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Abstract
One of the main questions in the design of a trial is how many subjects should be assigned to each treatment condition.

Previous research has shown that equal randomization is not necessarily the best choice. We study the optimal allocation

for a novel trial design, the sequential multiple assignment randomized trial, where subjects receive a sequence of treat-

ments across various stages. A subject’s randomization probabilities to treatments in the next stage depend on whether

he or she responded to treatment in the current stage. We consider a prototypical sequential multiple assignment ran-

domized trial design with two stages. Within such a design, many pairwise comparisons of treatment sequences can be

made, and a multiple-objective optimal design strategy is proposed to consider all such comparisons simultaneously. The

optimal design is sought under either a fixed total sample size or a fixed budget. A Shiny App is made available to find the

optimal allocations and to evaluate the efficiency of competing designs. As the optimal design depends on the response

rates to first-stage treatments, maximin optimal design methodology is used to find robust optimal designs. The proposed

methodology is illustrated using a sequential multiple assignment randomized trial example on weight loss management.

Keywords
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Introduction
In many randomized controlled trials, participants are equally allocated to intervention arms. Such a design is consistent
with the view of clinical equipoise that must exist before the start of the trial.1 However, it may be preferable to allocate
more participants to one arm than to another, for instance, when variances and/or costs vary across the treatment arms,1–5 or
when outcomes are categorical rather than quantitative.6–10 The derivation of the optimal allocation of units to treatment
conditions has not only been done for individually randomized trials, but also for more complex trial designs such as
cluster-randomized trials,11–16 and trials with partially nested data.17–19 From a statistical point of view, it is more efficient
to assign more subjects to the condition with the lowest costs and highest variance. Other, more practical, reasons to use
unequal allocation over equal allocation include resource constraints, administrative, political or ethical concerns or when
the aim is to gain experience from an intervention and to study its feasibility.5,20

The focus of these references is on trials where subjects are randomized to either one single treatment or a combination
of treatments, but do not change their assigned treatments during the course of the trial. This is a drawback since in real
research practice some subjects may benefit more from one treatment and others more from another. Adaptive treatment
strategies (ATSs), which are also called dynamic treatment regimens or adaptive interventions, are more flexible in the
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sense that they allow changing treatments over time.21–24 An ATS individualizes treatments to subjects via decision rules
that adjust the type, intensity, dosage or delivery of a treatment and specify when, whether and how to proceed at certain
critical clinical decisions. For instance, those subjects for whom their assigned treatment turns out to be beneficial may
continue the same treatment, while those others may be assigned to another treatment. The use of sequential treatments
is often necessary because of: (i) heterogeneous treatment outcomes across subjects, (ii) change in treatment goals over
time, (iii) the need to balance potential risks and benefits or (iv) to reduce costs when intensive treatment is not neces-
sary.25,26 Also, the use of sequential treatments implies multiple clinical decisions to be taken throughout the course of
the study. These clinical decisions are formalized through ATSs.

Based on the number of treatments and treatment switches, various competing ATSs may be developed and they may be
compared to one another in a so-called sequential multiple assignment randomized trial (SMART).25,27 SMARTs are
multi-stage randomized trial designs that are used to inform on the development of multiple ATSs embedded in it. The
use of SMART designs allows researchers to evaluate the timing, sequencing and adaptive selection of treatments by
using randomization and developing the best sequence(s) of treatments that lead to the optimal outcomes in the long
term. In SMARTs, participants are allowed to switch through multiple stages, where each stage corresponds to a clinical
decision, and subjects may be randomized at each stage. Sequenced randomization ensures that at each decision point the
groups of participants assigned to the intervention options are balanced in terms of patient characteristics. This adds flexi-
bility, allowing participants to remain on those treatments that are having an effect and giving the possibility to switch away
to patients being treated with less effective options. This has made SMART designs appealing in a broad variety of health
care, behavioural and psychological settings.

Multiple ATSs are embedded in a SMART and the main question in the design phase of a SMART is howmany subjects
should be assigned to each ATS, and whether an unequal allocation is better than an equal allocation. Some recent papers
studied the relation between sample size and power for SMART designs,25,28–34 but did not study the optimal allocation of
units to treatment sequences and the loss of efficiency of using equal rather than unequal allocation.

The aim of this paper is to derive optimal allocations of units for a prototypical SMART design. This is a two-stage
design where all units are randomized to two treatment conditions in the first stage. Those who respond to their assigned
treatment are not re-randomized in the second stage, while those who do not respond are re-randomized to two second-
stage treatments. This design was considered earlier by NeCamp et al.32 in the setting of a cluster-randomized trial. In
our contribution, we focus on individual randomization. We focus on sample sizes to be used when comparing two
ATSs that start with different first-stage treatments. Four of such pairwise comparisons can be made in their prototypical
SMART design, and one comparison may be of more importance than another. We therefore use multiple-objective
optimal design methodology to consider all comparisons simultaneously, while taking into account their relative import-
ance.35 Multiple-objective optimal designs are useful when the study has multiple and conflicting objectives, such multiple
pairwise comparisons of marginal means of ATSs in a SMART. It combines these objectives in one optimality criterion and
tries to seek a design that is highly efficient for each of these criteria. We provide a Shiny App to calculate the optimal
allocation of units and to evaluate the efficiency of the design with equal allocation. We demonstrate our optimal
design methodology on the basis of a SMART example that compares two different treatments, nutrition (NUT) and phy-
sical activity (PHY), for weight loss management. Our focus is on SMARTs with a quantitative outcome with individual
randomization. In other words, we do not focus on cluster-randomized SMARTs or other complex SMART designs with
clustered data.

The remainder of our contribution is organized as follows. Section ‘Prototypical SMART design’ further discusses the
prototypical SMART design and its embedded ATSs. Furthermore, this section introduces the example of weight loss man-
agement. Section ‘Derivation of the optimal design’ derives the optimal allocation of units for studies in which either the
total sample size or the budget is fixed. In the latter case, we consider the realistic situation where costs may vary across
treatment conditions. The optimal allocation turns out to depend on the subjects’ probabilities to respond to their first-stage
treatment. We therefore also focus on maximin optimal designs that are robust to incorrect prior estimates of these prob-
abilities. Furthermore, Section ‘Derivation of the optimal design’ introduces the Shiny App that we developed for finding
the optimal design. Section ‘A SMART example’ demonstrates our optimal design methodology on the basis of the weight
loss example. It shows how the optimal design is influenced by the costs per treatment, proportion of responders to first-
stage treatments and the relative importance of the four pairwise comparisons. Section ‘Discussion’ summarizes our find-
ings, discusses limitations of this contribution and gives directions for future research.

Prototypical SMART design
Before we focus on the prototypical SMART, we rehearse some general ingredients for arbitrary SMART (see for instance
Ertefaie et al.,36 but using different notation). The observed covariates and treatment assignment at stage k are denoted
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Ok and Xk , respectively, and �Ok and �Xk denote the covariate and treatment histories up to and including stage k. Within a
SMART multiple ATSs are embedded; these are denoted di, i = 1, . . . , I . An ATS is basically a treatment trajectory and
denoted by a vector of counterfactual treatment assignments for a given individual j. If the SMART has two stages, then
di = (X1, XR

2 , X
NR
2 ), where XR

2 is the treatment assignment in the second stage had the subject responded, and XNR
2 is the

treatment assignment in the second stage had he or she not responded. So, for a subject who responds, XNR
2 is not observed,

and for a subject who does not respond XR
2 , hence di is called a vector of counterfactual treatments. The observed treatment

history only includes the treatments a subject has actually been assigned to �X 2 = (X1, X2). At the end of each stage k, a
tailoring variable is measured which determines if a subject has responded to the treatment in that stage or not. In other
words, this variable determines which treatment the subject is assigned to in the subsequent stage. At the end of the
study (i.e. at the end of the final stage) the continuous outcome variable Yj is measured on each subject. These outcomes
are then used to compare different ATSs to one another.

The prototypical SMART design is visualized in Figure 1. This design has been used in various research fields;
published examples of its use in the treatment and long-term management of many chronic conditions include
weight loss,26,37,38 substance abuse,39,40 cancer research,41,42 adolescent depression,43 adolescent conduct problems,44

suicide,45 and attention-deficit/hyperactivity disorder.46

The prototypical SMART is a two-stage design with two first-stage treatments A and B; the proportions randomized to
these treatments are denoted p1 and 1− p1, respectively. After some amount of time it is determined which subjects
respond to their first-stage treatment, depending on some criterion such as a sufficient amount of weight loss or
smoking cessation. The response rates to first-stage treatments A and B are equal to γ1 and γ2, respectively. Those subjects
who respond to their first-stage treatment are not further randomized, but receive second-stage treatment C or F, depending
on their first-stage treatment. This may be the same as the first-stage treatment, but may also be another treatment or dis-
continuation of treatment with or without further monitoring. Those subjects who do not respond to their first-stage

Figure 1. A scheme of the prototypical sequential multiple assignment randomized trial (SMART) design from NeCamp et al.32 Circled

‘R’ denotes randomization at each stage. p1 and (1− p1) are, respectively, the proportions of subjects receiving first-stage treatments

A and B. p2 and (1− p2) are, respectively, the proportions of subjects receiving second-stage treatments D and E for non-responders

starting with first-stage treatment A. p3 and (1− p3) are, respectively, the proportions of subjects receiving second-stage treatments

G and H for non-responders starting with first-stage treatment B. γ1 and γ2 indicate, respectively, response rates for the first-stage

treatments A and B.
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treatment are further randomized. Non-responders who received first-stage treatment A are randomized to second-stage
treatments D and E, with proportions p2 and 1− p2, respectively. Such a second-stage treatment may be an intensified
version of the first-stage treatment A, treatment A augmented with another treatment (which may be first-stage treatment
B), first-stage treatment B, or an entirely different treatment. In the same manner, non-responders who received first-stage
treatment B are randomized to two second-stage treatments G and H. This design includes eight different treatment con-
ditions, where some of the second-stage treatments may be the same as the first-stage treatments or a combination of them.

Four ATSs are embedded in the prototypical SMART design, see Table 1. For instance, the first ATS, denoted d1,
assigns all subjects to first-stage treatment A. Responders receive second-stage treatment C while non-responders
receive second-stage treatment D.

The primary analysis goal of a SMART design is usually one of the following: (i) comparing first-stage intervention
options; (ii) comparing second-stage intervention options; (iii) comparing two or more embedded ATSs in the study start-
ing with the same first-stage intervention option or (iv) comparing two or more embedded ATSs in the study starting with
different first-stage intervention options.31 In the derivation of our optimal design, we focus on embedded ATSs that start
with different first-stage treatments, which is a common primary aim in SMARTs.32

Example: weight loss management
Bariatric surgery is an effective treatment for obese patients to lose weight. Given its costs, potentially harmful side effects
and the risk of death, patients in the Netherlands are only considered eligible if they can demonstrate they have previously
attempted other means to lose weight. Two treatments are an increase in PHY and a change in NUT.

Figure 2 visualises the example SMART design. All patients are first randomized to either PHY or NUT. Then, at the
end of the first stage, subjects are categorized as responders or non-responders, according to some predefined definition
of response, for example, a threshold for weight loss after a given period of time. Non-responders are then re-randomized
to second-stage treatments, regardless of their treatment in the first-stage. They either switch to the other treatment or
pursue with a combination of both treatments (NUT+ PHY) in the second stage. Responders are not re-randomized
and pursue with their first-stage treatment. This example is visualized in Figure 2. Four different ATSs are embedded
within this prototypical SMART design: (i) d1 = (PHY, PHYR, NUTNR), (ii) d2 = (PHY, PHYR, (NUT+ PHY)NR),
(iii) d3 = (NUT, NUTR, PHYNR) and (iv) d4 = (NUT, NUTR, (NUT+ PHY)NR). The superscript R refers to
second-stage treatment assigned to responders, while the superscript NR denotes second-stage treatment assigned to
non-responders.

The SMART design of this example is a simplification of the prototypical SMART design in the sense that just two
treatments are involved. Responders continue with their first-stage treatment, while non-responders are randomized to
the other treatment or a combination of both treatments. This specific SMART design was previously used for, among
others, the treatment of anxiety disorder,25 obsessive–compulsive disorder47 and chronic pain.48

Derivation of the optimal design

Introduction
For a given ATS di, i = 1, . . . , 4, let Yj, j = 1, . . . , Ndi be the continuous primary outcome of interest for the jth
subject as measured at the end of stage 2, with Ndi denoting the number of subjects whose treatment trajectories are

Table 1. The four ATSs embedded in the prototypical SMART design.

ATS label First-stage treatment Status at the end of first-stage Second-stage treatment

d1 A Responder C

Non-responder D

d2 A Responder C

Non-responder E

d3 B Responder F

Non-responder G

d4 B Responder F

Non-responder H

ATS: adaptive treatment strategy; SMART: sequential multiple assignment randomized trial.
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consistent with the ATS di. Yj is supposed to have E(Yj) = μi and Var(Yj) = σ2, for all j = 1, . . . , Ndi . We assume
common variance σ2 across all four ATSs. The target parameter μi, the marginal mean outcome expected under
ATS di, depends on the proportion of responders to first-stage treatment in ATS di in the population. It is
estimated by a weighted average of the observed outcomes of subjects whose treatment trajectories are consistent
with di.

31

The weights follow from the fact that there is a structural imbalance between responders and non-responders: the non-
responders are re-randomized but the responders are not. For instance, for ATS d1, responders have a probability of p1 of
receiving the treatment sequence they actually received, and their subject-specific weights are Wj = 1 / p1. For non-
responders, this probability is p1p2 and hence their weight is Wj = 1 / p1p2. Here p1 is the randomization probability to
treatment A in the first-stage and p2 is the randomization probability to treatment C in the second-stage. The weights
are the inverse of the probabilities, hence the weighting is called inverse probability weighting. By using these weights,
the relative contribution of the responders and non-responders in the calculation of the weighted mean outcome in ATS
d1 is the same as when this ATS had not been embedded in a SMART. In other words, since the ATS is embedded in
a SMART, the non-responders have a higher weight than the responders to account for the fact that some of them are ran-
domized to treatment E, rather than treatment D. This is a generalization from the work of Ghosh et al.31 in the sense that we
allow the proportions p1 and p2 to be unequal to 0.5. For the other ATSs, subject-specific weights can be obtained in a
similar way.

The weighted mean for the continuous primary outcome of interest for ATS di is equal to

�Ydi =
∑Ndi

j WjYj∑Ndi
j Wj

(1)

Figure 2. A scheme of the example SMART design on weight loss. Circled ‘R’ denotes randomization at each stage. p1 and (1− p1) are,
respectively, the proportions of subjects receiving the two first-stage treatments: PHY and NUT. p2 and (1− p2) are, respectively, the
proportions of subjects receiving second-stage treatments NUTand NUT+ PHY for subjects starting with PHYas first-stage treatment.

p3 and (1− p3) are, respectively, the proportions of subjects receiving second-stage treatments PHY and NUT+ PHY for subjects

starting with NUTas first-stage treatment. γ1 and γ2 indicate, respectively, response rates for the first-stage treatments PHY and NUT.

SMART: sequential multiple assignment randomized trial; PHY: physical activity; NUT: nutrition.
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The expected value of this weighted mean is given by

E(�Ydi ) =
∑Ndi

j WjE(Yj)∑Ndi
j Wj

= μi (2)

Equation (2) shows that the weighted mean is an unbiased estimator of the marginal mean. The variance of the weighted
mean is equal to

Var(�Ydi ) = σ2
∑Ndi

j W 2
j∑Ndi

j Wj

( )2 (3)

For each ATS di, the variance of the weighted mean is computed using the subject-specific weights. First, the expected
number of people in the trial whose treatment trajectories are consistent with di is computed for each ATS. For d1, this
is equal to

E(Nd1 ) = Np1γ1 + Np1(1− γ1)p2, (4)

with the first term on the right side representing the expected number of responders and the second being the expected
number of non-responders. The proportions p1 and p2 are defined as above, while N is the total sample size of the
SMART and γ1 is the response rate to first-stage treatment A.

Following from (4), we obtain

∑Nd1

j
Wj = 1

p1
Np1γ1 +

1

p1p2
Np1(1− γ1)p2 = N (5)

∑Nd1

j
W 2

j = 1

p21
Np1γ1 +

1

( p1p2)
2 Np1(1− γ1)p2 =

Nγ1
p1

+ N (1− γ1)

p1p2
(6)

The variance for the weighted mean �Yd1 , for ATS d1, is obtained by plugging (5) and (6) into (3):

Var(�Yd1 ) =
σ2

N

γ1p2 + (1− γ1)

p1p2
(7)

The right side of (7) consists of two factors. The first is the common variance of a mean, while the second is used to account
for the fact that subjects may be re-randomized. This second factor is a function of the response rate γ1 to first-stage treat-
ment A.

Using their respective subject-specific weights, formulae for the variance of the weighted mean �Ydi for the other ATSs
are obtained in a similar way; these are shown in Table 2.

We consider pairwise comparisons of ATSs that start with different first-stage treatments. The expected difference
in weighted means of two such ATSs di and di′ (with i = 1 or 2 and i′ = 3 or 4) is μi − μi′ with the corresponding
variance

Var(�Ydi − �Ydi′ ) = Var(�Ydi )+ Var(�Ydi′ )+ 2Cov(�Ydi , �Ydi′ ) = Var (�Ydi )+ Var(�Ydi′ ) (8)

where Cov(�Ydi , �Ydi′ ) = 0 if we assume that weighted means of ATSs that start with different first-stage treatments are inde-
pendent. This assumption holds as long as outcomes of subjects from ATSs that start different first-stage treatments are
independent

Table 2. Variance for the weighted mean �Ydi for the four adaptive treatment strategies (ATSs) embedded.

di Var(�Ydi )

d1 = (A, CR, DNR) σ2γ1p2+(1−γ1)
Np1p2

d2 = (A, CR, ENR) σ2γ1(1−p2)+(1−γ1)
Np1(1−p2)

d3 = (B, FR, GNR) σ2γ2p3+(1−γ2)
N(1−p1)p3

d4 = (B, FR, HNR) σ2γ2(1−p3)+(1−γ2)
N(1−p1)(1−p3)
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Considering the ATSs embedded in our example, four possible pairwise comparisons exist, with corresponding variances:
(i) Φ13 = Var(�Yd1 − �Yd3 ); (ii) Φ14 = Var(�Yd1 − �Yd4 ); (iii) Φ23 = Var(�Yd2 − �Yd3 ) and (iv) Φ24 = Var(�Yd2 − �Yd4 ), with �Ydi

being the weighted mean for the continuous primary outcome variable of interest for the ATS di, i = 1, . . . , 4. Formulae
for the variance of these comparisons can be derived by plugging in the variances of the single ATSs as reported
in Table 2.

The optimal design ξ∗ii′=( p∗1, p
∗
2, p

∗
3) for objective Φii′ is the one among all designs ξ = ( p1, p2, p3) in the design space

Ω = (0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 1) for which Var(�Ydi − �Ydi′ ) is minimized. Each objective has its own optimal
design. For instance, the optimal design for Φ13 is ξ

∗
13=(0.5, 1, 1), which implies both first-stage treatments have rando-

mization probability 0.5, all non-responders in first-stage treatment A receive second-stage treatment D, and all non-
responders to first-stage treatment B receive second-stage treatment G. The optimal designs for the other objectives are
ξ∗14=(0.5, 1, 0), ξ∗23=(0.5, 0, 1) and ξ∗24=(0.5, 0, 0). The optimal design for one objective does not only hold for the
other single objectives, but it may also perform poorly.49 For that reason, a multiple-objective optimal design is used,
so that all of the four pairwise comparisons are taken into account simultaneously. We do so by using a weighted sum
of the four objectives, where weights are to be chosen by the user. The use of weights allows placing more emphasis
on the one objective than another, subject to the researcher’s interests and the goals of the study. A constraint is put on
the weights such that their sum is equal to 1. The optimal design problem becomes a multiple-objective optimal design
problem. The aim is to minimize the optimality criterion

Φ = Φ13λ13 +Φ14λ14 + Φ23λ23 +Φ24λ24 (9)

with λii′ being the weight assigned to the respective objective Φii′ . The corresponding optimal design is a so-called
compound-optimal design.

Optimal design under a fixed total sample size
In this scenario, the optimal design is sought under a fixed total sample size N. This is a realistic scenario when studying
treatments for a rare disease or condition, but it can also be used when resource constraints allow recruiting a fixed number
of subjects. It is assumed that a priori estimates of the response rates γ1 and γ2 are available.

The optimal design minimizes the objective in (9); it is found by taking the gradient of (9) with respect to p1, p2 and p3.
The optimal proportions for the second-stage treatments are given by

p∗2=
������������
(λ13 + λ14)

√
������������
(λ23 + λ24)

√ + ������������
(λ13 + λ14)

√ (10)

and

p∗3=
������������
(λ13 + λ23)

√
������������
(λ13 + λ23)

√ + ������������
(λ14 + λ24)

√ (11)

It is worth noting that the optimal second-stage proportions p∗2 and p
∗
3 do not depend on the response rates γ1 and γ2, or on

the total sample size N, but only on the choice of the weights. In particular, p∗2 increases as λ13 and/or λ14 increase. This is
obvious since objectives Φ13 and Φ14 are comparisons that include treatment D, and more efficient comparisons can be
made if more subjects are assigned to this treatment. Similarly, p∗3 increases when λ13 and/or λ23 increase. This is also
obvious since objectives Φ13 and Φ23 are comparisons that include treatment G, and more efficient comparisons can be
made if more subjects are assigned to this treatment.

The optimal randomization probability for the first-stage treatment A takes on a more complicated form:

p∗1=
��
φ

√
��
ψ

√ + ��
φ

√ (12)

where

ψ = [(γ2p
∗
3+(1− γ2))(λ13 + λ23)(1− p∗3)+ (γ2(1− p∗3)+ (1− γ2))(λ14 + λ24)p∗3]p

∗
2(1− p∗2) (13)

φ = [(γ1p
∗
2+(1− γ1))(λ13 + λ14)(1− p∗2)+ (γ1(1− p∗2)+ (1− γ1))(λ23 + λ24)p∗2]p

∗
3(1− p∗3) (14)

p∗1 depends on both γ1 and γ2, and on the optimal proportions p∗2 and p∗3, while it does not depend on N. A detailed der-
ivation of the optimal design is given in the online supplement.

Morciano and Moerbeek 2477



Optimal design under a fixed budget
In this scenario, we consider a budgetary constraint: the total costs C for treating subjects should not exceed the budget B.
The costs are calculated as

C = cANA + cBNB + · · · + cHNH (15)

where cA are the costs per subject in treatment A and NA are the number of subjects who receive treatment A, and similarly
for the other treatments B to H. The costs may vary across subjects and are assumed to be known beforehand. The sample
sizes are stochastic since they depend on the proportions p1, p2 and p3 and response rates γ1 and γ2. In the derivation of the
optimal design, we use their expected values. For the first-stage treatments, we have

E(NA) = p1N and E(NB) = (1− p1)N (16)

for the second-stage treatments C, D and E, we have

E(NC) = γ1p1N and E(ND) = γ1p1p2N and E(NE) = γ1p1(1− p2)N (17)

and for the second-stage treatments F, G and H, we have

E(NF) = γ2(1− p1)N and E(NG) = γ2(1− p1)p3N and E(NH) = γ2(1− p1)(1− p3)N (18)

For a given budget, the total sample size N that can be used decreases when the costs increase. This implies that a design is
not only determined by the proportions but also by the total sample size: ξ = ( p1, p2, p3, N ). The optimal design is found
in a numerical manner through a domain search algorithm, see the online supplement for more details.

Robust optimal design
The optimal design depends on the response rates γ1 and γ2, hence the optimal design is locally optimal. These parameters
are often unknown in the design stage of a SMART and an educated a priori guess based on expert opinions or findings in
the literature should be used. There is, however, no guarantee that such a guess is correct and robust optimal design meth-
odology may be used to protect against a loss of efficiency due to a misspecification of the response rates. We use maximin
optimal design methodology50 to allow specification of intervals, rather than point estimates, of the two response rates.

The maximin optimal design ξMMD maximizes the minimal relative efficiency (RE) among all designs in the design
space Ω. In other words, it selects the best of the worst-case scenarios. The maximin optimal design can be found
using the following three steps:

1. Define the parameter space for the response rates and the design space Ω for the proportions. For instance, the first
response rate γ1 may be between 0.2 and 0.3 and the second response rate γ2 may be between 0.35 and 0.45. The
design space is Ω = (0 ≤ p1 ≤ 1, 0 ≤ p2 ≤ 1, 0 ≤ p3 ≤ 1).

2. For each possible combination of the two response rates in the parameter space, compute the locally optimal design
ξLOD. Then compute the RE of each design ξ in Ω compared with the locally optimal design: RE = Φ(ξLOD) / Φ(ξ).

3. For each design in Ω, find its smallest RE value within the parameter space. Then, select the design that has the highest
minimum RE across all designs in the design space. This is the maximin optimal design ξMMD and its minimum RE is
called the maximin value.

This procedure yields the design which is most robust to a misspecification of the response rates and it can be used when
working under a fixed budget or under a fixed total sample size.

Statistical power for the optimal design
Once the optimal allocation to treatments has been derived, it makes sense to determine how much power the study has for
each of the four pairwise comparisons of ATSs 51. The following steps should be taken in such a power analysis:

1. Calculate the variance Var(�Ydi ) for each of the four ATSs in the SMART. For the case of a fixed total sample size this
can be done easily by plugging in the optimal proportions p∗1, p

∗
2 and p∗3 and total sample size N into the equations of

Table 2. For the case of a fixed budget, first, the total sample size N has to be calculated from the budget, costs and
optimal proportions. This can be done on the basis of equations (15) to (18), as is further explained in the online
supplement.
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2. For each of the four pairwise comparisons of ATSs: calculate Var(�Ydi − �Ydi′ ) from equation (8).
3. For each of the four pairwise comparisons of ATSs, get a prior estimate of the expected difference in

marginal means μi − μi′ . A prior estimate may be obtained from the literature or an expert’s expectations. As an
alternative, one may use the minimal relevant effect size, that is, the smallest effect size that is considered to be
relevant.

4. For each of the four pairwise comparisons of ATSs, select the type I error rate α and decide whether a one-sided or
two-sided test has to be performed.

5. For each of the four pairwise comparisons of ATSs, calculate the power. For a one-sided alternative use the following
equation:

1− β = z−1 |μi − μi′ |
Var(�Ydi − �Ydi′ )

− z1−α

( )

where Var(�Ydi ) and Var(�Ydi′ ) are the variances of the two ATSs to be compared, z1−α is the (1− α)th quantile of the stan-
dard normal distribution and z−1 is the inverse of the standard normal distribution. For a two-sided alternative, α has to be
replaced by α / 2.

Shiny app
We developed a Shiny app52 to facilitate finding the optimal design; it is available from https://andreamorciano.shinyapps.
io/OptimalSMART/. It calculates locally optimal designs for a fixed total sample size as well as a fixed budget. In the first
case, the user should specify the total sample size, in the latter case, he or she should specify the costs per treatment along
with the budget. Furthermore, an a priori estimate of the two response rates should be specified to find the locally optimal
design. The numerical algorithm that finds the optimal design for the budgetary constraint has a precision of 0.00002 for the
optimal proportions.

The Shiny app can also be used to find the maximin optimal design. It that case intervals [γ1 − 0.05, γ1 + 0.05]
and [γ2 − 0.05, γ2 + 0.05] are considered around the user-specified values γ1 and γ2. These intervals are
continuous; in our algorithm, we use a step size of 0.01 to discretize these intervals, while a step size of 0.05 is
used for the response rates. In the case the reader is interested in using a different step size, he/she can contact the
first author.

A SMARTexample

Introduction
We apply the optimal design methodology to the example of the weight loss management study of Figure 2. Participants
are randomized to two first-stage treatments: PHY and NUT. A response is defined as a (absolute or relative) loss in
body weight that exceeds a user-selected threshold value. We use three sets of a priori guesses for the two response
rates of the two first-stage treatments: (γ1, γ2) = (0.15, 0.25), (γ1, γ2) = (0.25, 0.40) and (γ1, γ2) = (0.40, 0.55).
In each case, we choose a larger value for NUT than for PHY, as previous research has demonstrated that PHY
produces smaller bodyweight loss than diet (NUT).53 For the first set of response rates, the definition of a response
is most stringent, resulting in the smallest response rates, and for the third it is most lenient, resulting in the highest
response rates.

We consider three sets of weights for the multiple-objective optimal design (9). The first considers each comparison to
be of equal importance, which implies that equal weights are used: (λ13, λ14, λ23, λ24) = (0.25, 0.25, 0.25, 0.25). The
second puts more emphasis on those comparisons where second-stage treatments are either PHY or NUT, but not a com-
bination of the two. In this case, researchers are mainly interested in the comparison between d1 = (PHY, PHYR, NUTNR)
and d3 = (NUT, NUTR, PHYNR) rather than the other ones. Designs with a single second-stage treatment are less expen-
sive, they may be easier to implement by the researchers and easier to adhere to by the participants. As an illustration we use
(λ13, λ14, λ23, λ24) = (0.70, 0.10, 0.10, 0.10). The third set of weights puts more emphasis on those second-stage treat-
ments that are a combination of NUT and PHY, for instance, because there is a believe combined treatment is more effect-
ive. In that case the main focus is on the comparison between d2 = (PHY, PHYR, (NUT+ PHY)NR) and
d4 = (NUT, NUTR, (NUT+ PHY)NR). As an illustration we use (λ13, λ14, λ23, λ24) = (0.10, 0.10, 0.10, 0.70).

For this specific example, we developed another version of our Shiny app; this is available at https://andreamorciano.
shinyapps.io/OptimalSMART2/.
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Locally optimal design under a fixed total sample size
For each combination of (γ1, γ2) and (λ13, λ14, λ23, λ24), the optimal design is given in Table 3, along with the RE of the
balanced design (where p1 = p2 = p3 = 0.50) as compared to the optimal design. We observe the optimal design hardly
depends on the response rates, but it does depend on the weights. For each set of weights, the optimal design dictates
(about) equal randomization to first-stage treatments. For the first set of weights, the optimal design is (almost) equal to
the balanced design and the RE of the balanced design is 1. For the second set of weights more than half (two-thirds)
of participants are randomized to single second-stage treatments. This is obvious because the chosen weights put more
emphasis on the comparison of single second-stage treatments. For the third set of weights, less than half (one-third) of
participants are randomized to single second-stage treatments. This is also obvious because the chosen weights put
more emphasis on the comparison of combined second-stage treatments. The optimal proportions p∗2 and p∗3 for the
second set of weights are the complement of those for the third set of weights. In all cases, the RE of the balanced
design is above 0.9, which implies it performs rather well as compared to the optimal design.

The results do not necessarily apply to other combinations of weights and response rates, so a researcher who is planning
a SMART is advised to use our Shiny app to derive the optimal design for the trial at hand, and to do a sensitivity analysis to
study how the optimal design is influenced using by various realistic combinations of weights and response rates.

Locally optimal design under a fixed budget
To find the optimal design under a budgetary constraint, the costs for both treatments and the budget need to be defined. We
assume both stages are of equal length, so the costs do not vary across stages. The costs for combined treatment are the sum
of the costs for both single treatments. We consider two sets of costs for NUT (CN) and PHY (CP): (CN, CP) = (300, 50)
and (CN, CP) = (300, 300). Let us assume the costs are expressed in euros and the length of each stage is one month. The
costs for NUT are a reasonable amount to buy healthy food for one participant per month in the Netherlands. The costs for
PHY in the first set cover a subscription to the local gym for one month, those in the second set also include personal train-
ing by a fitness coach. Furthermore, the budget is B = 100, 000. For the response rates and the weights, we consider the
same sets of values as in Section ‘Locally optimal design under a fixed total sample size’.

For (CN, CP) = (300, 50), the optimal proportion p∗1 is somewhat above 0.5, which implies that in the first stage more
subjects are randomized to the least expensive treatment PHY than to the more expensive treatment NUT. The optimal
proportion p∗1 hardly depends on the chosen weights, but it slightly increases with increasing response rates. Higher
response rates imply more subjects receive the same treatment in stage 2 as they did in stage 1. It is therefore advantageous
to already randomize more subjects to the least expensive treatment PHY in stage 1, so that more subjects receive this treat-
ment in stage 2 as well. For (CN, CP) = (300, 300), both first-stage treatments are equally expensive and the optimal pro-
portion p∗1 is (about) 0.5. It hardly depends on the chosen weights and the response rates.

The optimal proportions p∗2 and p∗3 hardly depend on the response rates but they do depend on the chosen weights.
For the first set of weights, (λ13, λ14, λ23, λ24) = (0.25, 0.25, 0.25, 0.25), somewhat more subjects are randomized to
the single second-stage treatments NUT or PHY than to the combined second-stage treatment PHY+NUT. This is
obvious since single second-stage treatments are less expensive than combined treatments. For the second set of
weights, (λ13, λ14, λ23, λ24) = (0.70, 0.10, 0.10, 0.10), even more subjects are randomized to single second-stage
treatments than for the first set of weights. This is also obvious because the second set of weights puts more emphasis
on the comparison of those ATSs with single second-stage treatments. For the third set of weights,
(λ13, λ14, λ23, λ24) = (0.10, 0.10, 0.10, 0.70), more subjects are randomized to combined second-stage treatments than

Table 3. Locally optimal design: optimal proportions for first-stage (p∗1) and second-stage (p
∗
2, p∗3) treatments for three different sets of

weights (λ13, λ23, λ14, λ24) for the multiple-objective optimal design, and for three different sets of response rates (γ1, γ2). The relative
efficiency (RE) of the balanced design is also provided. The optimal proportions are derived under a fixed total sample size.

(λ13, λ23, λ14, λ24) =
(0.25, 0.25, 0.25, 0.25)

(λ13, λ23, λ14, λ24) =
(0.70, 0.10, 0.10, 0.10)

(λ13, λ23, λ14, λ24) =
(0.10, 0.10, 0.10, 0.70)

γ1 γ2 p∗1 p∗2 p∗3 RE p∗1 p∗2 p∗3 RE p∗1 p∗2 p∗3 RE

0.15 0.25 0.50 0.50 0.50 1 0.50 0.67 0.67 0.91 0.50 0.33 0.33 0.91

0.25 0.40 0.51 0.50 0.50 1 0.51 0.67 0.67 0.92 0.51 0.33 0.33 0.92

0.40 0.55 0.51 0.50 0.50 1 0.51 0.67 0.67 0.93 0.51 0.33 0.33 0.93
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to single second-stage treatments, which is also obvious because this set of weights puts more emphasis on the comparison
of ATSs with combined second-stage treatments.

The optimal total sample size N∗ depends on the combination of costs (CN, CP). As is obvious, fewer subjects can be
included for CP = 300 than for CP = 50. Furthermore, N∗ depends on the weights: most subjects can be included for the
second set of weights and fewest for the third set of weights. For the second set of weights, more subjects are randomized to
the least expensive single second-stage treatments, hence a larger total number of subjects can be included. Finally, more
subjects can be included when the response rates increase. Subjects who respond to treatment are not re-randomized, hence
they receive a single treatment in the second-stage. Single treatments are less expensive than combined treatments, hence
more subjects can be included.

The RE of the balanced design slightly depends on the response rates. It is also related to the weights. The RE is highest
for the first set of weights, since the optimal proportions are nearest to those of the balanced design. Slightly lower relative
efficiencies are found for the third set of weights, but these relative efficiencies are still above 0.9. The lowest relative effi-
ciencies are observed for the second set of weights as the optimal proportions deviate most from those of the balanced
design. The lowest RE is RE = 0.85, which implies that the balanced design requires 100%[1− (1 / 0.85)] = 17%
more subjects than the optimal design.

Robust optimal design
The optimal designs that were presented in subsections ‘Locally optimal design under a fixed total sample size’ and
‘Locally optimal design under a fixed budget’ are locally optimal since they depend on the response rates γ1 and γ2.
Such response rates are often unknown in the design phase of a SMART and an educated a priori guess must be given.
There is, however, no guarantee such a guess is correct, and an incorrect guess may result in a suboptimal design. This
problem may be overcome by using robust optimal design methodology; here we use the maximin optimal design meth-
odology as described in section ‘Robust optimal design’.

Tables 5 and 6 in the online supplement show maximin optimal designs using the same sets of weights and combina-
tions of costs as in Tables 3 and 4. The ranges used for the response rates are [γ1 − 0.05, γ1 + 0.05] and
[γ2 − 0.05, γ2 + 0.05], where γ1 and γ2 are the values in Tables 3 and 4.

A comparison of Table 3 and Table 5 of Supplemental material, and Table 4 and Table 6 of Supplemental material
shows the locally optimal designs and maximin optimal designs are (almost) identical for the chosen sets of weights,
response rates and costs. As a result, the minimal RE of the balanced design as given in Tables 5 and 6 of
Supplemental material is almost equal to that of the RE of the balanced design in Tables 3 and 4. This result is not
surprising since in Sections ‘Locally optimal design under a fixed total sample size’ and ‘Locally optimal design
under a fixed budget’, it was shown that the optimal design hardly depends on the response rates. Of course,
this finding does not necessarily hold for all combinations of responses rates, weights and costs. The user is
therefore encouraged to apply maximin optimal design methodology in the case the response rates are likely to be
misspecified.

Table 4. Locally optimal design: optimal proportions for first-stage (p∗1) and second-stage (p
∗
2, p∗3) treatments for three different sets of

weights (λ13, λ23, λ14, λ24) for the multiple-objective optimal design and for three different sets of response rates (γ1, γ2). The relative

efficiency (RE) of the balanced design is also provided. The optimal proportions are derived under a fixed budget with C = 100, 000 and
for two different sets of costs (CP, CN).

(λ13, λ23, λ14, λ24) =
(0.25, 0.25, 0.25, 0.25)

(λ13, λ23, λ14, λ24) =
(0.70, 0.10, 0.10, 0.10)

(λ13, λ23, λ14, λ24) =
(0.10, 0.10, 0.10, 0.70)

γ1 γ2 p∗1 p∗2 p∗3 N∗ RE p∗1 p∗2 p∗3 N∗ RE p∗1 p∗2 p∗3 N∗ RE

(CN, CP) = (300, 50)
0.15 0.25 0.56 0.52 0.56 243 0.98 0.55 0.68 0.72 255 0.85 0.56 0.35 0.39 232 0.93

0.25 0.40 0.58 0.52 0.56 250 0.97 0.57 0.68 0.72 259 0.86 0.58 0.35 0.39 241 0.93

0.40 0.55 0.60 0.52 0.55 265 0.96 0.60 0.68 0.71 272 0.86 0.60 0.35 0.38 257 0.92

(CN, CP) = (300, 300)
0.15 0.25 0.50 0.55 0.55 141 0.99 0.50 0.71 0.71 149 0.85 0.50 0.38 0.38 133 0.96

0.25 0.40 0.51 0.55 0.54 144 0.99 0.51 0.71 0.71 152 0.87 0.51 0.38 0.38 138 0.96

0.40 0.55 0.51 0.54 0.54 149 1 0.51 0.70 0.70 155 0.89 0.51 0.38 0.37 143 0.96
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Discussion
Considering our example of a prototypical SMART design, we derived the optimal design ξ∗=( p∗1, p∗2, p∗3) both under a
fixed sample size and budget constraint. Under a fixed sample size, we found that the optimal probability in the first-stage
p∗1 is mostly influenced by the weights chosen for the multiple-objective optimal design, while it is only slightly influenced
by the response rates. On the other hand, second-stage optimal probabilities are only influenced by the choice of the
weights. When considering the second set of weights (λ13, λ14, λ23, λ24) = (0.70, 0.10, 0.10, 0.10) or the third set,
(λ13, λ14, λ23, λ24) = (0.10, 0.10, 0.10, 0.70), which, respectively, put more emphasis on the use of single and com-
bined treatments, the optimal design ξ∗ performs better than the balanced design ξb = (0.50, 0.50, 0.50), although the
latter still achieves a RE above 0.90. When equal weights are used, ξ∗ and ξb perform almost identically in terms of RE.

Under a fixed budget, the optimal proportions are influenced also by the cost of treatments, besides the aforementioned
weights and response rates. When including cost of treatments into account, the performance in terms of RE of the optimal
design ξ∗, with respect to ξb, improves. The reason might be that unequal allocation of patients to intervention options
seems to work better under a fixed budget than under a fixed sample size, as was also previously stated in the literature.2,3

It is especially advised to use the optimal design rather than the balanced design when the second set of weights,
(λ13, λ14, λ23, λ24) = (0.70, 0.10, 0.10, 0.10), is used. For this set, ξb may have a RE as low as 0.86. When using
equal weights for the multiple-objective optimal design, ξb achieves a RE with respect to ξ∗ above 0.95. When using
the third set of weights, (λ13, λ14, λ23, λ24) = (0.10, 0.10, 0.10, 0.70), ξb achieves a RE above 0.90.

It should be mentioned that the optimal designs are locally optimal, as they depend on the two unknown response rates
γ1 and γ2. One way to address this issue is using maximin optimal design methodology. In our example, the maximin
optimal designs are quite similar to the locally optimal designs. In other words, the locally optimal designs are rather
robust with respect to mild misspecification of the response rates. However, this finding does not always hold and it is
advocated to derive a maximin optimal design if there is uncertainty about the a priori guesses of the response rates.

We derived our optimal design under the assumption that outcomes of subjects in ATSs that start with different first-
stage treatments are independent of each other, resulting in a zero correlation between weighted mean outcomes of ATSs
starting with different first-stage treatments. There are situations in which this assumption may be violated. Consider for
instance the situation in our weight loss example where just a limited number of personal trainers is available. It may then
occur, a personal trainer trains subjects from ATSs starting with different first-stage treatments. In such a case, the out-
comes of subjects who have been trained by the same personal trainer become dependent because of the trainer’s skills,
enthusiasm, experience, etc. In such a case, the assumption of independence is violated and hence our optimal design is
not applicable. Such a problem can be easily solved by letting each personal trainer only train subjects from ATSs that
start with the same first-stage treatment.

One limitation of this study is that it does not take clustered data structures into account, while such data may also occur
in SMARTs.54,55 Clustered data occur, among others, in cluster-randomized trials and multicentre trials. In such studies not
only the total number of subjects in each treatment sequence needs to be determined, but also the number of clusters and
cluster size.56 The optimal design will depend on the intraclass correlation coefficient, which measures the degree of
dependence of outcomes within the same cluster.

Another limitation of this study is that formulae and methodology only apply to the prototypical SMART designs in
Figures 1 and 2. Based on the number of treatments, stages and randomizations, different SMART designs can be devel-
oped, of which many examples exist in the literature57,58 and online.59 It would be necessary to study optimal designs for
such other types of SMART designs.

To our knowledge, this is the first paper that studies optimal allocation to treatments in SMARTs. Our Shiny App allows
researchers in the fields of biomedical, health and social sciences to derive the optimal design for their SMART and to
calculate the efficiency of a balanced design. We hope that this paper will further contribute to the development and imple-
mentation of SMARTs.
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