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Background: Despite recent advancements, metastatic castration-resistant prostate cancer (CRPC) is not considered curative.
Novel approaches for identification of therapeutic targets of CRPC are needed.

Methods: Next-generation sequencing revealed 945–1248 miRNAs from each lethal mCRPC sample. We constructed miRNA
expression signatures of CRPC by comparing the expression of miRNAs between CRPC and normal prostate tissue or hormone-
sensitive prostate cancer (HSPC). Genome-wide gene expression studies and in silico analyses were carried out to predict miRNA
regulation and investigate the functional significance and clinical utility of the novel oncogenic pathways regulated by these
miRNAs in prostate cancer (PCa).

Results: Based on the novel miRNA expression signature of CRPC, miR-145-5p and miR-145-3p were downregulated in CRPC. By
focusing on miR-145-3p, which is a passenger strand and has not been well studied in previous reports, we showed that miR-145-
3p targeted 4 key molecules, i.e., MELK, NCAPG, BUB1, and CDK1, in CPRC. These 4 genes significantly predicted survival in
patients with PCa.

Conclusions: Small RNA sequencing for lethal CRPC and in silico analyses provided novel therapeutic targets for CRPC.

Prostate cancer (PCa) is the most frequently diagnosed cancer
among men in developed countries (Siegel et al, 2015). Although
PCa is initially responsive to androgen deprivation therapy (ADT),
most PCa develops into castration-resistant prostate cancer
(CRPC). Recent approvals of novel androgen receptor (AR)-
targeted agents, bone-targeted agents, and chemotherapeutic
agents have resulted in survival benefits in patients with CRPC;
however, CRPC is not considered curative (Crawford et al, 2015).
One of the main challenges in treating CRPC is controlling
aggressive, lethal metastatic PCa. Therefore, identification of the
molecular mechanisms of androgen-independent, metastatic

signalling pathways using current genomic approaches would help
to improve therapies for this disease.

MicroRNAs (miRNAs) are endogenous small RNA molecules
(19–22 bases in length) that regulate protein-coding/noncoding
gene expression by translational repression or mRNA cleavage in a
sequence-specific manner (Bartel, 2004). Bioinformatic approaches
indicate that one miRNA can regulate thousands of mRNAs, and
conversely, about 60% of the protein-coding genes in the human
genome are regulated by miRNAs (Lewis et al, 2005). Aberrant
expression of miRNAs can induce disruption of normal RNA
regulatory networks; therefore, miRNAs act as fine-tuning
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regulators in almost all biological processes (Bartel, 2009; Garzon
et al, 2009). In cancer cells, aberrant expression of tumour-
suppressive or oncogenic miRNAs causes cancer progression
(Garzon et al, 2009). Identification of aberrantly expressed
miRNAs and novel regulatory network searches based on miRNA
regulation has facilitated elucidation of the molecular mechanisms
of cancer initiation, development, and metastasis.

In this study, we aimed to identify novel therapeutic targets of
lethal metastatic CRPC (mCRPC). We obtained clinically lethal
CRPC tissue from patients who died of PCa after several sequential
treatments, including ADT, chemotherapy, and radiotherapy. We
carried out small RNA sequencing using lethal CRPC tissue to
comprehensively identify novel miRNAs and investigated the
functional significance and clinical utility of the novel oncogenic
pathways regulated by these miRNAs in PCa.

MATERIALS AND METHODS

Patients and clinical prostate specimens. Prostate specimens
were obtained from patients admitted to Teikyo University Chiba
Medical Centre Hospital and Chiba University Hospital from 2008
to 2014. Among patients with elevated prostate-specific antigen
(PSA) levels who underwent transrectal prostate needle biopsies,
we evaluated 34 PCa tissues and 19 normal prostate (non-PCa)
tissues. Five paired samples of PCa and corresponding normal
tissues were obtained by robot-assisted radical prostatectomy.
Eight metastatic CRPC specimens were obtained from 3 patients
who had been heavily treated with several agents and had
eventually died of metastatic CRPC. The patients’ characteristics
are summarised in Supplementary Table 1. For non-PCa and PCa
specimens, we obtained two needle biopsy specimens from the
same region for pathological verification. Written consent for
tissue donation was obtained from each patient. The protocol was
approved by the Institutional Review Board of Chiba University
and Teikyo University.

Construction of the miRNA expression signature of CRPC. We
performed small RNA sequencing using a HiSeq 2000 (Illumina,
San Diego, CA, USA) according to the manufacturer’s protocol.
The read length was 50 bp, and single-end, multiplex sequencing
was performed. After cleaning of reading data using the Cutadapt
program (ver. 1.2.1), high quality reads were mapped to the
reference genome sequence using Bowtie software (ver. 1.0.0). To
annotate reads, information from miRBase (release 20.0), Rfam
(ver.11.0), and iGenomes (NCI build 37.2) was used. To compare
differentially expressed miRNAs between sample groups, edgeR
(ver. 3.8.6) was used. P-values were adjusted for multiple testing
using the Benjamini and Hochberg method. P-values with false
discovery rates (FDRs) of less than 0.05 were considered
significant.

Cell culture and RNA isolation. PC3 and DU145 human prostate
cancer cells were obtained from the American Type Culture
Collection (Manassas, VA, USA).

Total RNA was isolated using TRIzol reagent (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s protocol, as
described previously (Goto et al, 2015; Goto et al, 2016a; Goto et al,
2016b).

Quantitative real-time reverse transcription polymerase chain
reaction (RT-qPCR). PCR was performed as previously described
(Goto et al, 2015; Goto et al, 2016a; Goto et al, 2016b). The
expression levels of miR-145-3p (Assay ID: 002149) and miR-145-
5p (Assay ID: 002278) were analysed by TaqMan RT-qPCR
(TaqMan MicroRNA Assay; Applied Biosystems) and normalised
to RNU48 (Assay ID: 001006). TaqMan probes and primers were
obtained from Applied Biosystems (Assay-On-Demand Gene

Expression Products): BUB1 (P/N: Hs01557695_m1), CDK1
(P/N: Hs00938777_m1), MELK (P/N: Hs01106440_m1), NCAPG
(P/N: Hs00254617_m1); GUSB (P/N: Hs00939627_m1), and
GAPDH (P/N: Hs02758991_g1) as an internal control.

Transfection with mature miRNA. The following mature
miRNA species were used in this study: Ambion Pre-miR miRNA
precursor for hsa-miR-145-3p (P/N: PM13036) and hsa-miR-145-
5p (P/N: PM11480) and negative control miRNA (P/N: AM17111).
RNAs were incubated with OPTI-MEM (Invitrogen) and Lipo-
fectamine RNAiMAX reagent (Invitrogen). The transfection
procedures were reported previously (Goto et al, 2015; Goto
et al, 2016a).

Cell proliferation, migration, and invasion assays. Cell prolif-
eration, migration and invasion assays were carried out as
previously described (Goto et al, 2015; Goto et al, 2016a; Goto
et al, 2016b).

Argonaute2 (Ago2)-bound miRNA isolation by immunopreci-
pitation. PC3 cells were transfected with 10 nM miRNA by reverse
transfection and plated in well plates at 1� 105 cells per well. After
48 h, cells were collected, and immunoprecipitation was performed
using human anti-Ago2 antibodies (microRNA Isolation Kit,
Human Ago2; Wako, Osaka, Japan) according to the manufac-
turer’s protocol. Expression levels of miRNAs bound to Ago2 were
measured by TaqMan RT-qPCR. miRNA expression data were
normalised to miR-26a (Assay ID: 000405), the expression of
which was not affected by miR-145-3p/5p transfection.

Identification of genes regulated by miR-145-3p. We performed
a combination of in silico and genome-wide gene expression
analyses. First, genes regulated by miR-145-3p were listed using the
TargetScan database (release 7.0). Next, we performed genome-
wide gene expression analysis using miR-145-3p-transfected PC3
cells. A SurePrint G3 Human GE 60 K Microarray (Agilent
Technologies) was used for expression profiling of miRNA
transfectants in comparison with mock PC3 cells(accession
number: GSE77790, log2 ratioo� 1.5). Next, we identified genes
that were highly upregulated in mCRPC tissue compared with
those in non-PCa and HSPC and highly upregulated in PCa
compared with those in non-PCa tissues (accession number:
GSE35988; fold change 4 2 and q-valueo0.05). Finally, to validate
that these genes were upregulated in mCRPC clinical specimens,
we used other data sets from cBioportal (http://www.cbioporta-
l.org/) and GEO database (GSE 70770) (Ross-Adams et al, 2015;
Whitington et al, 2016). HSPC data were obtained from TCGA-
PRAD (Cancer Genome Atlas Research N, 2015), and mCRPC
data were obtained from SU2c/PCF (Robinson et al, 2015).

Immunohistochemistry. Tissue specimens were immunostained
with an Ultra-Vision Detection System (Thermo Scientific)
following the manufacturer’s protocol. Primary rabbit polyclonal
antibodies against budding uninhibited by benzimidazoles 1
(BUB1; 1:50, sc-365685; Santa Cruz Biotechnology), cyclin-
dependent kinase 1 (CDK1; 1:100, HPA003387; Sigma-Aldrich),
maternal embryonic leucine zipper kinase (MELK; 1:200,
HPA017214; Sigma-Aldrich), and non-SMC condensin I complex
subunit G (NCAPG; 1:150, ab56382; Abcam) were used for
immunochemistry. The procedures were described previously
(Goto et al, 2015; Goto et al, 2016a; Goto et al, 2016b).

The cancer genome atlas prostate adenocarcinoma (TCGA-
PRAD) and other human PCa data analysis. To explore the
clinical significance of miRNAs and target genes, we used the GEO
database and the RNA sequencing database in TCGA-PRAD
(Cancer Genome Atlas Research N, 2015) and SU2C/PCF
(Robinson et al, 2015). The gene expression and clinical data
were retrieved from cBioportal (http://www.cbioportal.org/, the
provisional data were downloaded on September 20, 2016).
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Table 1. Significantly downregulated miRNAs in CRPC

miRNA Locus Log FC FDR

CRPC vs non-PCa
miR-145-5p 5q32 � 4.645 1.82E-31
miR-221-3p Xp11.3 � 4.220 6.96E-26
miR-31-5p 9p21.3 � 6.354 1.89E-24
miR-145-3p 5q32 � 3.930 8.42E-19
miR-143-5p 5q32 � 4.198 3.94E-18
miR-222-3p Xp11.3 � 4.495 8.07E-18
miR-221-5p Xp11.3 � 3.769 3.03E-12
miR-143-3p 5q32 � 3.010 1.02E-10
miR-125b-5p 11q24.1; 21q21.1 � 3.234 1.48E-10
miR-150-5p 19q13.33 � 3.454 1.75E-10
miR-6510-3p 17q12 � 6.536 1.81E-10
miR-99a-5p 21q21.1 � 2.790 7.83E-10
miR-100-5p 11q24.1 � 3.157 4.32E-09
miR-204-5p 9q21.13 � 4.540 2.11E-08
miR-205-5p 1q32.2 � 8.408 2.89E-08
miR-187-3p 18q12.1 � 4.257 3.35E-08
miR-1247-5p 14q32.31 � 4.560 3.69E-08
miR-490-3p 7q33 � 6.626 1.08E-07
miR-125b-1-3p 11q24.1 � 2.774 1.90E-07
miR-27b-3p 9q22.33 � 2.382 3.59E-07
miR-455-5p 9q33.1 � 2.461 5.97E-07
miR-100-3p 11q24.1 � 3.859 1.28E-05
miR-1271-5p 5q35.2 � 2.082 1.37E-05
miR-328-3p 16q22.1 � 2.112 1.55E-05
miR-196b-5p 7p15.2 � 1.740 2.59E-05
miR-24-3p 9q22.33; 19p13.12 � 1.699 5.98E-05
let-7c-3p 21q21.1 � 4.152 6.34E-05
miR-184 15q25.1 � 4.483 8.77E-05
miR-133a-5p 18q11.1; 20q13.33 � 4.170 8.77E-05
miR-125b-2-3p 21q21.1 � 2.145 8.77E-05
miR-873-5p 9p21.1 � 3.599 0.000153
miR-9-5p 1q22; 5q14.3; 15q26.1 � 2.006 0.000153
miR-504-5p Xq26.3 � 2.390 0.000185
miR-27b-5p 9q22.33 � 2.251 0.000208
miR-3943 7p14.1 � 4.655 0.000328
miR-548ba 2p16.3 � 4.650 0.000431
miR-30e-3p 1p34.2 � 1.524 0.000431
miR-214-3p 1q24.3 � 1.859 0.000658
miR-125a-5p 19q13.41 � 2.004 0.000681
miR-628-5p 15q21.3 � 2.953 0.001013
miR-455-3p 9q33.1 � 2.068 0.001769
miR-31-3p 9p21.3 � 4.305 0.00182
miR-199a-5p 19p13.2; 1q24.3 � 1.433 0.002757
miR-133a-3p 18q11.1; 20q13.33 � 4.055 0.002817
miR-874-3p 5q31.2 � 1.646 0.003569
miR-28-3p 3q28 � 1.278 0.00539
miR-23b-3p 9q22.33 � 1.773 0.005713
let-7e-3p 19q13.41 � 1.874 0.006138
miR-889-3p 14q32.31 � 1.878 0.007487
miR-142-5p 17q22 � 1.503 0.007749
miR-452-3p Xq28 � 2.343 0.007917
miR-199b-5p 9q34.12 � 1.839 0.008345
miR-452-5p Xq28 � 1.670 0.009339
miR-1260b 11q21 � 1.873 0.010403
miR-139-5p 11q13.4 � 1.411 0.013082
miR-205-3p 1q32.2 � 4.128 0.01419
miR-224-5p Xq28 � 1.642 0.014227
miR-23a-3p 19p13.12 � 1.072 0.014881
miR-199b-3p 9q34.12 � 1.488 0.016875
miR-199a-3p 19p13.2; 1q24.3 � 1.488 0.016905
miR-1269a 4q13.2 � 4.294 0.017298
miR-944 3q28 � 2.426 0.017298
miR-136-5p 14q32.31 � 1.714 0.018059
miR-4634 5q35.2 � 1.960 0.018527
miR-224-3p Xq28 � 2.339 0.03156
miR-6511b-3p 16p13.3; 16p13.11 � 2.237 0.03156
let-7c-5p 21q21.1 � 1.701 0.035011
miR-887-3p 5p15.1 � 1.345 0.035011
miR-1260a 14q24.3 � 2.617 0.035037
miR-1247-3p 14q32.31 � 2.996 0.03528
miR-1298-5p Xq23 � 3.686 0.036895
miR-101-5p 1p31.3 � 1.598 0.039947
miR-222-5p Xp11.3 � 3.853 0.043768
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The normalised mRNA expression values in the RNA sequencing
data were processed and provided as Z-scores. We also employed
the gene expression microarray data (GSE 21034 and GSE 21036).
Visualisation of gene expression heatmaps and clustering was
carried out by MeV (Saeed et al, 2003) and Subio Platform (Subio
Inc., Amami, Japan). Pathway analysis was performed using the
Enrichr program (Kuleshov et al, 2016).

Statistical analysis. The relationships between 2 groups and the
numerical values obtained by RT-qPCR were analysed using
Mann-Whitney U-tests. Spearman’s rank test was used to evaluate
the correlations between the expression of miRNAs or genes. The
relationships among more than 3 variables and numerical values
were analysed using Bonferroni-adjusted Mann-Whitney U-tests.
A multivariate Cox proportional hazards model was used to
establish independent factors for disease-free survival. Survival
analysis was carried out using the Kaplan–Meier method and log-
rank tests with JMP software (version 12, SAS Institute Inc., Cary,
NC, USA); all other analyses were performed using Expert
StatView (version 5, SAS Institute Inc.).

RESULTS

Small RNA sequences of non-PCa, HSPC, and lethal mCRPC.
First, we sequenced 14 small RNA libraries. We used 5 non-PCa
specimens (nos. 40–44; Supplementary Table 1), 5 HSPC speci-
mens (nos. 1-5) and 4 mCRPC specimens (nos. 62, 63, 65, and 66)
for deep sequencing. We obtained 11,690,828–21,610,206 clean
reads and 7,733,236–18,921,965 mapped reads (Supplementary
Table 2). Focusing on already annotated miRNAs, we detected
945–1248 miRNAs from each sample. To elucidate the molecular

mechanisms underlying lethal mCRPC, we compared the expres-
sion of miRNAs between mCRPC and non-PCa or HSPC and
sorted the miRNAs by FDR from the most downregulated miRNAs
in mCRPC (Table 1). miR-145-5p, a tumour-suppressive miRNA
that has been extensively studied in various types of cancers, is
listed as the top miRNA in these signatures. By carefully observing
these downregulated miRNAs in the mCRPC expression signature,
we found that the complementary strand of miR-145-5p, i.e., miR-
145-3p, was also one of the top miRNAs. Because miR-145-3p is a
passenger strand and its function is not yet clear, we focused on
miR-145-3p for further analysis.

Expression levels of miR-145-3p in PCa specimens and cell
lines. First, we validated miR-145-3p and miR-145-5p expression
levels using clinical specimens (PCa: n¼ 29, nos. 6–34;
Supplementary Table 1; non-PCa: n¼ 14, nos. 45–58; mCRPC:
n¼ 8, nos. 59–66). Patients with PCa showed relatively advanced
stages, with high Gleason scores (97% of patients had a score of
greater than 7) and high PSA (median: 212 ng/ml; range, 11.4–
2530 ng/ml). The expression levels of miR-145-5p and miR-145-3p
were significantly downregulated in PCa tissues and mCRPC
tissues compared with those in non-PCa tissues (Po0.0001;
Figure 1A and B). Furthermore, Spearman’s rank tests showed
positive correlations between the expression of miR-145-5p and
miR-145-3p (R2¼ 0.839 and Po0.0001; Figure 1C). Validation of
miR-145-3p downregulation in datasets from other research groups
(GSE21036) revealed significant downregulation of miR-145-3p in
mCRPC (n¼ 8) specimens compared with that in HSPC (n¼ 99;
Po0.0001; Supplementary Figure 1A).

Both miR-145-5p and miR-145-3p bound to Ago2. miR-145-5p
is known to be a guide strand and has been shown to have a role
in several types of cancers; in contrast, miR-145-3p is a passenger

Table 1. ( Continued )

miRNA Locus Log FC FDR

miR-656-3p 14q32.31 � 2.760 0.044013
miR-181c-5p 19p13.12 � 1.622 0.045462
miR-214-5p 1q24.3 � 1.373 0.047573

CRPC vs HSPC
miR-145-5p 5q32 � 3.140 1.70E-05
miR-125b-5p 11q24.1; 21q21.1 � 2.800 7.28E-05
miR-1247-5p 14q32.31 � 4.369 7.54E-05
miR-143-5p 5q32 � 3.181 7.54E-05
miR-145-3p 5q32 � 2.876 1.95E-04
miR-31-5p 9p21.3 � 6.095 4.08E-04
miR-150-5p 19q13.33 � 3.906 7.55E-04
miR-221-3p Xp11.3 � 2.534 7.55E-04
miR-143-3p 5q32 � 2.624 1.39E-03
miR-490-3p 7q33 � 6.969 2.41E-03
miR-3943 7p14.1 � 4.750 3.08E-03
miR-9-5p 1q22; 5q14.3; 15q26.1 � 5.457 3.87E-03
miR-100-3p 11q24.1 � 3.618 4.19E-03
miR-100-5p 11q24.1 � 2.442 4.19E-03
miR-196b-5p 7p15.2 � 2.027 4.57E-03
miR-125b-1-3p 11q24.1 � 2.728 4.93E-03
miR-99a-5p 21q21.1 � 2.097 4.93E-03
let-7c-3p 21q21.1 � 3.956 5.91E-03
miR-222-3p Xp11.3 � 2.311 6.28E-03
miR-221-5p Xp11.3 � 2.562 7.24E-03
miR-9-3p 1q22; 5q14.3; 15q26.1 � 5.538 1.22E-02
miR-27a-5p 19p13.12 � 3.290 1.22E-02
miR-125b-2-3p 21q21.1 � 2.107 1.41E-02
miR-27b-3p 9q22.33 � 1.790 1.69E-02
miR-142-5p 17q22 � 2.176 2.26E-02
miR-1260b 11q21 � 2.482 2.30E-02
miR-214-3p 1q24.3 � 1.811 3.02E-02
miR-671-3p 7q36.1 � 1.868 3.35E-02
miR-205-5p 1q32.2 � 4.450 4.96E-02
miR-199b-5p 9q34.12 � 2.022 4.96E-02

Abbreviations: FC¼ fold change; FDR¼ false discovery rate.
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strand, and some previous reports have indicated that the
passenger strands are degraded and do not have specific
functions. Because we found that miR-145-3p was a putative
key miRNA in mCRPC by RNA sequencing and confirmed that
this miRNA was downregulated in mCRPC clinical specimens,
we hypothesised that both miR-145-5p and miR-145-3p may be
incorporated into and function as part of the RNA-induced
silencing complex (RISC). To test this hypothesis, we performed
immunoprecipitation with antibodies targeting Ago2, which
plays a central role in the RISC. After transfection with miR-145-
5p or miR-145-3p, Ago2-bound miRNAs were isolated, and RT-
qPCR was carried out to determine whether miR-145-5p and
miR-145-3p bound to Ago2. After transfection with miR-145-5p
and immunoprecipitation by anti-Ago2 antibodies, miR-145-5p
levels were significantly higher than those of mock- or miR
control-transfected cells and those of miR-145-3p-transfected
PC3 cells (Po0.0001; Supplementary Figure 2A). Likewise, after
transfection with miR-145-3p and immunoprecipitation by anti-
Ago2 antibodies, miR-145-3p levels were significantly higher
than those of mock- or miR control-transfected cells and those of
miR-145-5p-transfected PC3 cells (Po0.0001; Supplementary
Figure 2B).

Associations between miR-145-3p expression levels and clinical
parameters in PCa. Next, we investigated the clinical significance
of miR-145-5p/3p in PCa. The biochemical recurrence (BCR)-free
survival rate was evaluated in patients with high vs low miR-145-5p
or miR-145-3p expression from data in GSE21036. Patients with
lower expression of miR-145-3p tended to have shorter BCR-free
intervals (P¼ 0.0739; Figure 1D). Furthermore, patients with
higher T stage (p T2c: n¼ 69 vs X T3a: n¼ 30) had relatively
lower expression of miR-145-3p (P¼ 0.0617; Supplementary
Figure 1B). However, patients with lower expression of miR-145-
5p did not have shorter BCR-free interval (P¼ 0.2528; Figure 1E).
Thus, these data confirmed the clinical importance of miR-145-3p.

Effects of restoring miR-145-3p expression in PCa cells. To
investigate the functional roles of miR-145-3p, we performed gain-
of-function studies using miRNA transfection in PC3 and DU145
cells. Restoration of miR-145-5p or miR-145-3p significantly
inhibited cell proliferation, migration, and invasion as compared
with that in mock- or miR control-transfected PC3 and DU145
cells (Po0.0001; Figure 1F-H). Thus, both the guide strand and
passenger strand (miR-145-3p) functioned as tumour suppressors
in PCa.
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To better understand the mechanisms associated with these
phenotypes, we then carried out genome-wide pathway analysis for
downregulated genes after transfection with miR-145-3p in PC3
cells. The most downregulated pathway was the ‘cell cycle’
pathway, followed by ‘DNA replication’. These pathways are
involved in cell proliferation, which may affect cell migration and
invasion (Supplementary Figure 3).

Identification of target genes regulated by miR-145-3p in
mCRPC. To elucidate the pathways and molecules regulated by
tumour-suppressive miR-145-3p, we performed in silico and
microarray analysis (Figure 2A). TargetScan analysis showed that
3,164 genes had putative target sites for miR-145-3p in their 30

untranslated regions (UTRs). Next, we performed genome-wide
gene expression analysis using PC3 cells to select genes down-
regulated by miR-145-3p restoration. The data were deposited in
GSE 77790. A total of 134 genes were downregulated by miR-145-
3p transfection (log2 ratioo-1.5). Finally, we investigated the
expression statuses of these genes in non-PCa, HSPC, and mCRPC
clinical specimens and examined gene expression profiles in the
GEO database (GEO accession number: GSE 35988) to evaluate
upregulated genes in mCRPC specimens. Among the 134 putative
target genes of miR-145-3p transfectants, 4 genes were significantly
upregulated in HSPC specimens compared with that in non-PCa
tissues and significantly upregulated in mCRPC specimens

compared with that in HSPC specimens (fold change 4 2,
q-valueo0.05; Figure 2B). These 4 genes were MELK, NCAPG,
BUB1, and CDK1. These data were validated in mCRPC tissues
using another dataset from the TCGA database based on z scores.
Compared with localised PCa tissue, MELK, NCAPG, BUB1, and
CDK1 were highly expressed in mCRPC tissue (q-valueo0.0001;
Figure 2C). Furthermore, we performed second validation by
another dataset (GSE70770). MELK, NCAPG, BUB1, and CDK1
genes showed progressive upregulation (non-PCaoHSP-
ComCRPC; q-valueo0.05; Figure 2D). Therefore, we selected
MELK, NCAPG, BUB1, and CDK1 as key molecules regulated by
miR-145-3p in mCRPC and subjected these genes to further
analyses.

MELK, NCAPG, BUB1, and CDK1 were negatively regulated by
miR-145-3p in PCa cells. To determine whether miR-145-3p
restoration influenced expression of target genes, we performed
RT-qPCR in PC3 and DU145 cells. MELK, NCAPG, BUB1, and
CDK1 mRNAs were significantly downregulated by miR-145-3p
transfection as compared with that in mock- or miR control-
transfected cells (Po0.005; Figure 3A–D). Furthermore, the
expression levels of miR-145-3p and MELK, NCAPG, BUB1, and
CDK1 were negatively correlated (R2¼ 0.367, Po0.0001;
R2¼ 0.336, Po0.0001; R2¼ 0.246, Po0.0001; R2¼ 0.292,
Po0.0001, respectively; Figure 3E).

TargetScan database analysis (release 7.0)
Predicted miR-145-3p target genes

3,164 genes

134 genes

Genome-wide gene expression analysis
Genes downregulated by miR-145-3p in PC3 (GSE77790)

(log 2 ratio � –1.5)

Genome-wide gene expression data (GSE35988)
Non-PCa � HSPC � mCRPC

(fold change � 2 and q-value � 0.05) (Figure 2B)
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First validation of the expression of four genes
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TCGA (�T2c and Gleason score 6 or 7) versus SU2C/PCF
(mCRPC) (q-value � 0.0001) (Figure 2C)

Second validation of the expression of four genes (GSE70770)
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CRPC (q-value � 0.05) (Figure 2D)
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Figure 2. Strategy for selecting putative target genes of miR-145-3p in mCRPC. (A) The TargetScan program and genome-wide gene expression
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Clinical significance of miR-145-3p regulation in PCa. To
investigate the clinical significance of MELK, NCAPG, BUB1, and
CDK1 in PCa, we analysed their associations with tumour stage
and lymph node stage using the TCGA-PRAD database. MELK,
NCAPG, BUB1, and CDK1 were significantly upregulated as the
tumour stage and lymph node stage increased (Figure 4A and B).

Next, to examine whether the expression levels of these genes
predicted BCR-free survival, patients were divided into two groups:
z-score 4 0 and z-score p 0 (Cerami et al, 2012; Gao et al, 2013).
Higher MELK, NCAPG, BUB1, and CDK1 expression levels were
associated with shorter BCR-free survival (Po0.0001, P¼ 0.0001,
Po0.0001, Po0.0001, respectively; Figure 4C).

Multivariate Cox proportional hazards models were used to
assess independent predictors of BCR-free survival, including
expression level of the gene (Z score 4 0 vs Z score p 0), tumour
stage (X T3a vs p T2c), lymph node stage (N0 vs N1), and age at
diagnosis (4 60 vs p 60). High MELK expression was a
significant prognostic factor in patients with PCa (hazard ratio
[HR]¼ 1.889, 95% confidence interval [CI]¼ 1.216–2.952,
P¼ 0.0047; Figure 4D). Likewise, high NCAPG (HR¼ 1.693,
95% CI¼ 1.084–2.650, P¼ 0.0207), high BUB1 (HR¼ 2.071, 95%
CI¼ 1.331–3.245, P¼ 0.0013), and high CDK1 (HR¼ 1.963, 95%
CI¼ 1.262–3.071, P¼ 0.0028) were significant prognostic factors.

Immunohistochemical staining demonstrated high expression
of MELK, NCAPG, BUB1, and CDK1 in HSPC cells (Figure 5A).
Relatively higher expression of MELK, NCAPG, BUB1, and CDK1
was observed in mCRPC compared with that in HSPC (Figure 5B).
Additionally, copy number amplifications or gains were observed

in mCRPC compared with that in HSPC for MELK, NCAPG,
BUB1, and CDK1 (Po0.0001, P¼ 0.017, P¼ 0.045, Po0.0001,
respectively; Supplementary Figure 4).

These results suggested that MELK, NCAPG, BUB1, and CDK1
were deeply involved in the pathogenesis of CRPC. A schematic
illustration shows the regulation of target genes by antitumour
miR-145-3p in CRPC cells in this study (Supplementary Figure 5).

DISCUSSION

As a fine tuner of genes, miRNAs form complicated RNA
regulatory networks with mRNAs, long noncoding RNAs
(lncRNAs), and other RNAs. Disruption of this network induces
aberrant expression of mRNAs, promoting the development of
various diseases, including cancer, metabolic diseases, and
cardiovascular diseases. This suggests that we can search for novel
mechanisms of disease by elucidating RNA networks based on key
regulatory miRNAs. Accordingly, our group has been comprehen-
sively analysing clinical specimens by genome-wide miRNA
expression analysis and in silico analysis to reveal novel molecules
that have important roles in cancer progression (Goto et al, 2015;
Goto et al, 2016a; Goto et al, 2016b).

In this study, we applied next-generation RNA sequencing to
lethal mCRPC specimens. Both miR-145-5p and miR-145-3p were
significantly downregulated in mCRPC specimens compared with
those in HSPC or non-PCa specimens. miR-145-5p is a guide
strand and has been extensively studied in various types of cancers,
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including PCa (Ibrahim et al, 2011). Specifically, miR-145-5p
functions as a post-transcriptional regulator, directly linking p53
and c-Myc expression (Sachdeva et al, 2009).

Downregulation of miR-145-5p has been shown in several types
of cancers, including PCa (Suh et al, 2011; Cui et al, 2014). The
molecular mechanisms of silencing of miR-145-5p has also been
investigated in various cancers (Cui et al, 2014). Past studies
showed that pivotal player of tumour suppressor p53 was directly
binding to p53 responsible elements in the promoter region of pre-
miR-145 and p53 increased miR-145-5p expression (Sachdeva et al,
2009). Expression and antitumour roles of miR-145-5p has
depended on activation of p53 in cancer cells (Spizzo et al, 2010;
Ren et al, 2013). Other studies demonstrated that several
transcription factors, C/EBP-1 and forkhead transcription factor
family were contributed to miR-145-5p regulation (Gan et al, 2010;
Sachdeva et al, 2012). Moreover, promoter region of pre-miR-145
has contained several CpG sites, suggesting hyper-methylation of
the promoter region caused to the silencing of pre-miR-145 (Xia
et al, 2015). In PCa cell lines (LNCaP, PC3 and DU145), expression
of miR-145-5p was elevated by treatment of 5-aza-20-deoxycytidine
(Suh et al, 2011).

In PCa, reports have demonstrated the tumour-suppressive
function of miR-145-5p in targeting GOLM1, ITPR2, AR, and
NMT3b (Kojima et al, 2014; Larne et al, 2015; Wang et al, 2015;
Xue et al, 2015). Although passenger strand miRNAs were
previously thought to be nonfunctional, our results showed that
passenger strands may have a function. RNA sequencing of
mCRPC specimens revealed downregulation of miR-145-5p and
miR-145-3p in CRPC cells, and our data indicated that miR-145-3p
was incorporated into the RISC, functioning as a tumour
suppressor in PCa cells. Our group has previously demonstrated
the importance of passenger strand miRNAs. Both miR-145-5p and
miR-145-3p regulate MTDH in lung squamous cell carcinoma and
target UHRF1 in bladder cancer (Mataki et al, 2016; Matsushita
et al, 2016). Furthermore, miR-139-5p and miR-139-3p co-
ordinately target MMP11 in bladder cancer (Yonemori et al,
2016). Other research groups have also recently reported the
importance of passenger strands (Baez-Vega et al, 2016; Simerzin
et al, 2016). The involvement of passenger strand miRNAs in the
regulation of cellular processes is a novel concept in RNA research.

In this study, by focusing on miR-145-3p, which had not been
well studied in previous reports, we found that 4 novel genes, i.e.,
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MELK, NCAPG, BUB1, and CDK1, may have clinical significance
in PCa and could be used as therapeutic targets in CRPC.

MELK upregulation has been reported in multiple types of
aggressive cancer cells, including glioblastoma and basal-like breast
cancer (Visnyei et al, 2011; Speers et al, 2016). MELK functions to
promote cancer cell growth by maintaining cancer stem cells and
resistance to radiotherapy or chemotherapy (Ganguly et al, 2015).
Additionally, recent approaches with peptide library screening
have revealed that MELK directly interacts with eukaryotic
translation initiation factor 4B (eIF4B) to regulate protein synthesis
during mitosis (Wang et al, 2016). Other reports have suggested
that MELK protein forms a complex with forkhead box M1
(FOXM1), a transcription factor that primarily regulates the cell
cycle, to induce proliferation (Kato et al, 2016). MELK is reported
to form a complex with another oncoprotein, c-Jun, to maintain
glioblastoma stem cells. The malignant transformation of normal
stem cells is accompanied by MELK overexpression (Ganguly et al,
2014). Thus, MELK is a therapeutic target for advanced refractory
cancers (clinicaltrials.gov identifier: NCT01910545).

CDK1 is a key regulator of the cell cycle and forms a complex with
cyclin A and cyclin B in G1/S- and G2/M-phase transitions (Asghar
et al, 2015). Increased CDK1 activity is a mechanism for increasing
AR expression responding to androgen deprivation in CRPC (Chen
et al, 2006). Recent high-throughput RNAi screening identified
checkpoint kinase 2 (CHK2) as a tumour suppressor in PCa; CHK2
negatively regulates CDK1, forming a signalling loop with AR (Ta
et al, 2015). Furthermore, AR-V7 interacts with CDK1 and
phosphatidylinositol-4-phosphate 5-kinase alpha to induce metastatic
growth and treatment resistance (Sarwar et al, 2016). Therefore,
CDK1 inhibitors may be promising novel CRPC therapeutics.

BUB1 and NCAPG have not been well studied in CRPC. BUB1 is
a central component of the spindle assembly checkpoint (SAC)
with budding uninhibited by benzimidazole-related 1. SAC self-
monitors chromosome segregation in prometaphase mitosis to
prevent aneuploidy (Elowe, 2011). Mutations in BUB1 have been
reported in several types of cancers, and associations with
aneuploidy have been reported (Ricke et al, 2011). Moreover, in
cancer cells, BUB1 interacts with transforming growth factor

(TGF)-b receptor I and II, mediating the TGF-b-dependent
epithelial-mesenchymal transition (EMT) (Nyati et al, 2015).
BUB1 contributes to both the cell cycle and EMT. NCAPG is a
subunit of the condensin complex, a major molecular effector of
chromosome condensation and division (Thadani et al, 2012).
Overexpression of NCAPG has been reported in pediatric high-
grade gliomas (Liang et al, 2016).

Interestingly, these 4 genes are all related to the cell cycle,
particularly mitosis. The prognostic value of cell cycle proliferation
genes in patients with PCa has been evaluated using the cell cycle
progression (CCP) score (Cuzick et al, 2011). Researchers used 31
CCP genes to calculate the CCP score, which predicted BCR-free
survival after prostatectomy. Although MELK, NCAPG, BUB1, and
CDK1 were not included in these 31 genes, the clinical significance
of cell cycle genes supports our study. Furthermore, HES6, a driver
of androgen-independent growth of PCa, enhances E2F1 tran-
scription factor (Ramos-Montoya et al, 2014), which consequently
induces cell cycle progression. Targeting cell cycle genes in CRPC
treatment is a rational option considering the clinical effects of
docetaxel, which inhibits microtubule assembly, on CRPC.
Recently, novel agents targeting the AR signalling axis have been
shown to yield survival benefits, accompanied by the emergence of
AR signalling-independent cells, including neuroendocrine PCa
cells. Under these conditions, CRPC exhibits treatment-adapted
phenotypes that allow cells to survive in the presence of heavy
chemotherapeutics under anti-AR signalling conditions. A recent
article called this condition ‘treatment-induced lineage crisis’ in
metastatic CRPC, similar to triple-negative breast cancer and
multidrug resistant bacteria in antibiotics (Roubaud et al, 2016).
Among the 4 genes identified in this study, anti-MELK treatment is
currently in phase I clinical trials. A highly potent MELK inhibitor,
OTSSP167, has been shown to significantly suppress tumour
growth in DU145 cell-derived xenografts in mice (Chung et al,
2012). Moreover, MELK upregulation was reported in high-grade
PCa and CRPC specimens (Kuner et al, 2013; Ross-Adams et al,
2015). Additionally, MELK interacts with FOXM1, and FOXM1
and centromere protein F (CENPF) are synergistic master
regulators and drivers of PCa, according to genome-wide

HSPC mCRPC (lung meta) mCRPC (bone meta)

MELK

NCAPG

BUB1

CDK1

×100 ×400 ×100 ×400 ×100 ×400

A B

Figure 5. Immunohistochemical staining of MELK, NCAPG, BUB1, and CDK1 in HSPC and mCRPC specimens. (A) Immunochemical staining of
MELK, NCAPG, BUB1, and CDK1 in HSPC specimens. (B) Immunochemical staining of MELK, NCAPG, BUB1, and CDK1 in mCRPC specimens.

Impact of miR-145-3p regulation on CRPC survival BRITISH JOURNAL OF CANCER

www.bjcancer.com | DOI:10.1038/bjc.2017.191 417

http://www.bjcancer.com


regulatory network analyses in human and mouse PCa models
(Aytes et al, 2014). OTSSP167 also inhibits BUB1 (Ji et al, 2016)
and is a promising molecule for the treatment of CRPC; thus,
further analysis of MELK inhibitors is needed.

Directly targeting cell cycle genes may have significant effects on
CRPC treatment. This approach may lead to the development of
alternative treatment paradigms. The prognostic roles and clinical
significance of MELK, NCAPG, BUB1, and CDK1, as revealed in
this study, warrant further analyses of these 4 genes. The past few
years, a large number of preclinical studies of miRNA-based
therapeutics have been reported in several cancers (Ganju et al,
2017). Among these studies, some studies have reached clinical
trials (Catela Ivkovic et al, 2017; Rupaimoole and Slack, 2017). It is
essential to identify the best miRNA suitable for miRNA-based
therapeutics for each cancer. As for miR-145, the delivery system
using disulfide linkage in polyethyleneimine-based nanoparticles to
PCa has been reported (Zhang et al, 2015). These facts suggest
promising future for miR-145-3p-based therapeutics in this disease.

CONCLUSIONS

Small RNA sequencing for lethal metastatic CRPC, genome-wide
analysis, and in silico approaches revealed novel therapeutic targets
for CRPC. This novel approach may contribute to the development
of new therapeutic strategies.
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