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A B S T R A C T   

The combination of tumor ablation and immunotherapy is a promising strategy against tumor relapse and 
metastasis. Photothermal therapy (PTT) triggers the release of tumor-specific antigens and damage associated 
molecular patterns (DAMPs) in-situ. However, the immunosuppressive tumor microenvironment restrains the 
activity of the effector immune cells. Therefore, systematic immunomodulation is critical to stimulate the tumor 
microenvironment and augment the anti-tumor therapeutic effect. To this end, polyethylene glycol (PEG)-sta-
bilized platinum (Pt) nanoparticles (Pt NPs) conjugated with a PD-L1 inhibitor (BMS-1) through a thermo- 
sensitive linkage were constructed. Upon near-infrared (NIR) exposure, BMS-1 was released and maleimide 
(Mal) was exposed on the surface of Pt NPs, which captured the antigens released from the ablated tumor cells, 
resulting in the enhanced antigen internalization and presentation. In addition, the Pt NPs acted as immune 
adjuvants by stimulating dendritic cells (DCs) maturation. Furthermore, BMS-1 relieved T cell exhaustion and 
induced the infiltration of effector T cells into the tumor tissues. Thus, Pt NPs can ablate tumors through PTT, and 
augment the anti-tumor immune response through enhanced antigen presentation and T cells infiltration, 
thereby preventing tumor relapse and metastasis.   

1. Introduction 

Radiotherapy, chemical and biological ablation, photodynamic 
therapy (PDT) [1], cryoablation, photothermal therapy (PTT) and 
electric or microwave-based ablation [2–4] are minimally invasive 
strategies for treating unresectable local tumors [5,6]. PTT triggers 
cancer cell death and destruction of the tumor microvasculature through 
hyperthermia following exposure to near-infrared (NIR) light. In fact, 
the necrotic and apoptotic tumor cells remaining after PTT release an-
tigens that may elicit a tumor-specific immune response [7–9] and 
facilitate the production of pro-inflammatory factors [10,11], although 

this response is not sufficient to eliminate the residual malignant cells 
[12–15]. Therefore, it is necessary to combine tumor ablation with 
systematic immunomodulation to augment the tumor-specific immune 
response [16–18]. 

Platinum nanoparticles (Pt NPs) [19] are selectively toxic against 
cancer cells [20–24] and undergo photothermal conversion through 
non-radiative relaxation [25] under near-infrared resonance (NIR) 
exposure [26], resulting in targeted hyperthermia [27–30] and 
antigen-release [31,32]. In addition, ultra-small NPs also act as adju-
vants [33] to stimulate dendritic cells (DCs) maturation [34,35]. 
Adequate antigen presentation [36] is crucial for eliciting a 
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tumor-specific immune response [37,38]. Therefore, it is vital to facili-
tate antigen recognition and antigen presentation in order to optimize 
stimulation of effector immune cells. Antigens captured by Maleimide 
(Mal)-modified nanoparticles (NPs) would form the in-situ vaccines, 
resulting in improved antigen presentation [39,40]. However, since Mal 
is highly sensitive to most proteins, Mal-modified NPs can potentially 
bind to non-antigenic proteins as well [41]. Therefore, shielding the Mal 
moiety before antigen exposure may improve antigen capture efficiency. 
Finally, the DCs subsequently activated by the Pt NPs would present the 
processed antigens to T cells after internalizing cellular debris contain-
ing tumor-associated antigens, thereby triggering an immune response 
[42]. 

While PTT eliminates most tumor cells, those remaining can induce 
an immunotolerant microenvironment [43,44], which severely limits 
the efficacy of anti-cancer immunotherapies [45–47]. For example, tu-
mors escape immune elimination by upregulating PD-L1, which then 
binds to the inhibitory receptor PD-1 on tumor-specific T cells and re-
strains T cell activation and proliferation [48,49]. Thus, PD-1/PD-L1 
checkpoint blockade [50] alleviates T-cell exhaustion and induces the 
infiltration of activated T cells [51]. The PD-L1 small molecule inhibitor 
(BMS-1) offers several advantages over therapeutic antibodies in the 
context of immune checkpoint blockade (ICB) therapy, such as lower 
production costs, higher stability, improved tumor penetration and low 
immunogenicity [52–54]. In addition, BMS-1 can be easily modified 
with a furan functional group, which can shield Mal through a 
Diels-Alder reaction before antigen release. Furthermore, the 
retro-Diels-Alder reaction in response to the heat generated by 

photothermal conversion can reverse Mal protection by releasing BMS-1 
[55–57]. 

Therefore, combining Pt NPs with BMS-1 in a smart response system 
is a promising strategy against cancer relapse and metastases. In this 
study, we conjugated BMS-1 with Mal-modified PEG via thermo- 
sensitive Diels-Alder reaction, and synthesized I-Pt NPs with BMS-1 
conjugated PEG as the capping agents to improve biocompatibility 
and functionality (Scheme 1). In response to NIR laser irradiation, the I- 
Pt NPs undergo photothermal conversion and trigger PTT mediated 
tumor ablation. The ensuing hyperthermia releases BMS-1 and uncaps 
Mal. Tumor-associated antigens released from the cellular debris are 
then captured by the exposed Mal through the sulfhydryl groups on 
proteins and presented by the APCs [39]. In the presence of tumor an-
tigens released from the necrotizing cells in-situ [58], the Mal-Pt NPs 
exhibit vaccine-like [59,60] properties (triggering DCs maturation and 
capturing antigens) and recruit DCs into the tumor microenvironment 
[61]. Finally, the BMS-1 released in response to hyperthermia relieves 
the immunosuppressive tumor microenvironment and further augments 
the immune response. The stimuli-responsive exposure of Mal groups on 
the NPs avoids non-specific binding and improves the efficiency of 
antigen-capturing. Taken together, this novel nano-system can syner-
gistically augment immunological responses and photothermally ablate 
tumors. Therefore, a systematic immunomodulation immunotherapy 
that synergizes antigen exposure, antigen capture, and T cell activation 
can augment the anti-tumor immune responses [62] and prevent cancer 
relapse and metastasis [63–66]. 

Scheme 1. Schematic illustration of Pt NPs conjugated with BMS-1 through hyperthermia-sensitive linkage for NIR-controlled release of inhibitor and 
exposure of Mal. A thermal-sensitive release and Mal deprotection procedure is achieved by the Retro D-A reaction. Exposed Mal on the surface of Pt NPs captures 
the antigens from ablated tumor cells and promotes antigen presentation. The released BMS-1 alleviates T cell exhaustion and induces infiltration of effector T cells. 
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2. Materials and methods 

2.1. Materials 

K2PtCl4 was bought from Shandong Boyuan Chemical Company, 
China. N,N′-Dicyclohexylcarbodiimide (DCC), 4-dimethylaminopyri-
dine (DMAP), furfuryl alcohol, Rhodamine B (RhB) and NaBH4 were 
purchased from Aladdin. Maleimide-PEG2k-COOH (Mal-PEG2k-COOH) 
and PD-L1 inhibitor (BMS-1) were purchased from Xi’an ruixi Biological 
Technology Co., Ltd, China. mPEG2k-OH was purchased from Sigma- 
Aldrich. Fetal bovine serum (FBS), Dulbecco’s modified eagle medium 
(DMEM) and Roswell Park Memorial Institute 1640 (RPMI-1640) were 
purchased from Thermo-Fisher. OVA was purchased from InvivoGen. 3- 
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and 
Hoechst 33258 were bought from Sigma-Aldrich. Granulocyte-macro-
phage colony stimulating factor (GM-CSF), interleukin-4 (IL-4), Lipo-
polysaccharide (LPS), enhanced bicinchoninic acid (BCA) protein assay 
kit, hematoxylin and eosin (H&E) were purchased from Beijing Solarbio 
Science & Technology Co., Ltd. The DeadEnd™ fluorometric TUNEL 
system for apoptosis detection was purchased from Promega Corpora-
tion, USA. Enzyme linked immunosorbent assay (ELISA) kits were pur-
chased from Lengton Biotechnology, China. Anti-CD80/FITC, Anti- 
CD86/APC and Anti-CD11c/PE-Cy7 were purchased from Bioss 
Biotechnology Co., Ltd., Beijing, China. FITC anti-mouse CD3 Antibody, 
APC anti-mouse CD8a Antibody, APC anti-mouse CD4 Antibody, PE 
anti-mouse CD25 Antibody, PE anti-mouse CD44 Antibody, PE-Cy5.5 
anti-mouse CD62L Antibody and anti-mouse CD16/32 were purchased 
from Biolegend. 

2.2. Modification of PEG 

RhB (100 mg, 208 nmol), furfuryl alcohol (81.83 mg, 832 nmol), 
DCC (64.60 mg, 313 nmol) and DMAP (12.73 mg, 104 nmol) were added 
to the anhydrous polymerization bottle and resolved with anhydrous 
CH2Cl2 (10 mL). The reaction was kept at room temperature for 3 days. 
A drop of water was added to terminate the reaction and DCC was 
converted to DCU which was removed by freezing filtration. Furfuryl 
RhB was obtained by settling with cold ether and filtration. The obtained 
Furfuryl RhB was characterized by 1H NMR and ESI-MS. Furfuryl BMS-1 
was obtained according to the same process. 

Mal-PEG2k-COOH (50 mg, 25 nmol) and furfuryl RhB (109 mg, 210 
nmol) were mixed and dissolved in anhydrous CH2Cl2 (10 mL). The 
reaction was kept at room temperature for 7 days. After rotary evapo-
ration, the product was dissolved in H2O and dialyzed for 3 days to 
remove the unreacted furfuryl RhB. The obtained RhB-PEG2k-COOH (R- 
PEG2k-COOH) was characterized by 1H NMR. Conjugation of Mal-PEG- 
COOH (50 mg, 25 nmol) with furfuryl BMS-1 (116 mg, 210 nmol) was 
operated in similar procedures to obtain BMS-1-PEG2k-COOH (I-PEG2k- 
COOH). 

2.3. Synthesis of M-Pt NPs (mPEG2k-COOH capped Pt NPs), R-Pt NPs 
(R-PEG2k-COOH capped Pt NPs) and I-Pt NPs (I-PEG2k-COOH capped Pt 
NPs) 

K2PtCl4 (20 mg, 48.2 nmol), mPEG2k-NH2 (50 mg, 25 nmol) and 
mPEG2k-COOH (100 mg, 50 nmol) were dissolved in H2O, and stirred for 
4–8 h NaBH4 dissolved in H2O was added to the reaction system and 
stirred for another 4 h at 25 ◦C. The resulted Pt NPs were dialyzed 
against water for 3 days to remove the redundant NaBH4. R-Pt NPs or I- 
Pt NPs were synthesized through the same procedure by replacing 
mPEG2k-COOH with R-PEG2k-COOH or I-PEG2k-COOH. 

2.4. Photothermal responses of Pt NPs 

Pt NPs were irradiated with an 808 nm laser at intensity of 0.8 W/ 
cm2 for 10 min and deionized water was measured as a control. Different 

Pt NPs concentrations and laser intensity were applied to determine the 
optimal photothermal activity. Various concentrations (1.32, 0.66, 0.3, 
0.22, 0.16, 0.08 mM) of Pt NPs in individual 96-well plates were irra-
diated with the 808 nm laser at different power density of 0.8 W/cm2 for 
10 min. Pt NPs (0.22 mM, 200 μL) were irradiated with 808 nm laser at 
different power densities (0.50, 0.75, 1.00, 1.25, 1.50 W/cm2) for 10 
min. Temperature changes of the solution were monitored by a ther-
mocouple probe. Thermocouple probe and the laser path were kept in a 
parallel direction. Secure digital (SD) card was used to record the data 
every 10 s. 

2.5. Triggered release of RhB and BMS-1 

R-Pt NPs in 24-well plates (0.22 mM) were irradiated with the 808 
nm (0.8 W/cm2) laser for different time (0 s, 30 s, 60 s, 2 min, 3 min, 4 
min, 5 min). And then fluorescence images of the solution were acquired 
at predetermined time (excitation wavelength, 488 nm; emission 
wavelength, 515 nm). Afterwards, the solution was diluted in tenfold 
and the fluorescence spectrum was measured (excitation wavelength, 
520 nm; emission wavelength, 550–700 nm). 

I-Pt NPs in 24-well plates (0.22 mM) were irradiated with 808 nm 
laser (0.8 W/cm2) for different time and the released BMS-1 was 
collected by the ultrafiltration tube (3000 Da, 3000 r/min, 15 min). 
Analytical HPLC was carried out to quantify the released BMS-1 with a 
UV/Vis variable wavelength detector, on an AQ C18 column at 25 ◦C 
and at 0.8 mL min− 1 with CH3OH: H2O = 3:1. All chromatograms were 
recorded at λ = 214 nm. 

2.6. Cell lines and animals 

Mouse breast cancer 4T1 was bought from Institute of Biochemistry 
and Cell Biology, Chinese Academy of Sciences, and cultured with 
DMEM (10% fetal bovine serum; 5% CO2 at 37 ◦C). DC 2.4 was pur-
chased from Fenghui Biological Technology Co., Ltd, China, and 
cultured with 1640 (10% fetal bovine serum; 5% CO2 at 37 ◦C). Bone 
marrow-derived DCs (BMDCs) were extracted from the femur and tibia 
bones of Balb/c and cultured in 10 mL RPMI 1640 medium containing 
10% FBS, 10 ng/mL GM-CSF and 5 ng/mL IL-4. (5% CO2 at 37 ◦C) [58] 
Female Balb/c mice (6–8 weeks) were bought from Liaoning Chang-
sheng Biotechnology Co., Ltd., China. All animal experiments have been 
approved and carried out according to the guidelines of Changchun 
Institute of Applied Chemistry Studies Committee, Chinese Academy of 
Sciences. 

2.7. Antigen-capturing of Pt NPs 

Pt NPs, R-Pt NPs, I-Pt NPs (1 mM, 200 μL) in individual 96-well plates 
were irradiated with the 808 nm laser (0.8 W/cm2) for 5 min. Irradiated 
Pt NPs were diluted 10 times and the released RhB or BMS-1 was 
removed and washed with the ultrafiltration tube (3000 Da, 3000 r/min, 
15 min). The remained Pt NPs were incubated with OVA for 24 h at 
37 ◦C. Excess OVA was removed and washed with the ultrafiltration tube 
(100 kDa, 3000 r/min, 15 min) for at least 5 times. Diameter and Zeta 
potential of Pt NPs after incubation with OVA were tested. 

4T1 cells were seeded at a concentration of 5000 cells/well into 96- 
well plates and incubated overnight at 37 ◦C. Then 100 μL of M-Pt NPs, 
R-Pt NPs, I-Pt NPs were added to the well at a final concentration of 1 
mM and cultured for 24 h. All the groups were irradiated with 808 nm 
laser (0.8 W/cm2) for 5 min and then incubated for another 24 h. The 
residual NPs were isolated and excess H2O2 was added to destroy the 
NPs and remove the influence of Pt NPs on the BCA kit. Subsequently, 
the captured protein was quantified with BCA kit [41]. 

2.8. Cellular uptake of Pt NPs and OVA-Pt NPs 

5 × 105 4T1 and DC2.4 cells were incubated in 6-well plates 
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overnight respectively. Pt NPs were added to the well at a final con-
centration of 50 μM and incubated for 1 h, 6 h and 12 h at 37 ◦C. Cell 
samples were washed with ice-cold PBS three times and counted before 
testing. Concentrated nitric acid, H2O2 and water were added sequen-
tially to decompose organic substances in the cells and Pt concentration 
was determined with ICP. 

OVA (20 mg) was dissolved in sodium carbonate buffer (10 mL, pH 
9.8, 25 mM) and then mixed with FITC (400 μL, 1 mg/mL) at 4 ◦C 
overnight under stirring. The mixtures were dialyzed (MWCO = 7000 
Da) against water for 2 days. After that, the purified solution was 
lyophilized to obtain OVA-FITC. 

R-Pt NPs and I-Pt NPs (1 mM, 1 mL) were irradiated with 808 nm 
laser (0.8 W/cm2). Released RhB or BMS-1 was removed and washed 
with the ultrafiltration tube (3000 Da, 3000 r/min, 15 min). FITC-OVA 
(1 mL) was added to the Mal exposed I-Pt NPs (+), R-Pt NPs (+), or M-Pt 
NPs (+) and incubated for 24 h at 37 ◦C in dark. Excess FITC-OVA was 
washed with the ultrafiltration tube (100 kDa, 3000 r/min, 15 min). 
Bone marrow-derived DCs (BMDCs) extracted from the femur of Balb/c 
were incubated with FITC-OVA-Mal-Pt NPs, FITC-OVA-M-Pt NPs, or 
FITC-OVA (quantified by UV absorption at 488 nm) for 24 h. Flow 
cytometry was then used to determine the uptake of FITC by BMDCs. 

2.9. Cytotoxicity of Pt NPs 

4T1 cells were cultured and irradiated in the same process as above 
and MTT was used to determine the cytotoxicity of Pt-NPs after irradi-
ation. The standard MTT test was applied to measure the cell viabilities 
relative to untreated cells. 

2.10. Pt NPs-based PTT induces DC maturation and stimulates the 
expression of pro-inflammatory cytokines in vitro 

DC2.4 cells were seeded in 24-well plates and treated with Pt NPs (1 
nM, 10 nM and 100 nM) or lipopolysaccharides (LPS) at 1 μg/mL. After 
incubating for 24 h, confocal fluorescence was used to visualize the 
maturation status of DC2.4 by staining FITC-CD80 (excitation: 488 nm). 

In another transwell system, 4T1 cancer cells were seeded in the 
upper chamber and treated with Pt NPs, R-Pt NPs or I-Pt NPs (1 mM, 200 
μL). NIR laser irradiation was applied to ablate these cells. Then this 
upper chamber was placed onto another lower chamber seeded with 
BMDCs. Micro pores (pore size 1 μm) between two chambers facilitate 
the diffusion of NPs and tumor antigen, so they can interact with BMDCs 
in the lower chamber. BMDCs were co-stained with CD11c (the specific 
marker of DCs), CD80 and CD86 (maturation markers) and analyzed 
with flow cytometry to determine the maturation content. Supernatants 
of BMDCs were collected and various factors such as IL-1β and IL-12p70 
were analyzed with ELISA kits according to vendors’ instructions. 

2.11. Accumulation of Pt NPs in the nearest lymph nodes 

Healthy mice were subcutaneously injected with Pt NPs. The nearest 
lymph nodes were isolated and weighted. Pt concentration was quan-
tified with ICP as above. Mice were injected with FITC-OVA-Mal-Pt NPs, 
FITC-OVA-M-Pt NPs, or FITC-OVA and fluorescence images of the 
nearest lymph nodes were acquired 6 h later. 

2.12. Pt NPs-based PTT induces DC maturation and stimulates the 
expression of pro-inflammatory cytokines in vivo 

To investigate the adjuvant effect of Pt NPs in vivo, healthy mice were 
subcutaneously injected with Pt NPs at various doses. After 24 h, cells in 
the nearest lymph nodes were isolated and stained with PE-Cy7/CD11c 
(the specific marker of DCs), FITC/CD80 and APC/CD86 (the matura-
tion marker of DCs) for flow cytometry measurement. 

To investigate the maturation status of DCs after Pt NPs-based PTT in 
vivo, 4T1 tumor-bearing mice were injected with M-Pt NPs, R-Pt NPs, I- 

Pt NPs (1.25 mg/kg) intratumorally. The tumor sites of the mice in the 
photo group were exposed to 808 nm laser with a power density of 0.8 
W/cm2 for 5 min. Mice were sacrificed at 12 h post injection of Pt NPs 
and the maturation status of DCs in the nearest lymph nodes was 
assessed using flow cytometry by co-staining with PE/Cy7-CD11c, FITC- 
CD80 and APC-CD86. Serum samples were isolated from mice after 
various treatments and diluted for analysis. IL-1β, TNF-α, IL-12p70 and 
IL-6 were analyzed with ELISA kits as above. All measurements were 
carried out in triplicate. 

2.13. In vivo animal models 

Remote memory model of Pt NPs-based photothermal therapy. For 
the first tumor inoculation, 4T1 cells (1 × 106) suspended in PBS were 
subcutaneously injected into the left flank mammary gland of each 6- 
week female Balb/c mouse to develop an orthotopic tumor model. For 
the second tumor inoculation, 4T1 cells (2 × 105) suspended in PBS were 
subcutaneously injected into the right flank of each female Balb/c 
mouse. Mice bearing 4T1 tumors received different treatment when 
their first tumor volumes reached 100–150 mm3. Mice were randomly 
divided into six groups (n = 8), including: (1) Saline, (2) M-Pt NPs, (3) R- 
Pt NPs, (4) I-Pt NPs, (5) M-Pt NPs (+), (6) R-Pt NPs (+), (7) I-Pt NPs (+). 
For photothermal therapy of the first tumor, mice were intratumorally 
injected with Pt NPs (1.25 mg/kg). After injection, tumors were irradi-
ated with NIR light (0.8 W/cm2, 808 nm) for 5 min. IR thermal imaging 
was conducted by an IR thermal camera (Infrared Cameras. Inc.). The 
tumor volume was calculated every other day according to the following 
formula: (width2 × length)/2. At the end of the experiment, mice were 
sacrificed and tumors were excised, weighed and photographed. Serum 
of each group of mice was collected for the testing of ELISA and other 
clinical chemical parameters. The tumors were harvested to produce a 
single-cell suspension according to the specified procedures. The har-
vested cells were further stained with several fluorochrome-conjugated 
antibodies: FITC-CD3, APC-CD4, PE-CD25 or FITC-CD3, APC-CD8. 

Memory evaluation of Pt NPs-based photothermal therapy on a 
recurrence model. On Day − 7, 4T1 cells (1 × 106) suspended in PBS 
were subcutaneously injected into the left flank mammary gland of each 
6-week female Balb/c mouse to develop an orthotopic tumor model. On 
Day 1, mice were grouped and treated with photothermal therapy as 
same as the first tumor introduced as mentioned above. On Day 21, 
another small tumor was inoculated into the left leg by subcutaneously 
injecting 4 × 105 cell and calculated the tumor free rate for 2 weeks. The 
spleens were harvested to produce a single-cell suspension according to 
the specified procedures. The harvested cells were further stained with 
several fluorochrome-conjugated antibodies: FITC-CD3, APC-CD8, PE- 
CD44 and Percp/Cy5.5-CD62L. 

Memory evaluation of Pt NPs-based photothermal therapy on a lung 
metastasis tumor model. On day − 7, 4T1 cells were subcutaneously 
injected to develop an orthotopic tumor model as mentioned above. On 
Day − 1, mice were challenged by i.v. injection of 4T1 tumor cells (1 ×
105). On Day 1, mice were grouped and treated with photothermal 
therapy as above. For the control group, mice received surgery treat-
ment to remove the primary subcutaneous tumors. On Day 58, animals 
were sacrificed for H&E staining. At the same time, the other mice were 
sacrificed right after being injected with India ink through the trachea. 
Lungs were then excised, bleached with Fekete’s solution [67] for 10 
min, followed by washing with Fekete’s solution. Tumor metastasis sites 
subsequently appeared as white nodules on the surface of black lungs 
and were counted under a microscope. 

2.14. Cytokine detection 

Supernatants of BMDCs and serum samples were isolated from mice 
after various treatments and diluted for analysis. IL-12, IL-1β, IL-6 and 
TNF-α were analyzed with ELISA kits according to vendors instructions. 
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2.15. Analysis of immune cells after different treatment by flow sight 

To study the immune cells in lymph nodes, tumors and spleen, single- 
cell suspensions were prepared according the existing protocol. Specif-
ically, tissues were excised at the end of the study, and were transferred 
to a dish and cut into small pieces (less than 1 mm3). The pieces were 
incubated in 1 mL of digestion solution (400 μg/mL type I collagenase 
and 100 μg/mL type IV collagenase in RPMI-1640 medium containing 
10% FBS) and incubated at 37 ◦C for 2 h with persistent agitation. The 
suspensions were filtered by a 200-mesh sieve to remove the remained 
tissues and then collected the cells by centrifugation at 1,500 rpm for 10 
min at 4 ◦C. The supernatant was discarded. 3–5 fold volume of Diluted 
Red Blood Cell Lysis Buffer was added and incubated for 1–2 min. And 
then cells were washed with PBS 7.4. Trion-100 was added to increase 
the permeability of the cells and facilitate the intracellular receptor 
staining if necessary. And then the cells were washed with PBS 7.4 and 
blocked the Fc-Receptors with anti-mouse CD16/32. Finally, cells were 
stained with fluorescence-labeled antibodies. For the analysis of the 
maturation status of DCs, DCs collected from lymph nodes were stained 
with PE/Cy7-CD11c, FITC-CD80, APC-CD86. DCs were CD11c+ and 
maturation DCs were CD11c+CD80+CD86+. For the analysis of the im-
mune response at the tumor site, cells collected from the secondary 
tumor of the mice after various treatment were splited in half and 
stained with antibodies cocktails of FITC-CD3, APC-CD8 or FITC-CD3, 
APC-CD4, PE-CD25 respectively. Cytotoxic T lymphocytes (CTL) and 
helper T cells were CD3+CD8+ and CD3+CD4+, respectively. CD4+

helper T cells were classified into effective T cells (CD3+CD4+CD25-) 
and regulatory T cells (Tregs) (CD3+CD4+CD25+). For analysis of 
memory T cells, spleen harvested from mice after various treatment 
were extracted a sing-cell suspension and stained with antibodies of 
FITC-CD3, APC-CD8, PE-CD44 and Percp/Cy5.5-CD62L according to the 
manufacturer. Central memory T cells (TCM) and effector memory T cells 
(TEM) were CD3+CD8+CD62L+CD44+ and CD3+CD8+CD62L− CD44+, 
respectively. 

2.16. Immunohistochemistry (IHC) 

At the end of tumor inhibition study, mice were sacrificed. Lung and 
tumor were excised and collected, fixed with 4% neutral buffered 
paraformaldehyde, embedded in paraffin, and then the tissues were cut 
into slices of 2 μm thick using microtome YD-1508A and mounted onto 
glass slides. For histological analysis, all the tissues were stained with 
H&E and visualized by BioTek Cytation™ 5. The aforementioned sliced 
tumor tissue sections were used for in situ nick-end labelling of nuclear 
DNA fragmentation with a TUNEL apoptosis detection kit according to 
the supplier’s instructions and analyzed by BioTek Cytation™ 5. 

2.17. Statistical analysis 

Data were expressed as mean ± SD. The one-way ANOVA analysis 
was used to determine the statistical significance using no significance: 
n.s, *P < 0.05, **P < 0.01, ***P < 0.001. 

3. Results and discussion 

3.1. Preparation and characterization of Pt NPs 

Three kinds of Pt NPs were obtained. M-Pt NPs and R-Pt NPs were 
synthesized as controls to prove the different function of I-Pt NPs. M-Pt 
NPs had mPEG as capping agents and exhibited PTT and ensuing DCs 
maturation. The capping agent for R-Pt NPs was the rhodamine B (RhB)- 
furan-Mal-functionalized PEG (R-PEG2k), which had the additional 
function of antigen-capturing. Finally, BMS-1-furan-Mal-functionalized 
PEG (I-PEG2k) endowed the I-Pt NPs with all the above properties, 
along with PD-1/PD-L1 blockade. I-PEG2k and R-PEG2k were obtained 
by esterifying BMS-1 (PD-L1 inhibitor) or RhB with furfuryl alcohol and 

conjugating to Mal-functionalized carboxyl-PEG2k (Mal-PEG2k-COOH) 
via a Diels–Alder reaction between furan and Mal groups (Fig. S1). The 
synthesis of furfuryl BMS-1 (or furfuryl RhB) was verified by 1H-NMR 
and electrospray ionization mass spectrometry (ESI-MS) (Fig. S2-3) and 
that of R-PEG2k and I-PEG2k by 1H-NMR (Fig. S4-5). All three kinds of Pt 
NPs in this work were synthesized by reducing K2PtCl4 with NaBH4 in 
the presence of mPEG2k-NH2 [68,69]. M-Pt NPs, R-Pt NPs and I-Pt NPs 
were synthesized with mPEG2k-COOH [70], R-PEG2K-COOH and 
I-PEG2k-COOH as the respective capping agents. The molar ratio of 
loading BMS-1 to Pt in the synthesized Pt NPs is 1:1. As shown in the 
TEM images in Fig. 1a, the Pt NPs showed a homogeneous size distri-
bution. The broad characteristic X-ray diffraction (XRD) peaks at 39.46 
(111), 45.88 (200) and 67.32 (220) corresponded to the face 
center-cubic (f.c.c.) structure of standard Pt NPs (JCPDS, card no. 4-802) 
[71–73] (Fig. 1b). UV–vis spectroscopy and high-resolution Pt4f XPS 
spectrum also confirmed the Pt NPs structure [74,75], which laid the 
basic foundation for the photothermal convertion. (Fig. 1c and Fig. S6a). 
The hydrodynamic size of M-Pt NPs, R-Pt NPs and I- Pt NPs were 5.615 
nm, 4.849 nm and 4.849 nm respectively, and the ζ potential were − 4.9 
eV, − 7.2 eV and − 5.1 eV (pH 6.0) and − 19.9 eV, − 15.7 eV and − 20.5 eV 
(pH 7.0) according to dynamic light scattering (DLS) measurements 
(Fig. 1d and e). Pt NPs of varying concentrations were irradiated with an 
808 nm laser at 0.8 W/cm2 for 10 min, and different laser power outputs 
were used to illuminate 0.22 mM Pt NPs (Fig. 1f and Fig. S6b) to obtain 
heating curves. As shown in Fig. S6c, all Pt NPs were photothermally 
stable even after five cycles of heating and cooling [76,77]. The pho-
tothermal conversion efficiency of Pt NPs was calculated as 14.76% as 
previously described (Fig. S6d, e) [78]. 

3.2. Pt NPs released BMS-1 and captured tumor antigens in response to 
NIR light 

[4 + 2] cycloaddition between a diene and a dienophile shows 
thermal reversibility [79–81]. The retro-Diels-Alder reaction, or dien-
e/dienophile generation from cyclohexane, can be stimulated by NIR 
irradiation [82–84]. This is the first study to show that the photothermal 
effect of Pt NPs can achieve retro-Diels-Alder reaction. When the tem-
perature of I-Pt NPs (or R-Pt NPs) aqueous solution was raised to 50 ◦C 
upon NIR exposure, the reverse reaction between furan and Mal resulted 
in the controlled release of BMS-1 (or RhB), along with the deprotection 
of Mal. As shown in Fig. 1g, the fluorescence emission from RhB was 
efficiently quenched by the Pt NPs in the absence of any photothermal 
effect. However, NIR (808 nm, 0.8 W/cm2) triggered release of RhB from 
the Pt NPs surface showed significant fluorescence emission [57] 
(Fig. S6g and Fig. 1h), and the intensity of fluorescence increased in a 
time-dependent manner (Fig. S6h). The fluorescence spectra of the 
released RhB were consistent with that of standard RhB (Fig. S6f). 
Likewise, the BMS-1 was released after 2 min of NIR exposure and the 
amount increased with prolonged irradiation (Fig. 1i and Fig. S6i). In 
addition, Mal was de-protected on the surface of Pt NPs and character-
ized by 1H-NMR. The specific chemical shift of Mal re-appeared on 
1H-NMR after photothermal conversion (Fig. S7). 

The exposed Mal groups at the end of PEG chains captured tumor 
antigens through the reaction with the protein sulfhydryl groups. As 
shown in Fig. 1j, the diameter of R-Pt NPs and I-Pt NPs (after illumi-
nation) incubated with ovalbumin (OVA) was significantly greater 
compared to control particles, indicating successful antigen-capturing. 
Consistent with this, the zeta potential of the I-Pt NPs (after illumina-
tion) incubated with OVA decreased from − 4.5 mV to − 16.6 mV and the 
R-Pt NPs decreased from − 7.7 mV to − 17.4 mV. While M-Pt NPs showed 
few changes in diameter and zeta potential (Fig. 1k). The different Pt 
NPs (1 mM) were incubated with 4T1 cells (24 h) and illuminated with 
NIR (808 nm, 0.8 W/cm2). The uptake of Pt NPs was evaluated by ICP 
(Fig. S10b). The prepared Pt NPs were slightly toxic at dark, but cell 
survival was significantly reduced under light conditions (Fig. S10a). At 
the same time, the amounts of antigens captured by I-Pt-NPs increased 
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gradually as irradiation time goes by (Fig. S10c). The R-Pt NPs and I-Pt 
NPs captured 0.61 mg/mL and 0.62 mg/mL tumor proteins respectively 
compared to only 0.2 mg/mL by the M-Pt NPs (Fig. 1l). 

3.3. Pt NPs induced DC maturation and antigen-capturing function 

To evaluate the adjuvant function of Pt NPs, DC2.4 cells were incu-
bated with different concentrations of Pt NPs or 0.1 μg/mL lipopoly-
saccharides (LPS) for 24 h and labeled with CD80-FITC. As shown in 
Fig. 2a, the proportion of CD80+ mature DCs increased significantly in 
the presence of the Pt-NPs in a concentration-dependent manner, indi-
cating that Pt NPs acted as an adjuvant and induced DC maturation. 
Likewise, mice injected with 1.25 and 2.5 mg/kg Pt NPs had respectively 
5 and 6-fold higher numbers of mature DCs in the nearest lymph nodes 
compared to the controls (Fig. 2b and Fig. S8a). 

Given the selective accumulation of Pt NPs in the lymph nodes 
(Fig. 2l, m), it raises the possibility of Pt NPs transporting the tumor 
antigens released during PTT into the lymph nodes via the DC cells, and 
eliciting an immune response after antigen presentation. In fact, ultra- 
small nanoparticles are known to accumulate in lymphatic capillaries 
and nodes through lymphatic drainage [85,86]. In addition, mobilizing 
the resident DCs of lymph nodes can achieve sustained delivery of an-
tigens and immunomodulatory substances to professional APCs in the 
lymphoid environment [87]. FITC-OVA were synthesized as previously 
described to represent antigens released from ablated tumor cells. It was 
found that the antigen captured by R-Pt NPs were more likely to be 
engrafted by bone marrow-derived DCs (BMDCs) (Fig. 2c and Fig. S8b), 

and accumulated in the nearest lymph nodes (Fig. 2n). 
To further validate the effect of Pt NPs-induced PTT on DC matura-

tion, primary murine BMDCs were incubated the debris of Pt NPs- 
ablated 4T1 cells in a transwell system (Fig. 2d). Following incubation 
with M-Pt NPs and 4T1 cells in the dark, the proportion of mature 
(CD80+CD86+) DC cells increased slightly from 36.5% (control) to 
41.4%, indicating the inherent adjuvant function of Pt NPs. Upon NIR 
irradiation, however, R-Pt NPs and M-Pt NPs respectively increased the 
proportion of mature DCs to 61.8% and 45% in the presence of 4T1 cells 
(Fig. 2e and Fig. S9a). These findings indicated that the Pt NPs acted as 
adjuvants that promote DC maturation, and antigen-capturing of R-Pt 
NPs exceeded M-Pt NPs due to increased recognition and endocytosis of 
the captured antigens by DC cells. Consistent with this, BMDCs stimu-
lated with R-Pt NPs (+) treated 4T1 cells secrete higher amounts of IL- 
12p70 and IL-1β compared to unstimulated cells (Fig. S9b, c), indi-
cating that antigens released from photothermally ablated tumor cells 
strongly promote DC maturation and activation. 

For in vivo evaluation, the 4T1 tumor-bearing mice were intra-
tumorally injected with Pt NPs (dose = 1.25 mg Pt/kg) with (+) or 
without NIR laser irradiation (808 nm, 0.8 W/cm2, 5 min). The mice 
were sacrificed 12 h post-treatment and the maturation status of DCs in 
tumor draining lymph nodes (TDLN) was analyzed. The proportion of 
CD11c+ DC cells increased from 2.58% to 9.91% in the non-irradiated 
mice treated with M-Pt NPs, and to 13% in the irradiated counter-
parts. The combination of R-Pt NPs and NIR radiation significantly 
increased the proportion of DCs to 16.86% (Fig. 2f and Fig. S9d). In 
addition, the proportion of mature (CD80+CD86+) DC cells in the TDLN 

Fig. 1. Characterization of Pt NPs. (a) TEM images (Scale bars: upper: 20 nm; lower: 200 nm) and (b) XRD of Pt NPs. (c) Absorption spectra of Pt NPs at various 
concentrations. (d) Hydrodynamic diameters and (e) Zeta potential of Pt NPs, R-Pt NPs, I-Pt NPs at pH 6.0 and pH 7.0. (f) Temperature elevation of Pt NPs at various 
concentrations under 0.8 W/cm2 irradiation (808 nm, 10 min). (g) NIR-stimulated release of RhB. (h) Fluorescence imaging and calculation of 1 mM R-Pt NPs upon 
irradiation (808 nm, 0.8 W/cm2) as a function of time. (i) Time-dependent inhibitor release profiles of 1 mM I-Pt NPs in response to NIR (808 nm, 0.8 W/cm2). (j) The 
diameter of Pt NPs (+) after incubation with OVA. (k) Zeta potential of Pt NPs after incubation with OVA. (l) Quantification of proteins captured by Pt-NPs after 
incubating with 4T1 cells under 0.8 W/cm2 irradiation (808 nm, 5 min). Data are presented as the mean ± SEM. The (+) refers to laser irradiation 808 nm, 0.8 W/ 
cm2, 5 min *p < 0.05, **p < 0.01 and ***p < 0.001 from control by t-test. 
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of mice treated with M-Pt NPs, M-Pt NPs (+) and R-Pt NPs (+) were 
33.3%, 61.1% and 82.5% respectively compared to only 17.9% in the 
untreated control (Fig. 2g and Fig. S9e). 

The serum levels of IL-12, IL-1β, IL-6 and tumor necrosis factor α 
(TNF-α) on day 3 were significantly higher in tumor-bearing mice 
treated with Pt NPs-based PTT (dose = 1.25 mg Pt/kg), indicating an 
acute inflammatory response (Fig. 2h–k). IL-12 regulates the activity of 
natural killer (NK) cells, whereas TNF-α is a critical mediator of anti- 
tumor cellular immunity [88,89]. Taken together, the adjuvant func-
tion of R-Pt NPs and I-Pt NPs markedly improved the anti-tumor immune 
response via increased DC maturation and antigen-capturing. 

3.4. Abscopal effect of Pt NPs-based PTT 

PD-1/PD-L1 interaction leads to T cell exhaustion and consequently 
inhibits anti-tumor immune responses. BMS-1 block the PD-1/PD-L1 

checkpoint by inducing dimerization of PD-L1, and have several ad-
vantages over antibody-based immunotherapies such as lower cost, 
extended half-life and low immunogenicity [90,91]. PD-L1 is frequently 
overexpressed on the surface of cancer cells, and soluble PD-L1 (sPD-L1) 
is elevated in the plasma of some cancer patients [92]. The combination 
of BMS-1 and antigen-capturing PTT can therefore synergize T cell 
activation and effective antigen presentation. 

To assess the immunotherapeutic effects of Pt NP-based PTT, a 
bilateral tumor model were established. The primary tumors were 
injected with saline or the different Pt NPs and irradiated with NIR laser 
(808 nm, 0.8 W/cm2, 5 min), whereas the secondary tumor was un-
treated (Fig. 3a). IR thermal imaging showed that the Pt NPs increased 
the temperature at the tumor site by 14.4 ◦C upon irradiation (Fig. 3b). 
The M-Pt NPs and R-Pt NPs had only a slight inhibitory effect on the 
tumors in the non-irradiated mice, whereas the I-Pt NPs significantly 
inhibited tumor growth even in the absence of NIR irradiation, which 

Fig. 2. Pt NPs-induced PTT promotes DC maturation and stimulates the expression of pro-inflammatory cytokines. (a) Representative CLSM image of CD80+

DC2.4 cells incubated with Pt NPs or LPS. (b) Percentage of CD11c+CD80+CD86+ DCs in the nearest lymph nodes after subcutaneous administration of M-Pt NPs. (c) 
Flow cytometry histogram showing FITC-OVA internalization by BMDCs. (d) Schematic representation of the transwell system. (e) Percentage of mature BMDCs after 
R-Pt NPs-based PTT (or Pt NPs-based PTT) in the transwell system. (f) Percentage of CD11c+ DCs in the TDLN. (g) Representative FACS plots showing percentage of 
CD80+CD86+CD11c+ cells in TDLN. (h-k) Cytokine levels in the sera of mice at 12 h, 72 h and 168 h post M-Pt NPs, M-Pt NPs (+) R-Pt NPs (+) and I-Pt NPs (+). (l) 
The accumulation of Pt in the nearest lymph nodes analyzed by ICP. (m) Image of the nearest lymph nodes after subcutaneous administration of Pt NPs (left) and 
without administration of Pt NPs (right). (n) The accumulation of FITC-OVA-Pt NPs in the nearest lymph nodes. Data are presented as the mean ± SEM. The (+) refers 
to laser irradiation 808 nm, 0.8 W/cm2, 5 min *p < 0.05, **p < 0.01 and ***p < 0.001 from control by t-test. 
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can be attributed to the inherent chemical toxicity of the Pt NPs. 
Furthermore, the greater inhibitory effect of the I-Pt NPs is likely due to 
PD-1/PD-L1 blockade. In the irradiated mice treated with M-Pt NPs, the 
average tumor volume increased to 1294 mm3 on day 28, whereas R-Pt 
NPs (+) and I-Pt NPs (+) restricted the tumor growth to 481 mm3 and 
77 mm3 respectively (Fig. 3c, d and Fig. S11a). There was no significant 
weight loss or death in all groups, indicating the lack of any significant 
systematic toxicity of the drugs (Fig. S11c). Furthermore, biochemical 
indices of hepatic and renal function such as alanine aminotransferase 
(ALT), aspartate aminotransferase (AST), uric acid (UA), urea (UREA) 
and creatinine (CREA) were not markedly affected, indicating that there 
was no significant liver or kidney damage as well (Fig. S11d-h). Routine 
H&E staining and TUNEL assay showed that I-Pt NPs (+) significantly 
decreased the number of cancer cells and enhanced the apoptosis rates 
in the tumor tissue (Fig. 3e and f). 

To determine the mechanism underlying secondary tumor inhibi-
tion, infiltration of T cells in the secondary tumors were evaluated on 
day 28 post-treatment. In the non-irradiated mice, the tumors treated 
with I-Pt NPs had more infiltrating CD8+ and CD4+ T cells compared to 
those treated with M-Pt NPs or R-Pt NPs. This strongly indicated that PD- 
1/PD-L1 checkpoint blockade enhanced T cell penetration. The acti-
vated intra-tumoral CD8+ T cells release cytotoxins, perforin, granzymes 
and granulysin that eventually trigger apoptosis in the residual cancer 
cells. We found that the percentage of CD8+ T cells in the secondary 
tumors was 2-fold higher in mice treated with I-Pt NPs (+) compared to 
M-Pt NPs (+), and that of the R-Pt NPs (+) group was 1.5-fold higher 

relative to the M-Pt NPs (+) group (Fig. 3g and Fig. S12). Concomitantly, 
the regulatory T cells comprised 79.3% and 40.8% of the intra-tumoral 
CD4+CD25+ T cells in mice treated respectively with M-Pt NPs (+) and 
R-Pt NPs (+), which can hamper effective anti-tumor immune response. 
Furthermore, the CD8+/CD25+ T cell ratio was 4-fold higher and the 
CD4+/CD25+ T cell ratio was 5-fold higher in the I-Pt NPs (+) group 
compared to the control group (Fig. 3h, i, j and Fig. S13, 14). The 
stronger abscopal effect of R-Pt NPs (+) relative to M-Pt NPs (+) can be 
attributed to antigen-capturing by the former. Consistent with the effect 
of PD-1/PD-L1 blockade, the number of Tregs (CD3+CD4+CD25+) also 
decreased significantly in the I-Pt NPs (+) group compared to the R-Pt 
NPs (+) group. The serum levels of IL-12, IL-1β, IL-6 and TNF-α were 
significantly higher in all treated mice compared to the untreated con-
trol on day 28 (Fig. S15a-d), indicating that Pt NPs-induced PTT elicited 
a substantial level of immunological response. Thus, Pt NPs can photo-
thermally enhance tumor-specific immune responses and inhibit tumor 
growth at distant sites. 

3.5. Pt NPs-induced PTT prevented tumor recurrence by stimulating long 
term immune memory effects 

To determine whether Pt NPs-induced PTT can prevent tumor 
recurrence by eliciting long-term immune memory, a recurrence and 
remote memory mouse model of 4T1 were established (Fig. 4a). Mice 
subjected to I-Pt NPs-based PTT had minimum recurrence rate compared 
to the R-Pt NPs and M-Pt NPs groups (Fig. 4b). In addition, I-Pt NPs- 

Fig. 3. Remote memory model of Pt NPs-induced PTT. (a) Schematic illustration of Pt NPs-induced PTT on a remote memory model. (b) Representative IR thermal 
images of tumor-bearing mice exposed to the NIR laser (808 nm, 0.8 W/cm2, 5 min) after injection with Pt NPs. (c) Representative images of the excised second 
tumors on day 28 following different therapies. (d) Growth curves of the second tumor in the differentially treated mice (n = 8 per group). (e) Representative images 
of H&E stained sections of distant tumors in the indicated groups (scale bar = 100 μm). (f) Representative images of TUNEL stained distant tumor sections in the 
indicated groups (scale bar = 1000 μm). (g–j) Quantification of T cells in the secondary tumors of indicated groups: (g, h) Proportion of tumor-infiltrating CD8+ T 
cells and CD4+ T cells, (i) proportion of tumor-infiltrating CD4+ CD25+ T cells, and (j) ratio of effector to regulatory T cells in the secondary tumors. Data are 
presented as the mean ± SEM. The (+) refers to laser irradiation 808 nm, 0.8 W/cm2, 5 min *p < 0.05, **p < 0.01 and ***p < 0.001 from control by t-test. 
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based PTT significantly decreased the tumor volume and tumor weight 
(Fig. S16a-c). M-Pt NPs and R-Pt NPs slightly inhibited tumor growth 
compared to the untreated control even in the absence of NIR irradia-
tion, implying potential chemotoxicity of Pt NPs. The I-Pt NPs showed 
greater tumor inhibition in comparison to the other Pt-NPs due to PD-1/ 
PD-L1 immune checkpoint blockade. Since the tumor cells remaining 
after PTT are the main cause of tumor relapse, the immune response 
elicited by PTT, antigen-capturing and PD-L1 blockade can eliminate the 
residual tumor cells and prevent recurrence. R-Pt NPs (+) resulted in 
greater tumor inhibition compared to M-Pt NPs (+) since antigen- 
capturing by R-Pt NPs (+) facilitated antigen presentation after PTT. 
Furthermore, the mice treated with I-Pt NPs (+) showed least relapse 
given that the increased infiltration of effector T cells can clear the re-
sidual tumor cells after PTT. There was no significant weight loss in any 
of the treatment groups, indicating low systemic toxicity (Fig. S16d). 
Several mice in the Saline, M-Pt NPs and R-Pt NPs were euthanized due 
to large tumor volume, and the survival rates were 66.7% in the saline 
and M-Pt NPs groups, and 88.3% in the R-Pt NPs group over 35 days. In 
contrast, no deaths were recorded in the NIR-irradiated groups (Fig. 4e). 
On day 21, 4 × 105 tumor cells were injected subcutaneously into the 
left leg, and tumor growth was monitored for 2 weeks (Fig. 4d). The PTT 
induced by I-Pt NPs and R-Pt NPs decreased the tumor formation rate 
after the secondary inoculation to 67% and 50% respectively (Fig. 4c), 

which can be attributed to the increase in effector memory T cells that 
induce a strong immune memory protection by secreting TNF-α and IFN- 
γ [93,94]. Indeed, mice treated with the different Pt NPs and NIR radi-
ation exhibited significantly higher frequencies of effector memory T 
cells (CD3+CD8+CD62L− CD44+) compared to the untreated controls 
(Fig. 4e and Fig. S16f). Taken together, Pt NPs-based PTT can also 
induce tumor-specific immune memory responses and thereby inhibit 
tumor regrowth and relapse. 

3.6. Pt NPs-induced PTT inhibited lung metastasis 

To assess the anti-metastatic effect of Pt NPs-induced PTT, a model of 
lung metastasis were established by intravenously injecting mice with 
4T1 cells (1 × 105 cells per mouse) (Fig. 4f). All mice treated with I-Pt 
NPs (+) survived for at least 58 days, whereas the survival rate in the R- 
Pt NPs (+) group over the duration was 83.3%. In contrast, only 50% 
mice survived after surgery and 66.7% after M-Pt NPs (+) (Fig. 4g). I-Pt 
NPs-induced PTT markedly reduced the number of lung metastatic 
nodules, as indicated by the India ink-stained whole lungs and H&E 
stained lung slices [95] (Fig. 4h–j). Taken together, Pt NPs-induced 
photothermal ablation of the primary tumor and the release of BMS-1 
can elicit a strong anti-tumor immunological response to inhibit lung 
metastasis. 

Fig. 4. Pt NPs-induced PTT prevented tumor recurrence and lung metastasis by triggering long-term immune memory. (a) Schematic illustration of the 
recurrence model. (b) Recurrence rate after PTT on day 1. (c) Representative images of regenerated tumors. (d) Tumor free rate after day 21 post-inoculation. (e) 
FACS plots showing percentage of TEM cells in the spleen (gated on CD3+CD8+T cells). (f) Schematic illustration of lung metastasis model. (g) Survival rate of mice in 
the indicated groups. (h) Number of metastatic nodules in the lungs. (i-j) Representative images of (i) the India ink-stained whole lungs (Lung metastatic nodules 
were marked by the red arrows) and (j) H&E-stained tissue sections (scale bar = 3 mm). Data are presented as the mean ± SEM. The (+) refers to laser irradiation 
808 nm, 0.8 W/cm2, 5 min ***p < 0.001 from control by t-test. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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4. Conclusion 

We fabricated photothermal-sensitive PEG-capped Pt NPs that ab-
lated tumor cells through PTT and amplified the anti-tumor immune 
response synergistically by acting as an adjuvant. NIR radiation further 
facilitated the hyperthermia-triggered exposure of Mal on Pt NPs and 
release of BMS-1. Exposed Mal captured the ablated tumor antigens and 
transported them to DCs, which promoted the antigen presentation 
process. In addition, BMS-1 relieved T cell exhaustion and enhanced 
infiltration in the tumor microenvironment. The combination of PTT 
with immunotherapy inhibited the growth of remained cancer cells in a 
subcutaneous memory tumor model, the growth of the secondary tumor 
in a remote tumor model and the growth of metastasis tumor cells in a 
lung metastasis model. The photo sensitive I-Pt NPs are promising 
nanomaterials against cancer relapse and metastasis. 
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