be envisioned. First
of all we could incorporate the localization uncertainties in the
JRMPC method, such that the probability of localization i of par-
ticle j to fit Gaussian component k is a normal distribution with a
variance that is the sum of the variance due to the localization uncer-
tainty and the variance of the Gaussian component. Especially in
cases where the localization uncertainty is on the order of the
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distance between binding sites, or where there is a broad distribution
of localization uncertainties, or when the localization uncertainty is
anisotropic (for 3D datasets), this may improve the sensitivity to the
initial setting of the widths of the Gaussian components, as well as
promote convergence to a global optimum. Another improvement
may be found in a better description of the quality of the clusters.
Now we opt for the simple criterion of number of particles in the
cluster. Using the FRC resolution may be a better practice for assess-
ing cluster quality.

6 Conclusion

We have proposed a fast particle fusion method with computational
complexity that scales linearly with the number of input particles. In
our method, we apply the JRMPC method for multiple initializations
and then use classification and connection steps to generate a correct re-
construction with as many particles as possible. The reconstruction
quality of our method is measured by the FRC resolution and compared
with the all-to-all method, revealing that our results are of comparable
or better quality. Our method is fast, even without GPU acceleration,
avoids symmetry artifacts, applies to 2D and 3D datasets, and recon-
structs poor data with a limited number of particles, a low density of
labeling and a large localization uncertainty.

Acknowledgements

We thank Sabri Bolkar for initial attempts to apply the JRMPC method to
single-molecule localization microscopy.

Funding

This work has been supported by the Dutch Research Council (NWO), VICI
grant no. 17046 for B.R. and W.W.

Conflict of Interest: none declared.

References

Auer,A. et al. (2020) nanoTRON: a picasso module for MLP-based classifica-
tion of super-resolution data. Bioinformatics, 36, 3620-3622.

Broeken,]. et al. (2015) Resolution improvement by 3D particle averaging in
localization microscopy. Methods Appl. Fluoresc., 3,014003.

Cheng,Y. (1995) Mean shift, mode seeking, and clustering. I[EEE Trans.
Pattern Anal. Mach. Intell., 17,790-799.

Evangelidis,G.D. and Horaud,R. (2017) Joint alignment of multiple point sets
with batch and incremental expectation-maximization. IEEE Trans. Pattern
Anal. Mach. Intell., 40, 1397-1410.

Fox-Roberts,P. et al. (2017) Local dimensionality determines imaging speed in
localization microscopy. Nat. Commun., 8, 1-10.

Fukunaga,K. and Hostetler,L. (1975) The estimation of the gradient of a dens-
ity function, with applications in pattern recognition. IEEE Trans. Inform.
Theory, 21, 32-40.

Gray,R.D. et al. (2016) Virusmapper: open-source nanoscale mapping of viral
architecture through super-resolution microscopy. Sci. Rep., 6,29132.

Hell,S.W. (2009) Microscopy and its focal switch. Nat. Methods., 6, 24-32.

Heydarian,H. et al. (2018a) Single-molecule localization microscopy (SMLM)
2D TU Delft logos. 4TU.ResearchData. Dataset. doi:10.4121/uuid:
0d42a28f-f625-41a3-ba77-25e397685466.

Heydarian,H. et al. (2018b) Template-free 2D particle fusion in localization
microscopy. Nat. Methods, 15, 781-784.

Heydarian,H. et al. (2021a) 3D particle averaging and detection of macromol-
ecular symmetry in localization microscopy. Nat. Commun., 12, 1-9.

Heydarian,H. et al. (2021b) Single-molecule localization microscopy (SMLM)
2D digits 123 and TOL letters datasets. 4TU.ResearchData. Dataset. doi:
10.4121/14074091.v1.

Heydarian,H. et al. (2021c¢) Single-molecule localization microscopy (SMLM)
3D datasets. 4TU.ResearchData. Dataset. doi:10.4121/13797686.v1.

Huijben, T.A.P.M. et al. (2021) Detecting structural heterogeneity in
single-molecule localization microscopy data. Nat. Commun., 12, 1-8.

Jain,A.K. et al. (1999) Data clustering: a review. ACM Comput. Surv., 31,
264-323.

Klein,T. et al. (2014) Eight years of single-molecule localization microscopy.
Histochem. Cell Biol., 141, 561-575.

Kosinski,]. et al. (2016) Molecular architecture of the inner ring scaffold of the
human nuclear pore complex. Science, 352, 363-3635.

Loschberger,A. et al. (2012) Super-resolution imaging visualizes the eightfold
symmetry of gp210 proteins around the nuclear pore complex and resolves
the Central channel with nanometer resolution. J. Cell Sci., 125, 570-575.

Mead,A. (1992) Review of the development of multidimensional scaling meth-
ods. J. R. Stat. Soc. Series D Stat.,41,27-39.

Metzger,M. et al. (2016) Resolution enhancement for low-temperature scan-
ning microscopy by cryo-immersion. Opt. Express, 24, 13023-13032.

Nieuwenhuizen,R.P. et al. (2013) Measuring image resolution in optical nano-
scopy. Nat. Methods, 10, 557-562.

Rieger,B. and Stallinga,S. (2014) The lateral and axial localization uncertainty
in super-resolution light microscopy. Chemphyschem, 15, 664-670.

Szymborska,A. et al. (2013) Nuclear pore scaffold structure analyzed by
super-resolution microscopy and particle averaging. Science, 341, 655-658.

Thevathasan,].V. et al. (2019) Nuclear pores as versatile reference stand-
ards for quantitative superresolution microscopy. Nat. Methods, 16,
1045-1053.

Vicidomini,G. et al. (2018) STED super-resolved microscopy. Nat. Methods,
15, 173-182.


10.4121/uuid:0d42a28f-f625-41a3-ba77-25e397685466
10.4121/uuid:0d42a28f-f625-41a3-ba77-25e397685466
10.4121/14074091.v1
10.4121/13797686.v1

