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Abstract
Background.  Necrotic foci with surrounding hypoxic cellular pseudopalisades and microvascular hyperplasia are 
histological features found in glioblastoma (GBM). We have previously shown that monocarboxylate transporter 4 
(MCT4) is highly expressed in necrotic/hypoxic regions in GBM and that increased levels of MCT4 are associated 
with worse clinical outcomes.
Methods.  A combined transcriptomics and metabolomics analysis was performed to study the effects of MCT4 
depletion in hypoxic GBM neurospheres. Stable and inducible MCT4-depletion systems were used to evaluate the 
effects of and underlining mechanisms associated with MCT4 depletion in vitro and in vivo, alone and in combi-
nation with radiation.
Results. This study establishes that conditional depletion of MCT4 profoundly impairs self-renewal and reduces 
the frequency and tumorigenicity of aggressive, therapy-resistant, glioblastoma stem cells. Mechanistically, we 
observed that MCT4 depletion induces anaplerotic glutaminolysis and abrogates de novo pyrimidine biosynthesis. 
The latter results in a dramatic increase in DNA damage and apoptotic cell death, phenotypes that were readily res-
cued by pyrimidine nucleosides supplementation. Consequently, we found that MCT4 depletion promoted a sig-
nificant prolongation of survival of animals bearing established orthotopic xenografts, an effect that was extended 
by adjuvant treatment with focused radiation.
Conclusions.  Our findings establish a novel role for MCT4 as a critical regulator of cellular deoxyribonucleotide 
levels and provide a new therapeutic direction related to MCT4 depletion in GBM.

Key Points

	•	 MCT4 Depletion in Brain Cancer–Associated Hypoxia

	•	 Inhibits de novo pyrimidine biosynthesis—leading to the accumulation of DNA damage 
and reduced cell survival.

	•	 Further extends the survival of animals bearing orthotopic GBM xenografts and treated 
with focused radiation.

MCT4 regulates de novo pyrimidine biosynthesis in 
GBM in a lactate-independent manner
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Glioblastoma (GBM) is the most common form of malig-
nant brain cancer in adults and remains universally lethal. 
Despite standard of care therapy that involves maximal 
surgical resection followed by radiation and temozolomide 
chemotherapy median survival remains dismal with most 
patients succumbing to the disease within 2 years of diag-
nosis.1,2 Accumulating evidence suggests that treatment 
failure and the inevitable recurrence of GBM after therapy 
are primarily due to the persistence of subpopulations of 
chemo- and radio-resistant cells, often referred to as glioma 
stem cells (GSCs).3 Thus, new therapeutic targets and im-
proved treatments that eliminate GSCs and can be com-
bined with the current standard of care are desperately 
needed. GBM frequently exhibits tumor hypoxia and high 
glycolytic rate.4 We and others have previously shown that 
GSCs favor low oxygen levels and are typically found in the 
hypoxic tumor core5–10 (and reviewed in Refs 11,12). In addi-
tion to hypoxia, GBM is also characterized by a high prolif-
erative index and replication stress contributes to aberrant 
constitutive activation of DNA damage signaling whereas 
the inability to repair DNA damage leads to apoptosis.13,14

More recently, we demonstrated that monocarboxylate 
transporter 4 (MCT4) expression is associated with in-
creased World Health Organization glioma grade and in-
versely correlated with the overall survival of patients. In 
addition, MCT4 regulates proliferation, survival, and xen-
ograft implantation.15 In the current study, we further ex-
plore the mechanistic underpinning of MCT4 depletion 
and its potential utilization in combination with radiation 
treatment.

Materials and Methods

An expanded Materials and Methods section is provided in 
Supplementary data.

GBM Neurosphere Lines and Hypoxic Conditions

HSR-GBM1 and HSR040821 were a kind gift from Dr. 
Angelo Vescovi and were established from freshly resected 
GBM tumors and passaged as previously described.3 A hy-
poxic chamber maintained at 37°C, 1% O2, 5% CO2, and 
94% N2 (Coy Laboratory Equipment) was used to conduct 
in vitro hypoxic experiments. Because the expression of 
MCT4 is largely dependent on hypoxia, unless otherwise 
noted, we used hypoxic culture conditions in all experi-
ments. All hypoxic experiments were conducted on cells 

that were plated and allowed to recover overnight before 
hypoxic induction.

HSR-GBM1 and HSR040821 are EGFRWT, IDH1WT.HSR-
GBM1 is P53WT while HSR040821 carries an S278P point 
mutation in the P53 gene. The Phosphatase and Tensin ho-
molog gene is intact in both lines.

Metabolomics

Focused (quantitative) metabolomics was performed 
on hypoxic GBM neurospheres with or without MCT4 
depletion. Samples were processed and analyzed by 
the University of Michigan Medical School, BRCF—
Metabolomics Core.

Gene Set Enrichment Analysis

Gene set enrichment analysis (GSEA) was performed ac-
cording to16 RNA sequencing data, performed in tripli-
cates, of hypoxic and normoxic HSR-GBM1 neurospheres 
expressing control or shMCT4 were uploaded to the GSEA 
portal and gene sets enriched in hypoxic GSCs and in hy-
poxic GSCs depleted of MCT4 were determined.

Glutamine Uptake Assays

Cells were incubated in glucose/glutamine-free media sup-
plemented with 1  μCi/ml [C-14]deoxyglucose (DG) and 
1  μCi/ml [H-3]glutamine (GLN), then washed, and added 
to tubes containing scintillation fluid. Radioactivity was 
measured and is expressed as pmoles uptake of tracer per 
10 000 live cells. Experiments were performed 3 times in 
duplicates.

Cellular Growth and Clonogenic Assays

Clonogenic assays were performed as previously 
described.6

Immunofluorescence

Cells were cultured in multi-chamber slides and treated 
as described. Cells were immunostained with α‐phospho 
(ser139)‐H2AX antibodies. Nuclei were counterstained 
with 4′,6-diamidino-2-phenylindole. The number of γH2AX-
positive foci per cell was counted, using ImageJ.

Importance of the Study

GBM is an aggressive, lethal, and still in-
curable malignancy. Treatment for GBM has 
changed little in decades. Using a combined 
metabolomics and transcriptomics approach, 
we show that MCT4 depletion significantly re-
duces tumorigenicity by inhibition of de novo 

pyrimidine biosynthesis and promotes accu-
mulation of DNA damage. The combination of 
MCT4 depletion and adjuvant radiation in vivo 
is more effective than either treatment alone 
thus highlighting the potential for a novel GBM 
treatment strategy.



3Spina et al. MCT4 regulates de novo pyrimidine biosynthesis
N

eu
ro-O

n
colog

y 
A

d
van

ces

Alkaline Comet assay

Comet assays were performed as previously described.17

Flow Cytometry

Mitochondrial membrane potential was evaluated utilizing 
MitoTracker Red CMXRos according to the manufacturer’s 
instructions.

Orthotopic Xenograft Transplantation

Experiments with animals were performed in compli-
ance with institutional guidelines and regulations (IACUC 
#2012–0132 followed by #2015–0100). Male and female NSG 
mice were used in all experiments in approximately equal 
numbers (±1) of each sex in each experimental group. Cells 
were stereotactically injected as previously described.18 Two 
separate in vivo experiments were performed using a total 
of 16 mice per group: control, radiation (IR, 12 Gy), doxy-
cycline (for MCT4 knockdown), and doxycycline combined 
with IR. Also, to exclude pharmacologic toxicity of doxycy-
cline, HSR-GBM1-shGFP Luciferase cells were implanted 
into mice using a total of 6 mice per group. Mice weight was 
monitored daily. Doxycycline was provided in the food at 
a concentration of 200 mg/kg (#S3888, BioServ), supplied 
fresh every week starting 3 days before radiation treatment.

Gamma Knife Radiation

Isocentric gamma radiation dose delivery (Gamma Knife) 
was performed using a three-dimensional (3D)-printed 
stereotactic body mold as described in Ref. 19.

Statistical Methods

Statistical methods are described throughout the text and 
summarized in the expanded Materials and Methods sec-
tion found in the Supplementary data.

Results

MCT4 Knockdown Inhibits GSC Growth and Self-
Renewal In Vitro

To investigate the requirement for hypoxia-induced MCT4 
for GSC proliferation and/or survival, we conducted in 
vitro proliferation and self-renewal assays on a set of 
human GSC lines using either control or 2 different MCT4 
short hairpin RNAs (shRNAs). MCT4 depletion signifi-
cantly impaired growth by at least 40% in both HSR-GBM1 
and HSR040821 (Figure  1A and B). To determine the ef-
fect of MCT4 depletion on self-renewal, neurospheres ex-
pressing control or 2 different MCT4 shRNAs were cultured 
in hypoxia for 48 h followed by self-renewal challenge in 
normoxia.6 MCT4 depletion resulted in a 60–90% (****P 
< .0001, one-way ANOVA) and 80–83% reduction (****P 
< .0001, ***P < .001, one-way ANOVA) in the number of 

clonogenic neurospheres (sphere diameter >100  μm), in 
HSR-GBM1 and HSR040821, respectively (Figure 1C and D).

GSEA Shows Activation of Metabolic and DNA 
Repair Pathways in Response to MCT4 Depletion

To identify pathways altered in MCT4-depleted GSCs, we 
applied GSEA, using cancer hallmarks gene sets, to RNAseq 
data generated from HSR-GBM1 shMCT4 Tet-ON cultured in 
hypoxia and induced with doxycycline or vehicle as control 
(Supplementary Figure S1). As expected, the top gene sets, 
enriched in hypoxic GSCs (top panel of Figure 2, control), in-
cluded hypoxia and glycolysis (Figure 2A and B). In addition, 
and in agreement with previous reports, mammalian target 
of rapamycin complex 1 (MTORC1)20 and the unfolded 
protein response21 were also enriched in hypoxic GSCs 
(Figure 2C and D). In contrast, MCT4-depleted GSCs showed 
enrichment for the oxidative phosphorylation (OXPHOS), 
mitotic spindle, DNA repair, and G2/M checkpoint (lower 
panel, Figure 2E and H) gene sets, where the last 3 are indic-
ative of potential accumulation of DNA damage.

Depletion of MCT4, in Hypoxia, Inhibits 
Glycolysis and Increases TCA Cycle 
Intermediates and Aspartate Through 
Mitochondria Reactivation

To better understand the metabolic changes MCT4-
depleted cells undergo, we conditionally depleted MCT4 in 
HSR-GBM1 neurospheres cultured in hypoxia (1% oxygen) 
followed by targeted (quantitative) metabolomics analysis 
of over 150 metabolites involved in several key metabolic 
pathways. We found that the levels of 11 out of 18 amino 
acids measured to be modestly reduced in MCT4-depleted 
cells (Figure  3A). In contrast, glutamine and aspartate 
levels were both increased over 2-fold. Glycolysis was in-
hibited as well as we documented a significant reduction 
in the levels of several glycolytic intermediates such as di-
hydroxyacetone phosphate (DHAP), 3-phosphoglycerate, 
and 2-phosphoglycerate. Glycerol-3-phosphate, which is 
synthesized by reducing DHAP by the enzyme glycerol-3-
phosphate dehydrogenase, was also significantly reduced 
(Figure 3B). Consistent with our previous reports, lactate 
levels were not significantly altered in MCT4-depleted 
neurospheres.15,22 In contrast, we found that the levels of 
The citric acid (TCA) cycle intermediates citrate/isocitrate, 
α-ketoglutarate, and malate all significantly increased in 
MCT4-depleted, hypoxic neurospheres (Figure  3C). The 
significant increase in aspartate levels suggested that 
mitochondria may be activated,23 albeit under conditions 
known to shut mitochondria off. To test this directly, we 
stained HSR040821 neurospheres with the cell-permeant 
MitoTracker Red CMXRos that accumulates and fluoresces 
in active mitochondria and analyzed cells by flow cytometry. 
Indeed, we found a 3.5-fold increase in the percentage 
of MitoTracker-positive cells in hypoxic, MCT4-depleted, 
neurospheres as compared to controls (Figure 3E). Finally, 
the increase in glutamine levels prompted us to determine 
if it may be the result of increased uptake as a potential ad-
aptation to reduced glycolysis. To this end, we performed 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdz062#supplementary-data
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radioactive tracer uptake experiments to directly measure 
the uptake of radioactive glutamine in HSR-GBM1 shMCT4 
Tet-ON neurospheres cultured in hypoxia and either de-
pleted of MCT4 (dox) or not (v). In these experiments, we 
documented a moderate but very significant increase in 
H-3-glutamine uptake in MCT4-depleted cells confirming 
that the increase in cellular glutamine levels is likely the 
result of increased glutamine uptake from the medium 
(Figure 3F).

MCT4 Depletion in Hypoxia Attenuates 
Nucleotide Biosynthesis and Leads to 
Accumulation of DNA Damage

The most significant metabolic alterations in hypoxic 
MCT4-depleted neurospheres were in nucleotides and 
their precursors (Figure 3D). It has been previously shown 

that alterations in nucleotide availability can promote mi-
totic catastrophe and induce DNA damage.24 Considering 
our GSEAs showing enrichment for DNA damage path-
ways, we hypothesized that MCT4 depletion, in hypoxia, 
induces DNA damage due to alterations in nucleotide 
availability. We first analyzed mRNA levels of all 57 genes 
of the de novo pyrimidine metabolic pathway (from KEGG) 
and found 15 to be significantly downregulated in MCT4-
depleted neurospheres. The expression of dihydroorotate 
dehydrogenase (DHODH), the rate-limiting enzyme in the 
pathway, was reduced by almost 30% and the expression 
of CAD (carbamoyl-phosphate synthetase 2, aspartate 
transcarbamylase, and dihydroorotase), a trifunctional 
protein that is associated with the enzymatic activities of 
the first 3 enzymes in the pathway, was reduced almost 
50% (Figure  4A). Importantly, the expression of DHODH 
and CAD each is significantly higher in GBM as com-
pared to controls (TCGA) and is associated with poor 
outcome (REMBRANDT; Supplementary Figure S2A–D). 
We confirmed the reduction in DHODH and CAD by 
qPCR (Supplementary Figure S2E and F) and of DHODH 
by Western blot (Supplementary Figure S2G) analyses 
in MCT4-depleted hypoxic HSR-GBM1 and HSR040821 
neurospheres. Western blot analyses for CAD protein were 
inconsistent, in some experiments confirming reduction 
and in other showing similar levels in MCT4-depleted and 
control hypoxic GSCs (not shown). To directly visualize and 
quantify DNA damage, we performed immunostaining 
against γH2AX, a common marker used to label double-
strand breaks (DSBs) in DNA, in hypoxic neurospheres 
where MCT4 expression was inhibited either condition-
ally or constitutively. qPCR analysis confirmed MCT4 
knockdown and Western blot analyses showed a large 
increase in the amount of phosphorylated H2AX (γH2AX) 
(Supplementary Figure S3A and B). At the cellular level, 
we found a large increase in the number of γH2AX-
positive nuclei in hypoxic, MCT4-depleted, neurospheres 
(Figure 4B). Quantification of 2 independent experiments 
is shown in Figure 4D, with HSR-GBM1 showing an aver-
aged increase from 24% to 54.7% and 45.5% (constitutive 
sh1 and sh2, respectively; ***P < .001, *P < .05 one-way 
ANOVA), HSR040821 showing an averaged increase from 
9.8% to 31% and 67% (sh1 and sh2, respectively; ***P < 
.001, ****P < .0001 one-way ANOVA), and HSR-GBM1 
shMCT4 Tet-ON showing an averaged increase from 18% 
to 46% (****P < .0001 student t test).

The alkaline comet assay is a sensitive method that al-
lows detection and quantification of the extent of DNA 
damage.25,26 Comet tail length was measured as it is a 
widely accepted parameter reporting on the presence of 
single-strand breaks and DSBs. Representative comets 
are shown in Figure 4C and the quantification of 2 inde-
pendent experiments is shown in Figure 4E. These experi-
ments revealed that the number of cells with comet tails 
increased more rapidly in MCT4-depleted neurospheres 
as compared to controls. Tail length increased in HSR-
GBM1 26.6-fold and 13.8-fold (constitutive sh1 and sh2, 
respectively; ***P < .001 one-way ANOVA) and 16.8-fold 
and 17.6-fold in HSR040821 expressing sh1 and sh2 con-
stitutively (one-way ANOVA ****P < .0001). Similarly, 
in MCT4-depleted HSR-GBM1 shMCT4 Tet-ON cells, in-
duced to express sh1 with doxycycline, we documented 
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Figure 1.  MCT4 depletion in hypoxia inhibits GSC survival and 
self-renewal. (A and B) Flow cytometric analysis, using ViaCount 
reagent of HSR-GBM1 (A) and HSR040821 (B) GBM neurospheres, 
cultured in hypoxia, constitutively expressing either 1 of 2 different 
shRNAs targeting MCT4 (sh1, sh2) or control (ctrl). (C and D) Self-
renewal assay in methylcellulose. HSR-GBM1 (C) and HSR040821 
(D) GBM neurospheres expressing 1 of 2 shRNAs targeting 
MCT4 or a control cultured in hypoxia for 72 h then challenged in 
clonogenic self-renewal assay in normoxia. Statistical analyses: 
one-way ANOVA (****P < .0001, ***P < 0.001).
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a 4.9-fold increase in comet tail length (t test ***P < .001). 
Finally, MCT4 depletion showed negligible effects on 
tail length and γH2AX in HSR-GBM1 or HSR040821 cells 
cultured in normoxia (Supplementary Figure S3C–G). To 
test if hypoxic depletion of MCT4 promotes DNA damage 
by perturbing nucleotide pools, we supplemented 
the growth medium of control and MCT4-depleted 
neurospheres with nucleosides in an attempt to rescue 
the effects of MCT4 depletion on cell viability and DNA 
damage. Here, we documented 43% and 46% reduction 
in viable cell fractions in HSR-GBM1 neurospheres ex-
pressing sh1 and sh2, respectively (one-way ANOVA *P 
< .05 and **P < .01, respectively) (Figure 5A). Similarly, 
in HSR040821, sh1 and sh2 reduced the viable cell frac-
tion by 56% and 48% (one-way ANOVA ***P < .001) 
(Figure  5B). Importantly, in both lines supplementation 
with nucleosides largely blocked these effects (Figure 5A 
and B). Finally, similar results were obtained with con-
ditional depletion of MCT4 leading to 27% reduction in 
the viable cell fraction in HSR-GBM1 shMCT4 Tet-ON 
cells treated with doxycycline (Figure 5C). Because pyr-
imidines were the most affected by MCT4 depletion, we 
also tested if supplementation with either one of the py-
rimidine nucleosides, cytidine or uridine, would be suffi-
cient to rescue the effects of MCT4 inhibition. As shown 
in Figure  5C, each cytidine or uridine was sufficient to 
block the effects of MCT4 depletion. These data suggest 

that MCT4 depletion promotes GSC death primarily by 
reducing pyrimidine nucleotide pools.

To test the effects of nucleoside supplementation on 
DNA damage, we cultured GBM neurospheres expressing 
control or 1 of 2 shMCT4 constructs for 48 h in hypoxia in 
medium supplemented, or not, with nucleosides. In HSR-
GBM1, MCT4 depletion increased γH2AX-positive nuclei 
from 24% to 54.8% and 45.5% (sh1 and sh2, respectively; 
*P < .05, ***P < .001, ****P < .0001, one-way ANOVA; 
Figure  5D). In HSR040821 MCT4 depletion increased 
γH2AX-positive nuclei from 18.8% to 36.5% and 59.1% (sh1 
and sh2, respectively; *P < .05, ***P < .001, ****P < .0001, 
one-way ANOVA; Figure 5E). Finally, similar results were 
obtained with conditional MCT4 depletion in HSR-GBM1 
shMCT4 Tet-ON, increasing γH2AX-positive nuclei from 
15.8% to 35.7% (****P < .0001, one-way ANOVA), and sup-
plementation with either cytidine or uridine pyrimidine nu-
cleosides completely blocked the accumulation of nuclear 
γH2AX foci following MCT4 depletion (Figure 5F).

Leflunomide, a Specific Inhibitor of DHODH 
Mimics the Effects of MCT4 Depletion

If the antitumor effect of MCT4 depletion is strictly de-
pendent on shutting down pyrimidine synthesis, then 
these effects should be comparable to pharmacological 
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inhibition of this pathway by the FDA-approved DHODH 
inhibitor Leflunomide. To test this, we cultured HSR-
GBM1 and HSR040821 neurospheres in hypoxia and 
then treated the cells with Leflunomide for 24 h. We then 

measured the effects of Leflunomide on GSC survival 
and DNA damage. We found that like MCT4 depletion, 
Leflunomide inhibited GSC growth. Leflunomide treat-
ment reduced the fraction of viable cells by approximately 
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90% and 30%, in HSR-GBM1 and HSR040821, respec-
tively (Figure  5G). These effects are likely due to an 
increase in DNA damage as we documented a 21-fold 
and 18-fold increase in γH2AX-positive nuclei in 

HSR-GBM1 and HSR040821, respectively (Figure  5H). 
Taken together, these results strongly suggest that MCT4 
and Leflunomide inhibit a common pathway, namely, de 
novo pyrimidine synthesis.
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MCT4 Depletion Increases Survival Alone and in 
Combination With IR

Standard of care ionizing radiation directly affects DNA 
structure by inducing DNA breaks, particularly, DSBs. The 
robust induction of DNA damage we documented in hy-
poxic, MCT4-depleted, neurospheres prompted us to eval-
uate the potential combinatorial effects of MCT4 depletion 
with IR. To this end, we established orthotopic xenografts 
of HSR-GBM1 shMCT4 Tet-ON integrating a constitutive 
firefly luciferase reporter. Fourteen days after tumor im-
plantation the mice were segregated into the following 4 
treatment groups: standard chow (control), radiation (12 
Gy), doxycycline (dox), and the combination of MCT4 de-
pletion and radiation (dox+12 Gy). Each group included 
roughly an equal number of male and female animals 
with, on average, similar tumor size as determined by bio-
luminescence imaging (not shown). Also, a small cohort of 
animals (n = 4) per group were included in biological ana-
lyses (Figure 6A–C). MCT4 mRNA levels were significantly 
inhibited by approximately 96% 3 days post-induction with 
doxycycline (Figure 6A; *P < .05 student t test). Similarly, 
MCT4 protein levels were inhibited in doxycycline-treated 
mice (Figure  6B, top panel). Importantly, γH2AX levels 
were increased, on average, 1.4-fold in doxycycline-
treated mice (Figure 6B, and quantified in Figure 6C *P < 
.05 student t test). Collectively, these data show that MCT4 
depletion promotes significant DNA damage in vivo. 
Importantly, the median survival of mice that received 
a single dose of 12 Gy radiation increased from 47 to 
62 days (log-rank ****P < .0001, Figure 6D, blue triangles). 
MCT4 depletion alone increased median survival from 47 
to 54 days (log-rank ****P < .0001, Figure 6D, purple tri-
angles), and the median survival of mice receiving doxycy-
cline and radiation increased to 67 days (log-rank ****P < 
.0001, Figure 6D, green triangles), underscoring the benefit 
of a combinatorial approach based on MCT4 depletion and 
IR. A  comparison of median survival between radiation 
alone and radiation in combination with MCT4 depletion 
was found also to be highly significant (log-rank **P < .01). 
Of note, 2 mice from the combinatorial treatment group 
survived for over 120  days without detectable luciferase 
activity. Microscopic examination of the brains also failed 
to detect residual tumor mass in these animals suggesting 
that complete eradication of tumors was achieved.

Discussion

In this study, we observed that the survival and self-renewal 
of GSCs decreased with MCT4 depletion, a protein we and 
others have previously shown to be highly overexpressed 
in GBMs, particularly in hypoxic conditions which are 
prevalent in GBM. Using our previously described self-re-
newal assay in methylcellulose6 we found a significant de-
crease in the self-renewal capacity of GBM neurospheres 
when depleted of MCT4 and that this decrease is main-
tained for an extended period as the clonogenic challenge 
is performed for 10 days following recovery in normoxia. 
Using GSEA of GBM neurospheres cultured in hypoxia, 
the enrichment of glycolysis and hypoxia genes sets were 

confirmed. Strikingly, these hypoxia-associated gene sig-
natures were replaced by the oxidative phosphorylation 
and DNA repair signatures in hypoxic, MCT4-depleted, 
neurospheres. Also, we documented a considerable re-
duction in 3-phosphoglycerate phosphate (G3P) and DHAP 
with a concomitant increase in fructose-1,6 bisphosphate, 
indicating a potential block in aldolase activity. While the 
regulation of fructose 1,6-bisphosphate aldolase is still 
not well understood, it has been reported that the ac-
tivity of one of its isoforms, ALDOC, may be regulated at 
the transcription level or posttranslational, by oxidation.27 
Consistent with this finding, we documented greater than 
40% reduction in the expression of ALDOC in hypoxic, 
MCT4-depleted, neurospheres (Supplementary Figure 
S4A), suggesting that reduced ALDOC expression may be 
partially responsible for the accumulation of fructose-1,6 
bisphosphate and reduction in the immediately down-
stream glycolytic intermediates produced by aldolase. 
Also, we found that phosphoenolpyruvate carboxykinase 
2 (PCK2), which encodes the mitochondrial form of PCK, 
was downregulated over 4-fold in MCT4-depleted, hypoxic 
GBM neurospheres (Supplementary Figure S4B). Given it 
is the rate-limiting enzyme in gluconeogenesis, converting 
oxaloacetate to phosphoenolpyruvate, this suggested that 
gluconeogenesis may also be inhibited by MCT4 depletion. 
Finally, we found that mitochondrial membrane potential 
is increased in neurospheres that are depleted of MCT4 
and cellular ATP levels were modestly increased. Taken to-
gether, these results strongly suggest that MCT4 depletion, 
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in hypoxia, promotes an inappropriate metabolic switch 
from glycolysis to oxidative phosphorylation. These data 
also confirm that MCT4 is critical for maintaining hypoxia-
induced glycolysis while inhibiting oxidative phosphoryla-
tion under conditions of reduced oxygen.

Our combined transcriptomic and metabolomics ap-
proach also identified MCT4 as a critical regulator of de 
novo nucleotide metabolism in GBM. We documented a 
significant reduction in the levels of several pyrimidine 
nucleotides and an increase in DNA damage following 
MCT4 depletion. Furthermore, supplementation of hy-
poxic, MCT4-depleted, neurospheres with nucleosides 
mostly blocked the detrimental effects of MCT4 loss. 
Given the known relation between nucleotide pools and 
DNA damage,24 these results suggest that low nucleotide 
availability is a leading cause for increased DNA damage 
and concomitant loss of GSC survival following MCT4 
inhibition. The question remains, how does MCT4 deple-
tion result in decreased pyrimidine levels? The pyrimidine 
metabolic pathway (KEGG) includes 57 genes of which 15 
were downregulated in MCT4-depleted neurospheres cul-
tured in hypoxia. Two of these genes, DHODH and CAD, 
are reduced, on average 35%. This provides a potential 
explanation as to why pyrimidine levels are reduced and 
to why supplementation with exogenous nucleosides can 
rescue the defects conferred by MCT4 depletion. A model 
illustrating the MCT4 role in de novo pyrimidine biosyn-
thesis is shown in Supplementary Figure S5.

Finally, we show that conditional depletion of MCT4 
significantly prolongs the survival of animal subjects with 
established orthotopic GSC-derived xenografts. It is im-
portant to note that the analysis of tumor tissues at the 
time the animals were sacrificed indicated that the tumors 
all expressed the MCT4 protein at comparable levels (not 
shown). These results are consistent with our previous re-
port15 and underscore the absolute requirement for MCT4 
in tumor progression. We do acknowledge that while 
statistically significant, the combination of MCT4 knock-
down and radiation showed a modest increase over ra-
diation alone. We suggest that this result is primarily due 
to the strong effect of the gamma knife radiotherapy. 
Nevertheless, given that most standard therapies ulti-
mately lead to increased tumor hypoxia and that hypoxia 
itself can promote a stem cell phenotype and therapeutic 
resistance in GBM, our demonstration that a combination 
of MCT4 depletion and ionizing radiation further prolongs 
survival is significant and provides a strong rationale for 
testing this combinatorial approach in clinical trials.

Taken together, our studies show that MCT4 plays critical 
roles in the metabolic adaptation of GSCs to tumor-relevant 
hypoxic conditions and in maintaining adequate nucleo-
tide pools necessary for the proliferation and survival of 
GBM cells. Therapies that reduce MCT4 levels are, there-
fore, a promising new therapeutic approach especially in 
combination with standard of care radiation therapies.

Supplementary Data

Supplementary data are available at Neuro-Oncology 
online.
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