Dab1 (*Disable Homolog-1*) Reelin Adaptor Protein Is Overexpressed in the Olfactory Bulb at Early Postnatal Stages Eduardo Martín-López, Albert Blanchart^x, Juan A. De Carlos, Laura López-Mascaraque* Department of Molecular, Cellular, and Developmental Neurobiology. Instituto Cajal-CSIC, Madrid, Spain #### **Abstract** Dab1 mediates reelin signalling and plays critical roles in early brain development such as the stereotypical positioning of neurons in the brain. The olfactory bulb undergoes a prominent layering reorganization, but shows not apparent differences between wild type and *reeler* in the layer organization. Therefore, an accurate regional and cellular simultaneous analysis of these molecules becomes essential to clarify the role played by Dab1 upon Reelin effect. The present study reveals a strong and consistent Dab1 mRNA and protein expressions, throughout the olfactory bulb layers in both wild type and *reeler* mice. In addition, noteworthy is the pattern of Dab1 location within cell nuclei in both strains. Furthermore, a temporal increment of Dab1 expression levels is detected from P0 to P15 in both strains, being the protein quantity higher in *reeler* than in wild type mice. Altogether, our results revealed that Reln acts directly from projection neurons via the production of different Reln fragments. Changes in the pattern of Dab1 expression could reflect an alternative Reln function in postnatal and adult stages, besides a possible regulation of Dab1 by other molecules distinct to Reln. Citation: Martín-López E, Blanchart A, De Carlos JA, López-Mascaraque L (2011) Dab1 (Disable Homolog-1) Reelin Adaptor Protein Is Overexpressed in the Olfactory Bulb at Early Postnatal Stages. PLoS ONE 6(10): e26673. doi:10.1371/journal.pone.0026673 Editor: Ramin Homayouni, University of Memphis, United States of America Received July 28, 2011; Accepted September 30, 2011; Published October 25, 2011 **Copyright:** © 2011 Martin-Lopez et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was sponsored by Research grant BFU2010-15564 from the Spanish Ministerio de Ciencia e Innovacion. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing Interests: The authors have declared that no competing interests exist. - ¤ Current address: Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden - * E-mail: mascaraque@cajal.csic.es ## Introduction Reelin (Reln) is an extracellular glycoprotein secreted by different neuron populations such as Cajal-Retzius cells, granule cells in the cerebellum and mitral and periglomerular cells in the olfactory bulb (OB) [1–4]. The role of this molecule involves different processes during development and maturation of CNS as layering [1,5–7], detachment of neuroblasts [8], differentiation of radial cells [9], neurogenesis and gliogenesis processes [10], signaling [11] and dendritic spines development [12]. All these processes required from Reln to bind cell-surface receptors: ApoEr2, VLDL, and $\alpha 3\beta 1$ [13–16], and the activation of its intracellular adaptor protein $Disable\ homolog-1\ (Dab1)\ [17–19].$ Thus, Reln modulates neuronal cell positioning via Dab1 activation in both developing and mature synaptic networks. At earlier embryonic stages, Reln and Dab1 mRNA become to be expressed in the forebrain [3,19], being the Dab1 mRNA regionally detected underneath cortical Cajal-Retzius cells [18,19]. In the OB, Reln protein is detected in deeper layers and from postnatal day 5 its expression is restricted to mitral and periglomerular cells [3,11,20]. Thus, although the distribution and relationship of Reln with its intracellular adaptor Dab1 has been fully addressed [3,17,19–22], the relationship between the absence of Reln (reeler mice) and the presence of Dab1 is currently unknown . There is ample evidence on the layering alterations in the reeler OB [8,23], but the precise localization and changes of Dab1 protein, within the synaptic circuits of the OB, requires further investigation. Thus, we analyzed Dab1 mRNA and protein expression patterns during the early postnatal development of the OB comparing wild type (wt) with reeler mice. Moreover, using different glial and neuronal markers we characterized the molecular phenotype of Dab1 expressing cells. While immunohistochemical data revealed no differences in Dab1 distribution throughout the OB layers, western blot measurements showed differences between the two strains. Remarkably is the unexpected Dab1 expression in cell nuclei in the OB, suggesting alternative functions of Dab1 protein. #### **Materials and Methods** #### **Animals** Wild type C57 (wt) and Reln mutant (reeler) mice were obtained from the Cajal Institute mouse breeding facility. All procedures followed the guidelines for animal care of the European Community Council (86/609/CEE) and were approved by the Bioethical Committee at the Spanish National Research Council (CSIC). Animals were deeply anesthetized by hypothermia (P0 and P3) or with i.p. equithesin at lethal dose (P7 and P15) and then transcardially perfused with different solutions according to the experiment. Reeler mice were genotyped by PCR. ## Western blot Anesthetized mice were transcardially perfused with saline, OB were dissected, stripped of meninges and homogenized using a Table 1. List of antibodies and cell types labelled. | Primary Antibody | Clone | Product Company | Dilution | Antigen | |------------------|------------|-----------------------|-----------|-------------------------------------------------------------------------| | Aconitase | Polyclonal | Sigma-Aldrich | 1:1000 | Aconitate-hydratase present in cell mitochondrion | | β-Tubulin | 5G8 | Promega | 1:100.000 | Recognize the βIII tubulin protein on neurons | | Calbindin (CB) | 300 | Swant | 1:5000 | Localizes D-28k CB which occur in a subset of neurons | | Dab1 | Polyclonal | Sigma-Aldrich (D1569) | 1:1000 | | | Dab1 | Polyclonal | Chemicon (AB5840) | 1:1000 | | | DCX | Polyclonal | Cell Signaling | 1:1000 | Doublecortin highly expressed in neuronal cells of fetal brain | | GAP43 | Polyclonal | Chemicon | 1:1000 | Growth associated protein 43 highly expressed in neuronal growth cones | | GFAP | GA5 | Chemicon | 1:1000 | Glial fibrillary acidic protein expressed in astrocytes | | GFAP | Polyclonal | Dako | 1:1000 | Glial fibrillary acidic protein expressed in astrocytes | | Histone H1/H5 | 3h9 | Upstate | 1:2000 | Linker histone inside of nucleosome structure of the chromosomal fibers | | Map2a,b | AP20 | Chemicon | 1:1000 | Microtubule associated protein-2 expressed in mature neurons | | NeuN | A60 | Chemicon | 1:1000 | Neuronal nuclei protein | | Nucleoporin P62 | 53 | BD Biosciences | 1:10.000 | A type of nucleoporin of the nuclear pore complex | | Parvalbumin (PV) | PARV-19 | Sigma-Aldrich | 1:1000 | Calcium-binding albumin protein present in GABAergic neurons | | RC2 | RC2 | Hybridoma-Bank | 1:500 | A 295 kDa intermediate filament protein present in radial glial cells | | Reelin | G10 | Chemicon | 1:1000 | Detects reelin expressed in a subset of neurons | | RIP | NS-1 | Chemicon | 1:1000 | Detects CNPase in oligodendrocytes and myelin sheats | | TH | LNC1 | Chemicon | 1:1000 | Detects tyrosine hydroxylase enzyme expressed by dopaminergic neurons | doi:10.1371/journal.pone.0026673.t001 teflon-glass homogenizer (Wheaton Science Products, Millville, USA) in a buffer containing 250 mM sucrose (Merck, Darmstad, DE), 50 mM TrisCl (Roche, Mannheim, DE), 5 mM MgCl $_2$ (Panreac, Barcelona, ES), 1 mM 1,4-Dithio-DL-threitol (DTT; Fluka, Steinheimm, DE), 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma-Aldrich, Steinheimm, DE), 25 µg/ml spermidin (Sigma-Aldrich Co, St. Louis, MO, USA), 1 µg/ml aprotinin (Sigma-Aldrich Co) and 1 µg/ml leupeptin (Sigma-Aldrich Co). Then, tissue was centrifuged (800 g, 15 min) to obtain the crude cytoplasmic fraction (CF) in the supernatant and the nuclear fraction (NF) in the pellet. NF was resuspended in homogenization buffer and centrifuged 700 g to obtain the crude NF. CF and NF protein concentrations were measured by Bradford method using a dye reagent for protein assay (BIO-RAD Laboratories GmbH, München, DE) and then, adjusted at the same quantity with 5X loading buffer (β -mercaptoethanol containing Laemmli buffer). **Figure 1. Pattern of Dab1 mRNA location in the postnatal olfactory bulb.** Dab1 transcripts are shown in *wt* (a, c, e, g) and *reeler* (b, d, f, h) mice at P0 (a,b), P3, (c, d), P7 (e, f) and P15 (g, h). Transcripts are mainly detected in granular cells (black stars in GcL), mitral cells (white arrows in MCL) and several periglomerular cell populations and intra-glomeruli processes (black arrows in GL). No differences are observed between *wt* and *reeler* mice. Note the high presence of Dab1 mRNA in the rostral migratory stream (RMS) cells. Scale bar: 1 mm. doi:10.1371/journal.pone.0026673.g001 **Figure 2. Dab1 protein expression in the postnatal olfactory bulb.** Protein expression in wild type (a, c, e, g) and *reeler* (b, d, f, h) mice at P0 (a, b), P3, (c, d), P7 (e, f) and P15 (g, h). Dab1 immunostaining is strongly localized in cell processes of the GL, EPL, and IPL. A dotted pattern is evident in GcL. Mitral and some periglomerular cells are easily identified by a characteristic nuclear Dab1 labeling. Nuclei labeling in periglomerular cells is evident from P3. No marked differences are observed between *wt* and *reeler* at these ages. Nuclei are counterstained with Hoechst (blue). Images represent sagittal sections of OB. Scale bars a-h: 100 μm; inset images: 1 mm. doi:10.1371/journal.pone.0026673.q002 Then, $24 \,\mu g$ of protein were loaded per well in a 7.5% SDS-polyacrylamide gel using a Mini-PROTEAN electrophoresis system (BIO-RAD Laboratories GmbH). Molecular weights (MW) were determined with precision plus protein dual color standards (BIO-RAD Laboratories GmbH). Proteins were transferred to $0.22 \,\mu m$ Protran mitrocellulose membranes (What- man, GE Healthcare) for immunoblotting. Membranes were incubated with phosphate buffered saline (PBS) supplemented with 2% bovine serum albumin (BSA, Sigma-Aldrich Co) to block unspecific binding sites, and overnight incubated at 4°C with specific primary antibodies diluted in PBS-2% BSA (see Table 1). Antibody binding was detected using goat anti-mouse IgG and **Figure 3. Detection of Dab1 protein within cell nuclei.** Labeling of isolated nuclei and tissue sections of the OB in wild type (a, c, e, g, i, k, m, o) and *reeler* (b, d, f, h, j, l, n, p) at P0 (a, b, e, f), P3 (c, d, g, h), P7 (i, j, m, n) and P15 (k, l, o, p). Labeling shows a green dotted pattern in nuclei from both isolated (a–d, i–l) and *in vivo* sections (e–h, m–p). Nuclei are counterstained with Hoechst (blue). *In vivo* images are single confocal sections from MCL (mitral cells layer). Scales bars: 10 μm in e–h, m–p; 5 μm in a–d, i–l. doi:10.1371/journal.pone.0026673.q003 **Figure 4. Relative levels of both Reln and Dab1 proteins by western blot in the olfactory bulb.** (a) Reln and Dab1 protein bands identified in cytoplasm (CF) and nuclear (NF) fractions of *wt* and *reeler* mice. Identities of protein bands are indicated. Reln is absent in *reeler*. Dab1 quantities are different in CF and NF identified by distinct band intensities. (b) Amount of Dab1 compared between *wt* and *reeler* animals in both subcellular compartments. (c) Comparison of relative levels of Dab1 in CF and NF of wt and reeler mice. CF amount of Dab1 is statistically higher in wt at P15, while in reeler the levels are higher at P7 and P15. In NF, Dab1 levels are statistically higher exclusively at P15. (d) Comparison of Dab1 quantities between wt and reeler animals. Dab1 reeler content is significantly higher in CF at all studied ages. In NF this difference is restricted to P15. (* p<0.05; ** p<0.01; *** p<0.001; N=3) doi:10.1371/journal.pone.0026673.g004 goat anti-rabbit IgG peroxidase conjugate antibodies (Jackson Immunoresearch, West Grove, PA), diluted 1:10.000 in PBS for 2 h at room temperature (RT). Bands were visualized using ECL Plus western blotting detection reagents (Amersham GE Healthcare) and exposed to X-ray films (Amersham GE Healthcare). Binding of antibodies was stripped from membranes by Restore PLUS Western Blot Stripping Buffer (Thermo Scientific, Rockford, US). Protein levels were quantified by densitometry of bands, for which X-ray films were digitalized using a GS800 Densitometer (BIO-RAD Laboratories GmbH). OD levels for each sample were subtracted to the background and then Dab1 levels were normalized against load control proteins, β-tubulin and P62 for cytoplasm and nuclei Dab1 levels respectively. Statistical differences between Dab1 OD intensities (n = 3 for each strain and age) were assured applying a One-way and a Factorial ANOVAs respectively, followed by a post-hoc Newman-Keuls test. ## Isolated OB nuclei staining A portion of the nuclei suspension (see above) was used for intranuclear staining with different markers (Table 1). Nuclei were centrifuged at 800 g and then resuspended in ice-cool 4% paraformaldehyde (PFA) to fix at RT during 15 min. Then, nuclei were washed twice with PBS +0.1% TritonX100 (PBST) and 1 h incubated with rabbit anti-Dab1 at RT. Nuclei were washed twice with PBST and incubated 1 h with the specific secondary antibody Alexa 488 conjugated goat anti-rabbit IgG (Molecular Probes-Invitrogen, Leiden, NL). Nuclei were counterstained with Hoechst (1 μ g/ml, Sigma-Aldrich Co). Staining was visualized using a confocal microscope TS5 (Leica). ## In situ hybridization Wt and reeler mice (n = 3 for each age and strain) were transcardially perfused with 1 ml/g of ice-cool 4% PFA in 0.1 M diethyl-pyrocarbonate (Sigma-Aldrich Co.) phosphate buffer treated (DEPC-PB). Then, OB were removed and postfixed overnight, cryoprotected in 30% sucrose in DEPC-PB and then sectioned 20 μ m thick at the sagittal plane, using a TC1900 cryostat (Leica). In situ hybridization (ISH) was performed using an InsituPro VS device (Intavis Bioanalytical Instruments, AG) with the following protocol: sections were postfixed 10 min at RT with 4% PFA-DEPC, rinsed with PBS, digested 5 min at RT with 1 µg/ml proteinase K (Sigma-Aldrich Co.), fixed again 5 min and acetylated at RT for 10 min. After PBST permeabilization for 30 min, sections were pre-hybridized for 2 h with hybridization solution (1X Denharts, 50% formamide, 250 µg/ml baker yeast RNA, 500 µg/ml herring sperm DNA in 0.2X saline sodium citrate buffer (SSC) at RT. Dab1 probes were hybridized in a hybridization solution containing 350 ng/ml digoxigenin (DIG)-Dab1 RNA probe (preheated to 80°C for 5 min and iced) overnight at 72°C. Unspecified binding sites were blocked for 1 h in 10% NGS (Millipore) supplemented Tris buffered saline (TBS) and then incubated with alkaline peroxidase anti-DIG primary antibody (Roche, Mannheim, DE) at RT overnight. Antibody binding was detected using BM Purple AP substrate precipitating reactive (Roche). #### **Immunohistochemistry** Mice (n = 5 labeling for each age and strain) were transcardially perfused, first with heparinized saline solution and then with 1 ml/g of ice-cool 4% PFA. Brains were cryoprotected in 30% sucrose and 20 µm-sectioned at the sagittal plane, using a TC1900 cryostat (Leica). Frozen sections were air dried, permeabilized with PBST and boiled in 10 mM citrate buffer pH 6 to unmask the antigen. Unspecific antibodies binding was blocked with 0.1% PBST supplemented with 10% NGS +0.1% BSA for 1 h at RT and then incubated overnight at 4°C using specific primary antibodies, all diluted in 0.1% PBST +1% NGS (Table 1). Antibody binding was detected with the following secondary antibodies, diluted 1:1000 in PBST: Alexa 488 goat anti-rabbit IgG and Alexa 568 goat anti-mouse IgG (Molecular Probes-Invitrogen). RC2 antibody was detected by incubating 2 h at RT with biotin conjugated goat anti-mouse IgM (Jackson Immunoresearch) and then incubated 1 h at RT with Alexa 568 conjugated streptavidin (Molecular Probes-Invitrogen). Nuclei were counterstained with Hoechst (1 µg/ml, Sigma-Aldrich Co). Table 2. Extent of Dab1 coexpression with neuronal and glial markers at different postnatal ages in wt and reeler animals. | Markers | P0-P3 | P7 | P15 | | |----------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------|--| | Dab1 / Reln | Mitral (P0) and periglomerular cells (P0–P3) | Mitral and periglomerular cells | | | | Dab1 / NeuN | MCL, IPL and GcL | None NeuN cell expressed Dab1 | | | | Dab1 / Map2a,b | GL, EPL, MCL, IPL and GcL (P3) | GL, EPL, MCL, IPL and GcL | | | | Dab1 / RC2 | GL, EPL, MCL, IPL, GcL and SEZ | GL, EPL and MCL | None RC2 cell expressed Dab | | | Dab1 / CB | No Dab1/CB-PV expressing cell | No Dab1/CB-PV expressing cell Dab1 detected in some CB and PV cells | | | | Dab1 / PV | | | | | | Dab1 / TH | Dab1 restricted to nuclei of TH cells Dab1 in nuclei and process of some TH cells | | | | | Dab1 / GFAP | No Dab1/GFAP expressing cell | | | | | Dab1 / RIP | No Dab1/RIP expressing cell | | | | doi:10.1371/journal.pone.0026673.t002 Figure 5. Colocalization of Dab1/Reln and Dab1/NeuN in postnatal olfactory bulb cells. Dab1 (green) and Reln (red) in wild type (a–d); Dab1 and NeuN (red) in wild type (e, h, k, n) and reeler (f, i, l, o). Nuclei are counterstained with Hoechst (blue). Images correspond to representative sagittal sections at P0 (a, e, f, g), P3, (b, h, i, j), P7 (c, k, l, m) and P15 (d, n, o, p). Reln shows a complementary location pattern with Dab1 positive nuclei of mitral cells (a–d). At P0, glomeruli are slightly apparent with Reln staining (a). From P3 to P15 glomeruli strongly express Dab1 and periglomerular cells start to express both Reln and nuclear Dab1 (b–d). From P3 the majority of granular and periglomerular cells are positive for NeuN (e–p), many of them with nuclear Dab1 expression (arrows). Cartoons represent the bilayer formation by the mitral cells (nuclear Dab1 staining) with respect to the superficial granular cells (NeuN labeling). This cell positioning is disrupted in reeler mice (cartoons). ONL, olfactory nerve layer; GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cells layer; IPL, internal plexiform layer; GcL, granular cells layer; SEZ, subependymal zone. Scale bar: 100 μm. doi:10.1371/journal.pone.0026673.g005 Staining was visualized using a confocal microscope TS5 (Leica). $\,$ ### **Results and Discussion** Reln molecule translocates its signal activating phosphorylation of the intracellular adaptor protein Dab1 [24]. These two molecules are closely interrelated, so that one regulates the expression of the other [25,26]. Thus, Reln-Dab1 interaction is critical regulator of key steps during CNS development, acting in a time-dependent manner in different regions of the brain [19,20]. Then, regional and cellular quantified distribution of these molecules becomes essential for understanding their role during development. Since the OB is a microcircuitry, with a heterogeneous interneuron population generated throughout development and adulthood, it represents a perfect model to analyze layering and developmental cell maturation in a specific time windows. This led us to address in detail the Reln/Dab1 postnatal expression in *reeler* and *wt* mice and its phenotypical consequences. ## Spatiotemporal expression of Dab1 mRNA and protein in the olfactory bulb Localization of Dab1 transcripts was strikingly similar throughout the OB layers in both *wt* and *reeler*. Prominent, Dab1 expression was located in periglomerular and mitral cells, as well as in the granular cell layer (Fig. 1). Although our data revealed Dab1 transcripts in the whole glomeruli from P0 to P7, the expression pattern was similar to those presented in the Allen Brain Atlas [27] (www.brain-map.org). As occurs with Dab1 transcripts, its protein also showed a homogeneous distribution throughout OB layers in both strains (Fig. 2). These similarities were unexpected, since Dab1 traslocates the Reln signal after is bounded to their receptors. This might represents an alternative role of Dab1 to the Reln pathway, as proposed in the rostral migratory stream cells where Dab1 is triggered by Trombospondin-1 and F-spondin [28,29]. Other possibilities could be related to the presence of Dab1 isoforms, similar to those phosphorylated independently of Reln in embryonic retinal cells [30,31] or by mechanisms **Figure 6. Colocalization of Dab1/Map2a,b and Dab1/RC2 in postnatal olfactory bulb cells.** Dab1 (green), Map2a,b (red) (a–b, f–g, k–l, p–q) and the radial glial cell marker RC2 (red) (c–e, h–j, m–o, r–t). OB sagittal sections at P0 (a–e), P3 (f–j), P7 (k–o) and P15 (p–t). At P0 neuronal Dab1 positive processes (Map2a,b) are evident in the GL, EPL and MCL (a, b) while radial glial Dab1 positive processes (RC2) occupied the OB surface (c–e). From P3 onwards, neuronal Dab1 positive neuronal fibers become evident in the IPL and GcL (f–g) while the radial cell processes decreased in quantity. Some Rc2 positive/Dab1 negative cells surround the glomeruli (h–j). Neuronal fibers pattern is similar at P7 (k–i) and P15 (p–q), whereas Rc2 fibers are absent from P7 (m–o). From P7 to P15 all radial glial cells are Dab1 negative (m–o; r–t). Nuclei counterstained with Hoechst (blue). ONL, olfactory nerve layer; GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cells layer; IPL, internal plexiform layer; GcL, granular cells layer; SEZ, subependymal zone. Scale bar: 100 μm. doi:10.1371/journal.pone.0026673.g006 similar to those underlying the GABAergic interneurons layering [32]. Specifically, Dab1 immunoreactivity was mostly located within three different OB regions (Fig. 2): i) in neuronal processes, primarily in dendrites of the glomerulus compartment (GL), and in both external and internal plexiform layers (EPL and IPL); ii) in cell bodies from both GcL and subependimal zone (SEZ), with an intense labeling in OB radial glial cells which slightly decreases from P0 to P15 (see below); iii) an unpredicted Dab1 expression in cell nuclei of MCL, EPL and GL, as well as in the neuroblasts that reach the OB through the rostral migratory stream. This agrees with the specific nuclear transporting sequences of Dab1 molecule, that facilitates the nuclear translocation describing Dab1 as a nucleocytoplasmic shuttling protein [33]. However, this specific nuclear location of Dab1 protein occurs when the nuclear exporting receptor CRM1 (able for binding to Dab1 sequences) is blocked with leptomycin B [34]. Our data suggest a new nuclear function for Dab1 molecule, since always appeared located in the nucleus, even in the absence of blocking agents for the nuclear exporting receptor CRM1. Moreover, the pattern of a clearly Figure 7. Characterization of periglomerular Dab1 neurons with calbindin (CB), parvalbumin (PV) and tyrosine-hydroxylase (TH) markers. Green color corresponds to Dab1 expression, while the red one corresponds to either CB (a–b, g–h, m–n, s–t), PV (c–d, i––j, o–p, u–v) or TH (e–f, k–l, q–r, w–x) at P0 (a–f), P3 (g–l), P7 (m–r) and P15 (s–x). None CB (a–b) and PV (c–d) positive cells express Dab1 at P0–P3. By contrast, whole TH cell populations express nuclear Dab1 at these ages (e–f, g–i). At P7 some CB and PV are positive for Dab1. By contrary, in *reeler* mice PV cells do not express Dab1 and the cell number is lower (m–p). At this age, TH cells show a lack of Dab1 nuclear expression, which become apparent in some of TH-fibers (q–r). Similar results are observed at P15 (s–x). Nuclei counterstained with Hoechst (blue). GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cell layer. Scale bar: 50 μm. doi:10.1371/journal.pone.0026673.q007 Dab1 nuclear labeling in mitral and periglomerular neurons *in vivo* sections makes possible its use as a specific marker of these cell populations. Because the intriguing immunostaining pattern in the cell nuclei (Fig. 2), we further analyzed this intra-nuclear localization of Dabl protein on isolated nuclei. As a result, Dabl protein always appeared clustered in a dotted manner in both wt (Fig. 3 a, e, c, g, i, m, k, o) and reeler mice (Fig. 3 b, f, d, h, j, n, l, p). Thus, this nuclear pattern (Fig. a–d, i–l) correlated with the $in\ vivo\$ labeling (Fig.3 e–h, m–p). Quantification of Reln and Dab1 levels were independently performed in both cytosolic (CF) and nuclear (NF) fractions of OB from wt and reeler tissues. Absence of proteins contamination in tissue extracts was guaranteed by detection of nuclear and cytoplasm proteins in CF and NF samples respectively (Fig. S1a). In addition, cytoplasmic markers (Aconitase and GFAP) were also tested on isolated nuclei (Fig.S1b-g). While aconitase labeling completely avoid cell nuclei (Fig. S1b-d), GFAP shows a labeling circle specifically confined to the nuclear membrane (Fig. S1e-g). This was probably due to the nuclear membrane anchorage [35]. Reln western blot allowed the identification of immunoreactive bands of molecular weights of 450, 370 and 180 kDa (Fig. 4a), corresponding with the full length and two cleavage fragments of the molecule. Full length Reln molecule was detected at P0, the cleavage Reln fragments appeared at P3 and P7, while the 370 kDa fragment was missing at P15. These fragments probably corresponded to a time-course dependent cleavage mechanism, likely produced after C-terminus cleavage by extracellular metalloproteinases [36]. These results suggest that Reln selective fragments might act in a distinct development events via the activation of different metalloproteinases, as occurs for embryonic stages [37]. Further, Reln cleavage would signal cells for a correct positioning in the OB, as suggested for hippocampal granule cells [38]. With respect to cytoplasmic and nuclear Dabl fractions, protein levels increased from P0 to P15 in both strains (Fig. 4a, c). Statistical analyses of CF-Dabl levels revealed and increment at P7 and P15 in reeler, whereas this increment was restricted to P15 in wt (Fig. 4a, c). By other hand, analyses of NF-Dabl levels showed an increment at P15 in both strains (Fig. 4a, c). The quantity of CF-Dabl protein was higher in reeler than in wt in all studied ages, revealing a protein accumulation in OB cells (Fig. 4b, d), while the NF-Dabl level was just higher in reeler at P15. Dabl increment in both strains strongly suggests an augmented Dabl function, due to other signaling pathways distinct to the Reln. The higher levels of Dabl in reeler than in wt could be due to the requirement of Reln to degrade Dabl [26,39]. Thus, in absence of Reln, Dabl should be accumulated in the cytoplasm, in an unphosphorylated state [16,19]. To strengthen the Dab1 nuclear and cellular processes localization with the antibody used in this study (from Sigma-Aldrich), we provided supplementary data (Fig. S2) using another anti-Dab1 (from Chemicon). Comparing the labeling of both antibodies, western blot revealed the presence of an 80 kDa band in tissue fractions (Fig. S2a) along with the immunolabeling of isolated nuclei (Fig. S2b). Unexpectedly, cell nuclei and glomerular processes were not labeled in olfactory bulb sections with anti-Dab1 from Chemicon (Fig. S2c). These differences Figure 8. Identification of astroglial and oligodendroglial cell expressing Dab1. P0 (a–d), P3 (e–h), P7 (i–l) and P15 (m–p). Astrocytes are recognized by GFAP (a–b, e–f, i–j, m–n) whereas oligodendrocytes by RIP (c–d, g–h, k–l, o–p). At P0–P3, GFAP (red) is restricted to the ONL and GL (a–b, e–f) and onwards labels the remaining layers, being negative for Dab1 (i–j, m–n). RIP labeling (red) is restricted to non-myelin oligodendrocytes in the GcL at P0–P3 (c–d, g–h). At P7, RIP expression is located in myelin and non-myelin oligodendrocytes (k–l). Non-myelin oligodendrocytes are absent at P15 (o–p). In all cases oligodendrocytes are negatives for Dab1. Labeling pattern is indistinguishable between wt and reeler animals. Nuclei are counterstained with Hoechst (blue). ONL, olfactory nerve layer; GL, glomerular layer; EPL, external plexiform layer; MCL, mitral cells layer; GcL, granular cells layer. Scale bar: 100 μm. doi:10.1371/journal.pone.0026673.g008 could be related with the immunogens used to produce the antibody, which are different in length. Thus, the immunogen peptide sequence used by Chemicon (aminoacid residues from 400 to 555 of the mouse Dab1 protein, GeneID: 13131; UNIPROT number P97318.2) is longer than that used by Sigma-Aldrich (aminoacid residues from 538 to 555 of the rat Dab1 protein, GeneID: 266729; UNIPROT number Q8CJH2), and contains the total sequence. This could explain the differences in the epitopes recognized by both antibodies. Although both antibodies recognized correctly the Dab1 protein, we suggest that differences in labeling patterns could be related due to both antibodies recognize different epitopes in Dab1 isoforms. # Molecular characterization of Dab1-expressing cells in the olfactory bulb To analyze the phenotypic profile of Dab1 expressing cells, we performed double immunohistochemistry with different neuronal and glial markers in both strains (Table 2). Nuclei of mitral and some periglomerular cells, identified by Reln labeling at postnatal stages [3,20], coexpressed Dab1 at all ages (Fig. 5a–d). Moreover, Dab1/NeuN coexpression pattern varied from P0 to P15 (Fig. 5e–p). At P0–P3, double labeled cells were mainly located in the GcL- IPL along with some sparsely labeled cells in the MCL (Fig. 5e–j, arrows). From P7 to P15, Dab1/NeuN cells were also located in EPL and GL (Fig. 5k–p arrows), which could be related to OB layer refinement [40,41]. This layering process is summarizes in the cartoons (Fig. 5 g, j, m, p). Combining Dab1 nuclear labeling with NeuN marker allows to observe superficial granular cells forming a monolayer just beneath the MCL. This correspond to the granule cells projecting to the most external part of the OB [42], and whose disposition was disrupted in *reeler* [8]. Coexpression of neuronal marker Map2a,b with Dab1 was observed in both, processes of the GL, EPL and IPL, and in neuronal somas of MCL-GcL at P0–P3, (Fig. 6a–b, f–g). From P7, Map2a,b/Dab1 colocalized in the proximal portions of large processes, mostly located in GL, EPL and IPL (Fig. 6k,l). However, some others Dab1 processes were negative for Map2a,b, but intensively labeled with the radial glial cell marker RC2 (Fig. 6c–e, h–j, m–o, r–t). This marker showed radial glial cell bodies mainly located in the SEZ with thin and large cell processes that extended to the most external OB layers at P0 (Fig. 6). From P3 onwards, RC2/Dab1 positive cells were located in upper OB layers, mostly surrounding the glomeruli, adopting a stellate morphology with shorter cellular processes than those observed at P0. From P7, none RC2 cell expressed Dab1. Specific neuronal markers, calbindin-CB, parvalbumin-PV and tyrosine hydroxylase-TH, identified the neurochemical phenotype of Dab1 positive cells in the glomeruli in both genetic backgrounds. Dab1 colocalized with CB and PV cells from P7 onwards (Fig. 7a–d, g–j, m–p, s–v), being negative in earlier ages. Dab1/TH coexpression was restricted to the nucleus at P0–P3 while at P7 the colabeling was detected in some TH-positive processes inside the glomeruli (Fig. 7e–f, k–l, q–r, w–x). None glial marker (GFAP, RIP) colocalized with Dab1 cells in both wt and reeler mice (Fig. 8). In summary, our data revealed that Reln, secreted by mitral and periglomerular cells, suffered a cleavage process during the postnatal OB development probably related to cell lamination. Its main adaptor protein, Dab1, showed an undistinguishable transcript and protein expression patterns between wt and reeler mice. This suggests alternative roles in the Dab1 function not linked to Reln during the OB postnatal development. This idea is reinforced by the higher quantity of Dab1 in reeler respect to wt. Additionally, the increment in Dab1, from P0 to P15, suggests further roles of this molecule in the OB postnatal development. Lastly, the unexpected presence of Dab1 labeling in cell nuclei is probably linked to alternative Dab1 functions in the nuclear activity. ## **Supporting Information** **Figure S1 Control western blot to test protein contamination in tissue fractions.** (a) Immunodetection of cytoplasm and nuclear proteins in NF and CF respectively in OB extracts from both wt and reeler mice. (b) Immunohistochemistry on isolated nuclei with cytoplasm proteins at P0 (b, e), P7 (c, f) and P15 (d, g). By western blot are detected bands of nucleoporin P62 in the CF and a slight labeling of both aconitase and GFAP in the NF (a). Aconitase marker is completely absent in isolated nuclei (b-d), #### References - Ogawa M, Miyata T, Nakajima K, Yagyu K, Seike M, et al. (1995) The reeler gene-associated antigen on Cajal-Retzius neurons is a crucial molecule for laminar organization of cortical neurons. Neuron 14: 899–912. - Ikeda Y, Terashima T (1997) Expression of reclin, the gene responsible for the recler mutation, in embryonic development and adulthood in the mouse. Dev Dyn 210: 157–172. - Alcantara S, Ruiz M, D'Arcangelo G, Ezan F, de Lecea L, et al. (1998) Regional and cellular patterns of reelin mRNA expression in the forebrain of the developing and adult mouse. J Neurosci 18: 7779–7799. - Del Rio JA, Heimrich B, Borrell V, Forster E, Drakew A, et al. (1997) A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385: 70–74. - Caviness VS Jr. (1976) Patterns of cell and fiber distribution in the neocortex of the reeler mutant mouse. J Comp Neurol 170: 435–447. - Zhao S, Chai X, Forster E, Frotscher M (2004) Reelin is a positional signal for the lamination of dentate granule cells. Development 131: 5117–5125. - Terashima T, Inoue K, Inoue Y, Mikoshiba K, Tsukada Y (1985) Observations on Golgi epithelial cells and granule cells in the cerebellum of the reeler mutant mouse. Brain Res 350: 103–112. - Hack I, Bancila M, Loulier K, Carroll P, Cremer H (2002) Reelin is a detachment signal in tangential chain-migration during postnatal neurogenesis. Nat Neurosci 5: 939–945. - Hartfuss E, Forster E, Bock HH, Hack MA, Leprince P, et al. (2003) Reelin signaling directly affects radial glia morphology and biochemical maturation. Development 130: 4597–4609. - Kim HM, Qu T, Kriho V, Lacor P, Smalheiser N, et al. (2002) Reelin function in neural stem cell biology. Proc Natl Acad Sci U S A 99: 4020–4025. - Schiffmann SN, Bernier B, Goffinet AM (1997) Reelin mRNA expression during mouse brain development. Eur J Neurosci 9: 1055–1071. - Niu S, Renfro A, Quattrocchi CC, Sheldon M, D'Arcangelo G (2004) Reelin promotes hippocampal dendrite development through the VLDLR/ ApoER2-Dab1 pathway. Neuron 41: 71–84. - D'Arcangelo G, Homayouni R, Keshvara L, Rice DS, Sheldon M, et al. (1999) eelin is a ligand for lipoprotein receptors. Neuron 24: 471–479. - Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, et al. (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27: 33–44. whereas GFAP labeling appears delimiting the nuclear membranes (e–g), Scale bar: 5 $\mu m.$ (TIF) Figure S2 Dab1 expression using two different anti-Dabl antibodies by western blot and immunohisto**chemistry.** (a) Western blot of wt OB extracts using two anti-Dab1 antibodies from Chemicon and Sigma-Aldrich. Both labeled the specific 80 kDa band correspond to Dab1 protein. Antibody from Chemicon is not being able to detect the increase in protein levels from P0 to P15 as detected by Sigma-Aldrich antibody. (b) Labeling of isolated nuclei with both anti-Dab1 antibodies show a similar dotted pattern inside the nuclei at P0, P7 and P15. (c) Labeling of OB sagittal sections using the anti-Dab1 from Chemicon. In this case the labeling is broadly similar to that observed with the Sigma-Aldrich antibody, which is mainly found in periglomerular cells, MCL and in GcL. A difference respect to the Sigma-Aldrich antibody is the absence of nuclear and cell processes labeling with the Chemicon antibody. Scale bars: 100 µm and 1 mm in the inserts. (TIF) ## **Acknowledgments** We thank Ana M. Martín, María L. de Ceballos, Lorenzo Romero, Asunción Barreda Manso and Manuel Nieto Sampedro for invaluable technical support to perform the western blots. We also thank Eduardo Soriano for generously providing *reeler* mice and Sandra Rodríguez Cuevas for her technical assistance. #### **Author Contributions** Conceived and designed the experiments: EM-L AB JADC LL-M. Performed the experiments: EM-L AB. Analyzed the data: EM-L AB JADC LL-M. Contributed reagents/materials/analysis tools: EM-L AB JADC LL-M. Wrote the paper: EM-L AB JADC LL-M. - Hiesberger T, Trommsdorff M, Howell BW, Goffinet A, Mumby MC, et al. (1999) Direct binding of Reelin to VLDL receptor and ApoE receptor 2 induces tyrosine phosphorylation of disabled-1 and modulates tau phosphorylation. Neuron 24: 481–489. - Trommsdorff M, Gotthardt M, Hiesberger T, Shelton J, Stockinger W, et al. (1999) Reeler/Disabled-like disruption of neuronal migration in knockout mice lacking the VLDL receptor and ApoE receptor 2. Cell 97: 689–701. - Howell BW, Hawkes R, Soriano P, Cooper JA (1997) Neuronal position in the developing brain is regulated by mouse disabled-1. Nature 389: 733–737. - Sheldon M, Rice DS, D'Arcangelo G, Yoneshima H, Nakajima K, et al. (1997) Scrambler and yotari disrupt the disabled gene and produce a reeler-like phenotype in mice. Nature 389: 730–733. - Rice DS, Sheldon M, D'Arcangelo G, Nakajima K, Goldowitz D, et al. (1998) Disabled-1 acts downstream of Reelin in a signaling pathway that controls laminar organization in the mammalian brain. Development 125: 3719–3729. - D'Arcangelo G, Miao GG, Chen SC, Soares HD, Morgan JI, et al. (1995) A protein related to extracellular matrix proteins deleted in the mouse mutant reeler. Nature 374: 719–723. - Arnaud L, Ballif BA, Forster E, Cooper JA (2003) Fyn tyrosine kinase is a critical regulator of disabled-1 during brain development. Curr Biol 13: 9–17. - Luque JM, Morante-Oria J, Fairen A (2003) Localization of ApoER2, VLDLR and Dab1 in radial glia: groundwork for a new model of reclin action during cortical development. Brain Res Dev Brain Res 140: 195–203. - Wyss JM, Stanfield BB, Cowan WM (1980) Structural abnormalities in the olfactory bulb of the Reeler mouse. Brain Res 188: 566–571. - Jossin Y, Bar I, Ignatova N, Tissir F, De Rouvroit CL, et al. (2003) The reclin signaling pathway: some recent developments. Cereb Cortex 13: 627–633. - Morimura T, Hattori M, Ogawa M, Mikoshiba K (2005) Disabled1 regulates the intracellular trafficking of reelin receptors. J Biol Chem 280: 16901–16908. - Arnaud I., Ballif BA, Cooper JA (2003) Regulation of protein tyrosine kinase signaling by substrate degradation during brain development. Mol Cell Biol 23: 9293–9302. - Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, et al. (2007) Genomewide atlas of gene expression in the adult mouse brain. Nature 445: 168–176. - Blake SM, Strasser V, Andrade N, Duit S, Hofbauer R, et al. (2008) Thrombospondin-1 binds to ApoER2 and VLDL receptor and functions in postnatal neuronal migration. EMBO J 27: 3069–3080. - Andrade N, Komnenovic V, Blake SM, Jossin Y, Howell B, et al. (2007) ApoER2/VLDL receptor and Dab1 in the rostral migratory stream function in postnatal neuronal migration independently of Reelin. Proc Natl Acad Sci U S A 104: 8508-8513 - Gao Z, Monckton EA, Glubrecht DD, Logan C, Godbout R (2010) The early isoform of disabled-1 functions independently of Reelin-mediated tyrosine phosphorylation in chick retina. Mol Cell Biol 30: 4339–4353. - Gao Z, Godbout R (2011) Serine phosphorylation regulates disabled-1 early isoform turnover independently of Reelin. Cell Signal 23: 555–565. - Pla R, Borrell V, Flames N, Marin O (2006) Layer acquisition by cortical GABAergic interneurons is independent of Reelin signaling. J Neurosci 26: 6924–6934. - 33. Honda T, Nakajima K (2006) Mouse Disabled1 (DAB1) is a nucleocytoplasmic shuttling protein. J Biol Chem 281: 38951–38965. - Yoshida M, Horinouchi S (1999) Trichostatin and leptomycin. Inhibition of histone deacetylation and signal-dependent nuclear export. Ann N Y Acad Sci 886: 23–36. - Starr DA (2009) A nuclear-envelope bridge positions nuclei and moves chromosomes. J Cell Sci 122: 577–586. - Lambert de Rouvroit C, de Bergeyck V, Cortvrindt C, Bar I, Eeckhout Y, et al. (1999) Reelin, the extracellular matrix protein deficient in reeler mutant mice, is processed by a metalloproteinase. Exp Neurol 156: 214–217. - Jossin Y, Gui L, Goffinet AM (2007) Processing of Reelin by embryonic neurons is important for function in tissue but not in dissociated cultured neurons. J Neurosci 27: 4243–4252. - Tinnes S, Schafer MK, Flubacher A, Munzner G, Frotscher M, et al. (2011) Epileptiform activity interferes with proteolytic processing of Reelin required for dentate granule cell positioning. FASEB J 25: 1002–1013. - Bock HH, Jossin Y, May P, Bergner O, Herz J (2004) Apolipoprotein E receptors are required for reclin-induced proteasomal degradation of the neuronal adaptor protein Disabled-1. J Biol Chem 279: 33471–33479. - Hinds JW, Ruffett TL (1973) Mitral cell development in the mouse olfactory bulb: reorientation of the perikaryon and maturation of the axon initial segment. J Comp Neurol 151: 281–306. - Blanchart A, De Carlos JA, Lopez-Mascaraque L (2006) Time frame of mitral cell development in the mice olfactory bulb. J Comp Neurol 496: 529–543. - Orona E, Scott JW, Rainer EC (1983) Different granule cell populations innervate superficial and deep regions of the external plexiform layer in rat olfactory bulb. J Comp Neurol 217: 227–237.