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Abstract: As a common malignant tumor disease, thyroid cancer lacks effective preventive and
therapeutic drugs. Thus, it is crucial to provide an effective drug selection method for thyroid cancer
patients. The connectivity map (CMAP) project provides an experimental validated strategy to
repurpose and optimize cancer drugs, the rationale behind which is to select drugs to reverse
the gene expression variations induced by cancer. However, it has a few limitations. Firstly,
CMAP was performed on cell lines, which are usually different from human tissues. Secondly,
only gene expression information was considered, while the information about gene regulations and
modules/pathways was more or less ignored. In this study, we first measured comprehensively
the perturbations of thyroid cancer on a patient including variations at gene expression level, gene
co-expression level and gene module level. After that, we provided a drug selection pipeline to
reverse the perturbations based on drug signatures derived from tissue studies. We applied the
analyses pipeline to the cancer genome atlas (TCGA) thyroid cancer data consisting of 56 normal and
500 cancer samples. As a result, we obtained 812 up-regulated and 213 down-regulated genes, whose
functions are significantly enriched in extracellular matrix and receptor localization to synapses.
In addition, a total of 33,778 significant differentiated co-expressed gene pairs were found, which
form a larger module associated with impaired immune function and low immunity. Finally, we
predicted drugs and gene perturbations that could reverse the gene expression and co-expression
changes incurred by the development of thyroid cancer through the Fisher’s exact test. Top predicted
drugs included validated drugs like baclofen, nevirapine, glucocorticoid, formaldehyde and so on.
Combining our analyses with literature mining, we inferred that the regulation of thyroid hormone
secretion might be closely related to the inhibition of the proliferation of thyroid cancer cells.

Keywords: thyroid cancer; drug redirection; differential gene; differential co-expression; co-expression
network; gene perturbation

1. Introduction

Thyroid cancer is one of the most common malignancies of endocrine organs with enormous
heterogeneity in terms of morphological features and prognosis [1]. Although most thyroid carcinomas
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tend to be biologically indolent and have a good prognosis, there are a few associated with more
aggressive clinical manifestations [2]. Thus, it is crucial to find effective interventions to slow down
or cure the cancer, especially in a personalized manner. It is known that the expression pattern of a
gene or a pathway is closely related to the status of a patient and an effective drug could convert the
abnormal gene expression in cancer patients to that of the healthy control subjects [3]. For example,
the Ras/Raf signaling mechanism plays an important role in thyroid function and many associated
genes are abnormally expressed in patients with thyroid cancer [4]. Thus, if a drug has the potential to
reverse the gene expression changes and gene regulations of cancer patients to those of the healthy
control subjects, this drug might be able to cure the cancer.

Based on this assumption, the connectivity map (CMAP) project [3] and its continuing project the
Library of Integrated Network-based Cellular Signatures (LINCS) [5] have successfully repurposed a
few useful drugs and identified several drug targets. Recently, more and more successful applications
of CMAP have been reported, such as the study of nematodes to identify compounds that mimic caloric
restriction [6–8]. However, the CMAP project was conducted on cell lines and it is known that there
are substantial differences between cell lines and tissues, which greatly reduces its ability in predicting
or repurposing effective drugs. There are also many other computational methods in predicting cancer
drugs. For example, in the Cancer Cell Line Encyclopedia (CCLE) project [9], the gene expressions of
cancer cell lines were used as features to train an Elastic-Net based drug sensitivity prediction model.
However, the model is also based on cell lines and its effectiveness on human tissues is questionable.
In addition, only single gene expression variations were modelled in CMAP and CCLE, the gene
regulation/co-expression changes or gene network variations were ignored. To this aim, Guney et al.
presented a network-based in silico drug efficacy prediction method, which maps drug targets and
disease genes into a protein-protein interaction (PPI) network and measures their reachability by the
shortest path. However, this method also does not model the network difference between cancer and
healthy samples. As a result, a method integrating drug effects on gene expressions at the tissue level
and gene network variation between cancer and healthy patients is highly demanded.

In this paper, we developed a computational pipeline to predict drug response and potential drug
target genes on thyroid cancer. Specifically, we first examined several types of perturbations incurred
by the development of thyroid cancer comparing to healthy patients, including differential gene
expression and differential gene co-expression. After that, we applied weighted gene co-expression
network analysis (WGCNA) to construct gene co-expression network for normal samples and cancer
samples respectively [10]. WGCNA clusters genes into subnetworks (or modules) by measuring
gene-gene expression correlations and their topological overlaps, which are often enriched on specific
biological functions. We then searched for drugs and genes whose usage or interference has the
potential to reverse the perturbations imposed by thyroid cancer. To achieve this goal, we adopted a
pharmacogenomics approach similar to CMAP [3]. Instead of using drug/gene signatures from cell
lines, we took the advantage of the signatures derived from tissues [11]. Finally, by combining the top
predicted drugs and genes, we inferred potential biological mechanism underlying the inhibition of
thyroid cancer cell proliferation.

2. Result

2.1. Differential Gene Expressions and Their Functions Between Thyroid Carcinoma and Normal Samples

We downloaded the raw count data of 56 normal and 500 thyroid cancer patients from
TCGA (https://portal.gdc.cancer.gov/projects/TCGA-THCA) on 21 December 2016. Similar to the
Genotype-Tissue Expression (GTEx) project [12], we screened the gene to have at least 0.1 fragments
per kilobase of transcript per million fragments mapped (fpkm) in 2 or more individuals and then
quantile normalized the gene. 16,575 mRNAs passed the screening and were kept for further
analyses. Through differential gene analysis by the software package edgeR [13], we obtained
812 up-regulated differential mRNAs and 213 down-regulated ones. We then performed function
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analysis of the differentially expressed genes (DEGs) by the David tools (version 6.8) (DAVID;
http://david.abcc.ncifcrf.gov/) [14,15]. The up-regulated DEGs are mainly enriched in extracellular
matrix (GO:0030198, false discovery rate (FDR) = 7.76 × 10−7) and extracellular matrix breakdown
(ECM) in terms of biological processes (GO: 0030574, FDR = 2.85 × 10−5) and cell adhesion (GO:
0007155, FDR = 4.30 × 10−7). In pathway enrichment analysis, the up-regulated DEGs were
significantly enriched in neuroactive ligand-receptor interactions (hsa04080, FDR = 7.05 × 10−5).

2.2. Analysis of Differentially Co-Expressed Gene Pairs between Normal and Diseased Samples

Besides perturbing singe gene expressions, thyroid cancer might also change gene co-expressions.
We used an R-package differential gene correlation analysis (DGCA) to identify gene co-expression
variations [16]. A total of 33,778 significant gene co-expressions (Dataset S1) were obtained at empirical
p-value less than or equal to 1.0 × 10−20, which involves 2435 unique genes (Dataset S2). We performed
function enrichment analysis on Gene Ontology (GO) (see Figure 1A) and Kyoto Encyclopedia
Genes and Genomics (KEGG) pathway (see Figure 1B) by the software enrichGO and enrichKEGG.
As can be seen from Figure 1A, the 2435 genes were most significantly enriched in GO terms like the
“immune response” (GO: 0006955, FDR = 3.34 × 10−25) and “inflammatory response” (GO: 0006954,
FDR = 6.71 × 10−22). Similarly, the top enriched KEGG pathway is “primary immunodeficiency”
(hsa05340, FDR = 7.26 × 10−9). Our results confirmed the well-known relationship between cancer
and immune system and inflammatory responses [17].

In addition, we listed in Table 1 the top 10 most significant differential gene co-expressions
between normal and cancer samples inferred by DGCA. As can be seen from Table 1 and Dataset
S1, most differential co-expressed genes are significantly correlated in normal samples but become
less significantly correlated or loose correlation in cancer samples. Specifically, there are 7896 gene
pairs significantly correlated in normal samples but have non-significant correlation in cancer samples.
In contrast, only 1170 gene pairs show a significant correlation in the diseased sample but no longer
have a strong correlation in normal tissues. There are 244 unique genes involved in the 1170 gene pairs
and these genes are significantly enriched in muscle activity, such as “myosin slip” (GO: 0030049),
FDR = 1.48 × 10−6), “muscle contraction” (GO: 0006936, FDR = 1.95 × 10−7) and “muscle node tissue”
(GO: 0045214, FDR = 1.01 × 10−4).

For a better view, we plotted the 33,778 significant differential co-expressed gene pairs in Figure 2,
in which each node denotes a gene pair, the X-axis denotes their correlation in normal samples and
the Y-axis denotes their correlation in cancer samples. It is clear that most nodes are located in
the first, second and fourth quadrants. For example, there are 1928 co-expressed gene pairs in the
second quadrant, which were negatively correlated in normal samples and positively correlated in
cancer samples. The 490 unique genes involved in these gene pairs are significantly enriched in
“negative regulation of endopeptidase activity” (GO: 0010951, FDR = 8.37 × 10−4), “pre/post mode
specification” (GO: 0009952, FDR = 0.01) and “fibrinolysis” (GO: 0044730, FDR = 0.02). Similarly, there
are 5090 co-expressed gene pairs in the fourth quadrant, which are positively correlated in normal
samples and negatively correlated in diseased samples. The corresponding 1468 genes are significantly
enriched in “immune response” (GO: 0006955, FDR = 1.92 × 10−30), “adapted immune response” (GO:
0002250, FDR = 1.34 × 10−18), “inflammatory response “(GO: 0006954, FDR = 9.31 × 10−17) and other
immune-related functions. The pathway analysis suggests that these genes are significantly enriched in
“cell adhesion molecule (CAM)” (hsa04514, FDR = 2.71× 10−10), “the same species Allograft rejection
(hsa05330, FDR = 3.90 × 10−9) and “primary immunodeficiency” (hsa05340, FDR = 6.23 × 10−9).
The results suggest that a large network rewiring process has occurred in the normal sample module
and many “new” co-expression patterns have emerged, forming a larger module in the diseased
sample. The function analysis suggests that these changes may be associated with impaired immune
function and low immunity during thyroid cancer.

http://david.abcc.ncifcrf.gov/
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Figure 1. GO and KEGG enrichment of the 2435 unique genes involving in 33,778 significant gene co-
expressions identified by DGCA. (A) The significantly enriched biological process (GO_BP) with FDR 
less than or equal to 0.05, where the length of each bar indicates −log10 (FDR) of the corresponding 
GO BPs; (B) KEGG pathway analysis with the row denoting fold change and the size of the dots 
denoting −log10 (FDR) of the corresponding pathways. 

  

Figure 1. GO and KEGG enrichment of the 2435 unique genes involving in 33,778 significant gene
co-expressions identified by DGCA. (A) The significantly enriched biological process (GO_BP) with FDR
less than or equal to 0.05, where the length of each bar indicates −log10 (FDR) of the corresponding GO
BPs; (B) KEGG pathway analysis with the row denoting fold change and the size of the dots denoting
−log10 (FDR) of the corresponding pathways.
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Table 1. Summary of the top 10 significant differential gene co-expressions identified by DGCA.

Gene1_Sym. Gene2_Sym. Normal_cor Normal_pVal Tumor_cor Tumor_pVal pValDiff

NOTUM PLD5 −0.388 0.003 0.992 0 1.40 × 10−102

NKAIN1 MATN1 −0.242 0.068 0.999 0 3.75 × 10−92

MPPED1 NKAIN1 −0.196 0.141 0.998 0 3.62 × 10−89

SOX14 PRAP1 −0.186 0.162 0.993 0 1.44 × 10−88

SOX14 MATN1 −0.171 0.200 0.994 0 1.33 × 10−87

SLC13A5 IHH −0.167 0.210 0.995 0 2.32 × 10−87

PRAP1 IHH −0.163 0.220 1.000 0 3.82 × 10−87

DHRS2 DPYS −0.161 0.228 0.998 0 5.51 × 10−87

GLIS1 KCNT1 −0.157 0.239 0.997 0 9.36 × 10−87

KLHL1 SOHLH1 −0.153 0.250 0.990 0 3.15 × 10−87

It is of note that Figure 2 exhibited non-random patterns as a lot of genes have correlations close to
1 in healthy or cancer samples. These might be caused by low expressed genes (with expression level
being 0 for most samples), which are prone to technical issues or limitation of sequencing techniques.
As a consequence, we might have some false-positive differential co-expressions. Though we have
filtered out low expressed genes similar to the GTEx study to reduce the false-positives, it might still
not be enough. With the increasing of the sensitivity in RNA sequencing, this issue will be relieved but
will not be totally solved. As can be seen, the differential co-expressions and modules we identified
have clear biological functions, which might indicate that these analyses still reveal at least partial
biological processes involved in the development of thyroid cancer.
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Figure 2. The correlation distribution of differentially co-expressed gene pairs. The X-axis represents the
correlation coefficient of the differential co-expressed gene pairs in the healthy samples and the Y-axis
represents the correlation coefficient of the differential co-expressed gene pairs in the tumor samples.

We used the weighted gene co-expression network (WGCNA) to construct co-expression network
and network modules of healthy and diseased samples respectively. Specifically, we obtained
73 network modules each consisting of highly correlated genes for healthy samples and 53 modules
for cancer samples (see Figure S1 for the modules and their relationships). We also listed in Table 2 the
detailed information of a few top modules (according to the number of genes in the module). As can
be seen, the largest module in the cancer network is the “turquoise” module (hereinafter referred to as
the turquoisetumor), which consists of 4346 genes. This module is significantly enriched in “transcripts,
DNA templates” (GO: 0006351, FDR = 1.31 × 10−57; GO: 0006355, FDR = 1.42 × 10−42), “protein
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ubiquitination” (GO: 0016567, FDR = 6.01 × 10−10), “Gorky Organization” (GO: 0007030, FDR = 3.01 ×
10−7) and so on. The second largest module is the “brown” module (referred to as browntumor), which
consists of 2550 genes. Interestingly, the module is also significantly enriched in “transcripts, DNA
templates” (GO: 0006355, FDR = 9.43 × 10−6; GO: 0006351, FDR = 4.34 × 10−4). Other large modules in
the cancer network are enriched in “mitochondrial translation”, “immune response” and “regulatory
regulation of ubiquitin-protein ligase activity involves regulation of mitotic cell cycle transitions”.
In contrast, the largest module in the healthy network is the “brown” module (i.e., brownnormal).
The module contains 4469 genes, which are mainly enriched in the “inflammatory response” (GO:
0006954, FDR = 3.98 × 10−24). Other modules such as the “blue” module (containing 4240 genes) are
mainly enriched in “regulation of GTPase activity” (GO: 0043087, FDR = 7.96 × 10−5), the “turquoise”
module (containing 3850 genes) mainly enriched in the “translation” (GO: 0006412, FDR = 1.92 × 10−51)
and the “black” module (containing 3615 genes) mainly enriched in “RNA splicing” (GO: 0008380,
FDR = 3.85 × 10−5).

Table 2. The summary of gene number and the main function of the top 5 co-expression models in
normal and cancer samples.

Module Gene
No

Function
DEGs_overlap

Term FDR

Normal

Brown 4469 GO:0006954~inflammatory response 3.98 × 10−24 237
Blue 4240 GO:0043087~regulation of GTPase activity 7.96 × 10−5 102

Turquoise 3850 GO:0006412~translation 1.92 × 10−51 50
Black 3615 GO:0008380~RNA splicing 3.85 × 10−5 64
Pink 1190 GO:0006355~regulation of transcription, DNA-templated 2.97 × 10−106 4

Tumor

Turquoise 4346 GO:0006351~transcription, DNA-templated 1.31 × 10−57 29
Brown 2550 GO:0006355~regulation of transcription, DNA-templated 9.43 × 10−6 29
Blue 2458 GO:0070125~mitochondrial translational elongation 2.75 × 10−9 30

Thistle2 1973 GO:0006955~immune response 1.78 × 10−61 30

In order to map and compare the global network structure between the normal samples and the
diseased samples, we studied the gene overlap among the modules. It was found that the module
bluenormal and the turquoisetumor are highly overlapped and share 2256 genes. These genes are also
mainly enriched in “transcription, DNA template” (GO: 0006351, FDR = 6.44 × 10−8) and “protein
transport” (GO: 0015031, FDR = 1.26 × 10−5).

2.3. Prioritize Drug and Gene Targets Using Online Pharmacogenomics Methods

We next prioritized drugs and drug targets according to their potential to reverse the perturbations
imposed by cancer. Specifically, we first queried the CRowd Extracted Expression of Differential
Signatures (CREEDS) gene and drug perturbation database [11] using the 812 up-regulated genes and
213 down-regulated genes respectively. The CREEDS database consists of a list of 4295 single drug
perturbations and 8620 single gene perturbations obtained using gene expression data collected from
GEO. In particular, the CREEDS database is used herein to identify drugs or genetic perturbations
that may reverse disease status (i.e., upregulate those inhibiting disease-associated gene expression
or downregulate those elevating disease-associated gene expression). The ranking of the drug and
gene perturbations is based on the p-value of the Fisher’s exact test (see Section 4). We listed the top 10
predicted drugs in Table 3 (left panel). As can be seen, the most commonly predicted drug is baclofen.
Though there is no direct indication that baclofen can treat thyroid cancer patients, a couple of studies
suggest that baclofen has effects on thyroid hormone levels [18,19]. It can be seen that the top predicted
drug (according to p-value) is glucocorticoid (GC). GC inhibits the expression of substantially all
IFN-γ regulated genes, including IFN-γ receptor and STAT-1 and will also block STAT-1 activation
and nuclear translocation. In addition, GC has an anti-apoptotic effect in keratinocytes by inducing
anti-apoptosis and inhibiting the expression of pro-apoptotic genes. Moreover, GC has a profound
effect on wound healing by inhibiting cell motility and expression of pro-angiogenic factor VEGF.
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Table 3. Top 10 drugs predicted by using differential genes and differential co-expressions

1025 Differential Genes 219 Differential Genes Involved in Differential Co-Expressions

Drug ID Drug Name Drug ID Drug Name

drug:P4898 glucocorticoid|dexamethasone drug:P5684 cidofovir(2−)
drug:P4171 ethanol|6alpha-methylprednisolone drug:P5683 cidofovir(2−)
drug:P5683 cidofovir(2−) drug:P4396 baclofen
drug:P4401 baclofen drug:P4401 baclofen
drug:P4409 baclofen drug:P4391 baclofen
drug:P4562 formaldehyde drug:P4397 baclofen
drug:P4566 formaldehyde drug:P3977 dimethyl sulfide|dimethyl sulfoxide|solvent
drug:P2096 Erlotinib|dimethyl sulfoxide drug:P4392 baclofen
drug:P5684 cidofovir(2−) drug:P3986 dimethyl sulfide|dimethyl sulfoxide|solvent
drug:P4563 formaldehyde drug:P4438 oxygen atom|2-butoxyethanol

Though we predicted meaningful drugs by solely using differential genes, theoretically a better
drug could reverse other perturbations than gene expression variations (e.g., gene co-expression
changes) incurred by thyroid cancer. To this goal, we retrieved the 1958 genes involved in the
significant differential gene co-expressions in the second and fourth quadrants in Figure 2, which
change the sign of correlation from healthy people to cancer patients. By overlapping the 1958 genes
with the 1025 differential genes, we obtained 180 up-regulated genes and 39 down-regulated genes,
which were also used to query the CREEDS database. The top 10 predicted drugs were listed in Table 3
(right panel). Interestingly, drugs like baclofen and cidofovir were also ranking in the top, indicating
their ability in both reversing single gene perturbation and differential co-expressions. We further
predicted drugs according to the 806 differential genes not involving in differential gene co-expressions.
The top 20 drugs are listed in the end of this letter. We found that the predicted drugs were all natural
chemical small molecules, however they seem not directly relate to thyroid cancer. In contrast, the
drug predicted by the 219 differential genes involving in differential gene co-expressions like baclofen
and cidofovir are FDA-approved drugs closely related to thyroid cancer. It is clear that the drugs
predicted by differential genes involving in differentially co-expressions are more accurate. Studies
have found that Cidofovir has potential for the treatment of follicular thyroid cancer [20]. To some
extent, inhaled Cidofovir reduces the burden on patients with thyroid cancer [21]. As a result, we
could use network information to further refine drugs inferred from single genes.

3. Discussion

In this study, we first inferred differential genes between thyroid cancer patients and healthy
control subjects. To cross-validate the genes we obtained, we compared them with thyroid cancer
associated genes from a few previous studies. For example, Giordano et al. [22] inferred thyroid
cancer associated point mutations in BRAF and RAS genes, which might be driven by the fusion
of RET, NTRK1 and ALK. Interestingly, NTRK1 and ALK were also inferred to be up-regulated
differentially expressed genes in our study, which increase the confidence of our differential genes.
we compared the enriched functions of the 219 differential genes involving also in differential
co-expressions and those of the 806 differential genes not involving in differential co-expressions.
In summary, the 219 differential genes were enriched in GO functions like “cellular protein metabolic”
(GO: 0006953) and “acute-phase response” (GO: 0006953) and KEGG pathways like “Primary
immunodeficiency” (hsa05340). In contrast, the 806 differential genes not involving in differential
co-expressions were enriched in GO terms like “cell adhesion” (GO: 0007155) and “extracellular matrix
organization” (GO: 0030198) and KEGG pathways like “Neuroactive ligand-receptor interaction”
(hsa04080: Neuroactive). As expected, differential genes involving or not involving in differential
co-expressions have different functions.

By querying the CREEDS database using differentially expressed genes and those involved
in differential co-expressions, we prioritized a few drugs for thyroid cancer, such as baclofen,
cidofovir, ethanol, glucocorticoid, formaldehyde and 6alpha-methylprednisolone. Previous studies
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have provided some evidences that these drugs might be indeed related to thyroid cancer and thyroid
hormone levels. For example, Baclofen inhibits the release of thyroid stimulating hormone [18].
In addition, the ultrasound-guided ethanol injection (UPEI) treatment is a simple and suitable
tool for the treatment of papillary thyroid carcinoma (PTC) cervical lymph-node metastases [23].
Glucocorticoid-induced leucine zippers regulate the proliferation of thyroid cancer cells, which may
have potential for cancer treatment [24]. function of Formaldehyde on thyroid may due to a block at
the source of thyroid hormone [25]. Finally, methylprednisolone pulse therapy is an effective treatment
for thyroid-associated ophthalmopathy with fewer adverse events [26]. It is of note that the drugs
provided in the CREEDS database include some molecular compounds and some are still in the early
stage of research on cell lines. Further efforts should be put to improve the accuracy of genes associated
with drug and gene perturbation. Link prediction paradigms [27] have been applied in the prediction
of disease genes [28,29], circular RNA [30], miRNAs [31,32]. Also, computational intelligence [33] such
as neural networks [34–36] can be applied in the cancer drug field.

It is of note that we adopted a few standard data analysis including edgeR to infer differential
genes, DGCA to infer differential co-expressions and WGCNA for network analysis. However, these
packages may have their own limitations and the results might slide change if we used other packages
for similar purpose. For example, popular differential gene calling software includes limma, edgeR
and DESeq2. Limma is mainly used for microarray data and both DESeq2 and edgeR assume the reads
follow a negative binomial distribution. DESeq2 tends to call more differential genes than limma and
edgeR. Previous studies suggest that the 3 softwares are highly consistent in TCGA studies and thus
we believe the main conclusions in this paper maybe independent of the choice of the differential gene
calling method.

Finally, we only focused on mRNAs in this study. However, non-coding RNAs also play important
roles in the development of thyroid cancer. For example, miRNA-146b [37], miRNA-211 [38] and
miRNA-222 [39] are expressed 10 times higher in cancer tissues than in healthy tissues. In addition, the
long non-coding RNAs (lncRNAs) associated with thyroid cancer include BANCR [40], FTCSC3 [41]
and Ak023948 [42]. However, it is out of the scope of this study.

4. Materials and Methods

4.1. Gene Co-Expression Network Construction of Normal and Diseased Samples

RNA expression profile data for normal and diseased samples were derived from previous
studies [43], which were downloaded from TCGA. In this paper, edgeR was selected to identify the
differential expression of RNA from the perspective of universality and validity [13]. The expression
values of each gene in the normal sample and the diseased sample were separately quantized to form a
standard normal distribution. Then, according to the expression data of normal and diseased samples,
the samples are hierarchically clustered, the sample outliers are removed and weighted correlation
network analysis (WGCNA) is performed. Finally, the normal sample and the diseased sample network
module were constructed by retaining 56 samples from the normal group and 500 samples from the
diseased group.

4.2. Differential Connection Analysis

DGCA is an R-package used to determine the differential correlation between gene pairs under
various conditions [16]. It has many similar features to existing methods of identifying differences.
For example, similar to DiffCorr, DGCA converts the correlation coefficient to z-scores and uses the
difference in z-scores to calculate the p-value for the differential correlation between genes; however,
DGCA divides the differential related gene pairs into nine possible categories. We applied DGCA for
differential connectivity analysis. DGCA calculates and analyzes the differential correlation between
gene pairs between normal and diseased samples. If its empirical p-value (calculated by DGCA) is
less than or equal to 1 × 10−20, the gene pair is said to have differential connectivity between the two
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classes of samples. Finally, the degree of enrichment of differential linked gene pairs in each module
was evaluated by displacement analysis.

4.3. Drugs and Disturbing Gene Labels

4295 drugs and 8620 gene-disturbing tags were collected from the CREEDS database [11].
Enrichment analysis of the perturbed labels of differential genes was performed by Fisher’s exact test.
If the drug-induced down-regulated gene overlaps significantly with the up-regulated differential gene,
or if the drug-induced up-regulated gene overlaps significantly with the down-regulated differential
gene, the drug ranks higher. Single gene perturbations are ranked in the same way.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/2/
263/s1.
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